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Quantum coherence in the presence of unobservable quantities
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State representations summarize our knowledge about a system. When unobservable quantities are intro-
duced the state representation is typically no longer unique. However, this nonuniqueness does not affect
subsequent inferences based on any observable data. We demonstrate that the inference-free subspace may be
extracted whenever the quantity’s unobservability is guaranteed by a global conservation law. This result can
generalize even without such a guarantee. In particular, we examine the coherent-state representation of a laser,
where the absolute phase of the electromagnetic field is believed to be unobservable. We show that experi-
mental coherent states may be separated from the inference-free subspaces induced by this unobservable phase.
These physical states may then be approximated by coherent states in a relative-phase Hilbert space.
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I. INTRODUCTION

The representation of a state and its associated interp
tion are fundamental issues in quantum mechanics. The
representation of a system summarizes our knowledge a
that system; it summarizes the information about any obs
able we wish to measure. Conversely, experiments on a
tem allow us to determine the associated state representa

Now it turns out that some observables are not access
to experiment. Such quantities might be calledunobserv-
ables, a term which we shall take to be a synonym for u
measurable quantities. There are several mechanism
which a quantity may be unobservable. One rigorous mec
nism involves global conservation laws. In particular, t
Wigner-Araki-Yanase~WAY ! theorem says that any operat
which does not commute with an operator corresponding
global conservation law is not observable@4,5#. Therefore
any system satisfying global conservation laws involves
observable quantities.

In addition to those quantities whose unobservability
directly associated with global conservation laws, there
other quantities for which no rigorous argument curren
exists guaranteeing their unobservability, but which a
nonetheless, generally accepted to be inaccessible to an
perimental means. An example of such a quantity is the
solute phase of the electromagnetic field@1#.

What are the consequences for the state representatio
a system when unobservable quantities are involved? S
such a situation implies that there will be parts of the sta
representation which cannot be examined this means tha
state could equally well be represented in various functi
ally indistinguishable though distinct forms. Thus, an app
ent consequence of dealing with unobservables is that
state representation is effectively nonunique.

In this paper we investigate the consequences of un
servable quantities on the state representation more fully
do this, we consider the possibility that the nonuniquen
can be isolated in the state representation. More particul
the state may be written in a form of a direct product of tw
states or components, where at least one of these compo
involves no nonuniqueness due to unobservability. This co
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ponent involves a subspace which is spanned by only eig
states of truly observable quantities. By contrast, the minim
nonunique component corresponds to that part of the s
representation which cannot be determined by any exp
mental procedure; it corresponds to an inference-free s
space.

In Sec. II, we start by considering the case where
unobservability of quantities is guaranteed by global cons
vation laws and demonstrate that the inference-free subs
may be isolated and separated from the remainder of the
representation. A hint of how this may be achieved can
found in the WAY theorem itself, which also suggests th
the unobservability of the noncommutative operators can
bypassed by taking into account their own relative quantit
We use the WAY theorem together with a consideration
state preparation to show that a relative-quantity Hilbert s
space can be constructed. In Sec. III, we consider a gene
zation of this argument, which may be applied to other ca
involving unobservable quantities. In particular, we look in
the case of the laser output field, where its absolute phas
generally accepted to be unobservable, though a direct p
for this based on the WAY theorem is currently lacking. No
withstanding this, we demonstrate how the inference-f
component of the state description may be isolated as
excellent approximation.

II. THE WIGNER-ARAKI-YANASE THEOREM
AND AN INFERENCE-FREE SUBSPACE

The WAY theorem gives us a playground of system
where unobservability of certain quantities is guaranteed
global conservation laws. The WAY theorem states that a
operator which does not commute with an operator of
global conservation is not observable@4,5#. Consider a sys-
tem which consists of the observed subsystem and its m

suring apparatus. As the total momentumP̂ of the system is
conserved, a position operatorx̂ of the observed subsystem
unobservable. This is because the position operator does
commute with the total momentum and such measurem
processes violate the conservation law.
©2003 The American Physical Society26-1
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Now we give a way to construct a relative-quantity su
space. According to the WAY theorem, a relative quantity
the unobservable absolute operators can be observable
constructing a subspace where the relative quantity can
well-defined, we isolate the inference-free component. H
we show an example which can be easily generalized
relative position operator of the observed system to the
paratusx̂12 x̂2 (5 x̂r) commutes with the total momentum
and hence is observable, wherex̂1 and x̂2 are the absolute
positions of the observed system and of the apparatus
spectively. We take eigenstates of an operatorx̂a5 x̂11 x̂2 to
construct the entire Hilbert space together with eigenstate
x̂r . The Hilbert space for the entire system~the observed
system and the apparatus! can be expanded by$uxr& ^ uxa&%
as well as by$ux1& ^ ux2&%. To construct a relative-position
Hilbert space, we start with separable states given by

uc&5uc r& ^ uca&, ~1!

where

uc r&5E dxrc r~xr !uxr&,

uca&5E dxaca~xa!uxa&. ~2!

Here the state is separable in terms of the two subspace
$uxr&% and$uxa&%.

As the operatorx̂a is not observable, the stateuxa& must
be considered as a label of the equivalence class of state@3#,
hence the stateuxa&^xau implies a set of the states

E dXP~X!e2 iXFuxa&^xaueiXF, ~3!

with all possible prior distributionsP(X). Using this repre-
sentation, the total state can be represented as

r ra5E dXP~X!e2 iXP̂uc&^cueiXP̂. ~4!

The operatorx̂r commutes with the total momentumP, then
the stateuc r& is preserved under the action of the displac
ment operatore2 iXF. This allows the density matrix to be

r5uc r&^c r u ^ ra , ~5!

where

uc r&5E dxrc r~xr !uxr&

ra5E E E dXP~X!dxadxa8ca~xa!ca* ~xa8!

3e2 iXP̂uxa&^xa8ue
iXP̂.

The relative-position stateuc r& is on the relative-position
Hilbert space and the relative-quantity operators can be
04232
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fined on this subspace. The statera constructs an inference
free component and the inference-free subspace is
structed to be completely free from a choice of the pr
distribution.

Now, let us generalize the argument to entangled sta
The general state can be represented by

uf&5E dxrdxac~xr ,xa!uxr ,xa&. ~6!

In the case where the state is entangled, the func
c(xr ,xa) cannot be written asc r(xr)ca(xa). This state in
the same representation with a prior is

r5E •••E dxadxa8dxrdxr 8c~xr ,xa!c* ~xr8 ,xa8!

3uxr&^xr8u ^ E dXP~X!uxa1X&^xa81Xu. ~7!

By contrast to the separable case, it seems nontrivial to c
struct an inference-free subspace. Such entangled state
be obtained by assuming arbitrary separable states and s
entangling operators. For instance, a product state ofuxr& and
a superposition of the total momentum eigenstates is s
rable by definition and yet can generate entanglement w
some entangling operator such as aSUM gate @exp(2ix̂r

^P̂)#. In fact, theSUM gate commutes with the total momen
tum and hence such an operation is allowed, so it seems
we can create an entangled state not violating the conse
tion low. However, the essential issue here is to consider
state representation process to obtain a consistent state
resentation under the global symmetries. Next, we will sh
that the global symmetries impose restrictions in the s
representation process.

As we have discussed above, a superposition can gen
entanglement with some entangling operator, while by any
the allowed operations an eigenstate of the total momen
cannot be entangled with the relative-position subspace. T
leads us to a question if any creation of superposition can
allowed under the global symmetries. It is not difficult to s
that none of the operators which generate a superpos
from an eigenstate is allowed under the conservation l
Any creation of superposition necessitates a third system
be involved in the state preparation process. This is inc
sistent with the global symmetries. This concludes that c
sidering the state preparation process, only the eigenstat
the total momentum are consistent with the global symme
These constraints on states allowed in the system could
considered as a superselection rule. The original work
Wigner @4# and the following works@6# have allowed the
system to prepare an arbitrary state, in particular superp
tions so that measurement of nonobservables in the sen
the WAY theorem can be arbitrarily precisely done. Ho
ever, even if the system of the observed system and the
paratus recovers the conservation of the total momentum
ter the state preparation, the system cannot comple
eliminate the third system. For example, a closed sys
with the momentum conservation is invariant under transf
6-2



h
d

nd
o
in
r
e
a
-

he
io
as
ut
o
te
ha

,
ak
e
th
e
ha
bo
y
rv
uc

e

le

the
tem
llow
ires
ent
uct

of

i-
a-

l
er

er,

ms

ble
be

e

QUANTUM COHERENCE IN THE PRESENCE OF . . . PHYSICAL REVIEW A 68, 042326 ~2003!
mation by its absolute position, so different values of t
total momentum give the same state to the system. Two

ferent values of thetotal momentumP̂ become distinct when
these are realized in the extended system. Thus, the exte
system is necessary for the physical meaning of superp
tions and the superposition states have to be captured
relative-quantity subspace in the extended system. Fo
closed system with momentum conservation, as the eig
state of the total momentum is the only state consistent,
state can be represented as Eq.~1! and hence the relative
position subspace always can be constructed.

III. THE CASE OF LASER OUTPUT FIELD

In this section, we generalize the argument to cases w
unobservability is not guaranteed by global conservat
laws. Our particular interest of such cases here is the l
output field. Despite a lack of rigorous proof, the absol
phase of an electromagnetic field has been considered t
nonobservable@1,2#. Due to the nonobservability of absolu
phasef, the state representation for the laser output field
an inference in terms of this quantity, and is written as

r5E
0

2pdf

2p
P~f!uuaue2 if&^uaue2 ifu, ~8!

where P(f) is an untestable prior distribution function
which is inference in the state representation. Now we t
the state representation of the laser output field as an
ample of the general case to consider construction of
relative-quantity subspace. The previous argument sugg
to generalize the state to two modes and take a relative p
of a two-mode coherent state. However, the argument a
state preparation does not apply here, as unobservabilit
absolute phase is a weaker condition than global conse
tion law, then we have to find an alternative way to constr
an inference-free subspace.

A two-mode coherent state is given as

ua,b&5uuaue2 ifa& ^ uubue2 ifb& ~9!

ua,b&5e2(uau21ubu2/2)(
n1

`

(
n2

`
an1bn2

An1!n2!
un1 ,n2&. ~10!

The total photon number of the state isN5n11n2 and the
difference photon number isM5(n12n2)/2 which is either
integer ~for even total photon numbers! or half integer~for
odd total photon numbers!. The state~10! can be alterna-
tively expanded by the eigenstates characterized by th
quantum numbersN andM as

ua,b&5e2^N̂&/2(
N50

`

(
M52N/2

N/2
aN/21MbN/22M

AS N

2
1M D ! S N

2
2M D !

uN,M &,

~11!

where^N̂&5uau21ubu2. Obviously this state is not separab
in terms of the two subspaces$uN&% and $uM &%. Unobserv-
04232
e
if-

ed
si-

a
a

n-
ny

re
n
er
e
be

s

e
x-
e

sts
se
ut
of
a-
t

se

ability of absolute phase is weaker as a restriction to
system, so the superposition rule for the conserved sys
does not apply here. Such a case, in general, does not a
us to simply isolate an inference-free subspace and requ
an ingredient to approximately do so. In this case of coher
states, we take large total photon number limits to constr
a relative-phase subspace.

Taking a set of parameters as

uau

^N̂&1/2
52sin

u

2
,

ubu

^N̂&1/2
5cos

u

2
,

fa2fb5f r . ~12!

The two-mode coherent state can be written as the sum
spin coherent states, yielding

ua,b&5e2^N̂&/2(
N50

`
~^N̂&1/2e2 ifb!N

AN!
uN& ^ uu,f r&N . ~13!

Hereuu,f r&N is a spin-N/2 coherent state with the parametr
zation~12!. Alternatively, the spin coherent state may be p
rametrized byj (52(uau/ubu)e2 ifr) as

uu,f r&N5uj&N5 (
M52N/2

N/2 S N

N

2
2M D 1/2

3~11uju2!2N/2jN/21MuM &. ~14!

If the spin coherent stateuj&N is not dependent on the tota
photon numberN, then the state for the total photon numb
can be realized as a coherent state ofu^N̂&1/2e2 ifb&.

Here, we consider a limit of large total photon numb

^N̂&1/2→`. The contribution of components for smallN to
the sum is negligible and the main contribution is the ter
of the orderN.^N̂&1/2. In the large limit of N, the spin
coherent state can be contracted to a Weyl-Heisenberg~WH!
coherent state. Whenuau.ubu, the state can be typically
contracted to a WH coherent state,

uu,f r&→u2A2uaue2 ifr&. ~15!

At the limit, this coherent state is approximately separa
with the subspace of the total photon number, and can
extracted from the sum in Eq.~13! as

ua,b&.u2A2uaue2 ifr& ^ e2^N̂&/2(
N50

`
~^N̂&1/2e2 ifb!N

AN!
uN&

5u2A2uaue2 ifr& ^ u^N̂&1/2e2 ifb&. ~16!

The laser output stater in the equivalent class of this stat
with a prior P(fb) may be given as
6-3
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r5E dfbP~fb!~ u2A2uaue2 ifr&^2A2uaue2 ifru

^ uN̂&1/2e2 ifb&^^N̂&1/2e2 ifbu!. ~17!

The space of the relative phasef r is independent from the
integral of the absolute phasefb , yielding

r5u2A2uaue2 ifr&^2A2uaue2 ifru ^ rP, ~18!

where

rP5E dfbP~fb!uN̂&1/2ue2 ifb&^^N̂&1/2e2 ifbu. ~19!

Hence the relative-phase subspace can be approxim
constructed. However, this approximation is not so usefu
the limit brings uau also to infinity with A2a.^N̂&1/2. By
contrast, whenuau!ubu is satisfied, the group contractio
may be taken in the order of^N̂&. In this case the spin stat
uj&N is contracted by a parametere51/ubu as

j52euaue2 ifr ~e→`!. ~20!

In this contraction, the spin size given byubu2 goes to infin-
ity with e→0 and the state is contracted to a WH coher
stateu2uaue2 ifr&.
-

04232
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The coherent state from laser can be approximately r
resented as

ua,b&^a,bu.u2uaue2 ifr&^2uaue2 ifru ^ rP, ~21!

under the condition

^N̂&.ubu2@uau2. ~22!

Hence the state on the subspace of the relative phase
coherent state, which is, in fact, what we call a coherent s
in experiments.

To conclude, we have shown the explicit construction
an approximate relative-phase Hilbert space. The two-m
coherent state can be represented as a pure coherent st
the relative-phase subspace under the condition~22!. This
state presentation of relative phase does not involve p
distribution, and hence circumvents the entire discuss
about unknowable absolute phase.
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