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Quantum coherence in the presence of unobservable quantities
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State representations summarize our knowledge about a system. When unobservable quantities are intro-
duced the state representation is typically no longer unique. However, this nonuniqueness does not affect
subsequent inferences based on any observable data. We demonstrate that the inference-free subspace may be
extracted whenever the quantity’s unobservability is guaranteed by a global conservation law. This result can
generalize even without such a guarantee. In particular, we examine the coherent-state representation of a laser,
where the absolute phase of the electromagnetic field is believed to be unobservable. We show that experi-
mental coherent states may be separated from the inference-free subspaces induced by this unobservable phase.
These physical states may then be approximated by coherent states in a relative-phase Hilbert space.
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[. INTRODUCTION ponent involves a subspace which is spanned by only eigen-
states of truly observable quantities. By contrast, the minimal
The representation of a state and its associated interpretaonunique component corresponds to that part of the state
tion are fundamental issues in quantum mechanics. The statepresentation which cannot be determined by any experi-
representation of a system summarizes our knowledge abolitental procedure; it corresponds to an inference-free sub-
that system; it summarizes the information about any obsen/&pPace. o
able we wish to measure. Conversely, experiments on a sys- In Sec. Il, we start by considering the case where the
tem allow us to determine the associated state representatidfiobservability of quantities is guaranteed by global conser-
Now it turns out that some observables are not accessibéation laws and demonstrate that the inference-free subspace
to experiment. Such quantities might be calledobserv- May be isolated and separated from the remainder of the state
ables a term which we shall take to be a synonym for un-representation. A hint of how this may be achieved can be
measurable quantities. There are several mechanisms [f)gund in the WAY theorem itself, which also suggests that
which a quantity may be unobservable. One rigorous mechdhe unobservability of the noncommutative operators can be
nism involves global conservation laws. In particular, thebypassed by taking into account their own relative quantities.
Wigner-Araki-YanaséWAY ) theorem says that any operator We use the WAY theorem together with a consideration of
which does not commute with an operator corresponding to &taté preparation to show that a relative-quantity Hilbert sub-
global conservation law is not observalj5]. Therefore —SPace can be constructed. In Sec. Ill, we consider a generali-
any system satisfying global conservation laws involves unZation of this argument, which may be applied to other cases
observable quantities. involving unobservable quantities. In particular, we look into
In addition to those quantities whose unobservability isthe case of the laser output field, where its absolute phase is
directly associated with global conservation laws, there argenerally accepted to be unobservable, though a direct proof
other quantities for which no rigorous argument currentlyfor this based on the WAY theorem is currently lacking. Not-
exists guaranteeing their unobservability, but which areWithstanding this, we demonstrate how the inference-free
nonetheless, generally accepted to be inaccessible to any eg@mponent of the state description may be isolated as an
perimental means. An example of such a quantity is the abexcellent approximation.
solute phase of the electromagnetic figld.
What are the consequences for the state representation of
a system when unobservable quantities are involved? Since  II. THE WIGNER-ARAKI-YANASE THEOREM
such a situation implies that there will be parts of the state’s AND AN INFERENCE-FREE SUBSPACE
representation which cannot be examined this means that the

state could equally well be represented in various function- The WAY theorem gives us a playground of systems
quaily P where unobservability of certain quantities is guaranteed by

2|r|1¥ g‘(?r:zte'n%i'zsgb(lﬁ gheoalfﬁ]]h dvlvsi:kmijtnfgkr)?jr.v;gress, ?Sn tig?i; lobal conservation laws. The WAY theorem states that any
q 9 perator which does not commute with an operator of the
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. : em which consists of the observed subsystem and its mea-
servable quantities on the state representation more fully. To" - ]
do this, we consider the possibility that the nonuniquenes§Uring apparatus. As the total momentiiof the system is
can be isolated in the state representation. More particularlgonserved, a position operatoof the observed subsystem is
the state may be written in a form of a direct product of twounobservable. This is because the position operator does not
states or components, where at least one of these componentsmmute with the total momentum and such measurement

involves no nonuniqueness due to unobservability. This comprocesses violate the conservation law.

1050-2947/2003/68)/0423264)/$20.00 68 042326-1 ©2003 The American Physical Society



K. NEMOTO AND S. L. BRAUNSTEIN PHYSICAL REVIEW A68, 042326 (2003

Now we give a way to construct a relative-quantity sub-fined on this subspace. The statgeconstructs an inference-
space. According to the WAY theorem, a relative quantity offree component and the inference-free subspace is con-
the unobservable absolute operators can be observable. Byructed to be completely free from a choice of the prior
constructing a subspace where the relative quantity can bdistribution.
well-defined, we isolate the inference-free component. Here Now, let us generalize the argument to entangled states.
we show an example which can be easily generalized. Ahe general state can be represented by
relative position operator of the observed system to the ap-

paratusxX, — X, (=X,;) commutes with the total momentum |¢>:f AX A Xt (X X)X, Xa) ©)
~ ~ r a rs»~a rs~a,
and hence is observable, whete and x, are the absolute

ositions of the observed system and of the apparatus, r . .
posit v Y pp u ? the case where the state is entangled, the function

spectively. We take eigenstates of an operager x; + X, to .} cannot be written as. (x %.). This state in
construct the entire Hilbert space together with eigenstates ql’%(e rs'ar?1)e representation Withﬂér(pl'ri())lf{/?é D

. The Hilbert space for the entire systeihe observed

system and the apparajusan be expanded b{fx,)®[x,)} o
as well as by{|x;)®|x,)}. To construct a relative-position P:f f AXadXar dX dXer h(Xp , Xa) P (X[, X5)
Hilbert space, we start with separable states given by

19)=lu) o), & Xx) (il [ axPOOat 06X @)
where

By contrast to the separable case, it seems nontrivial to con-
struct an inference-free subspace. Such entangled states can
|1//r>=f dx, i, (X)) [X), be obtained by assuming arbitrary separable states and some
entangling operators. For instance, a product staje, dfand
a superposition of the total momentum eigenstates is sepa-
| o) = f AXatha(Xa)|Xa)- (2)  rable by definition and yet can generate entanglement with
some entangling operator such assam gate [ exp(—ix;
Here the state is separable in terms of the two subspaces @fl‘[)] In fact, thesum gate commutes with the total momen-
{Ix)} and{[xa)} tum and hence such an operation is allowed, so it seems that

As the operatoK, is not observable, the stae,) must  we can create an entangled state not violating the conserva-
be considered as a label of the equivalence class of $&fes tion low. However, the essential issue here is to consider the

hence the statpx,)(x,| implies a set of the states state representation process to obtain a consistent state rep-
resentation under the global symmetries. Next, we will show
J dXP(X)e X x,)(x,|eX?, 3) that the glqbal symmetries impose restrictions in the state
representation process.

. . o ) ) As we have discussed above, a superposition can generate
with all possible prior distribution®(X). Using this repre- entanglement with some entangling operator, while by any of

sentation, the total state can be represented as the allowed operations an eigenstate of the total momentum
cannot be entangled with the relative-position subspace. This
f dXP(X IXH| W) (| eI Xl (4) leads us to a question if any creation of superposition can be

allowed under the global symmetries. It is not difficult to see

Th - ith th | U th that none of the operators which generate a superposition
€ operatok, commutes with the total momenturh, then g, 5, eigenstate is allowed under the conservation law.

the state{ ;) |s_pi)£gserv9d under the action of the displace-pny creation of superposition necessitates a third system to
ment operatoe . This allows the density matrix to be

be involved in the state preparation process. This is incon-
p=v M| ®pa (5) s@stent with the global sym_metries. This concludgs that con-
’ sidering the state preparation process, only the eigenstates of
where the total momentum are consistent with the global symmetry.
These constraints on states allowed in the system could be
considered as a superselection rule. The original work by

|¢r>:f dx (%) [Xr) Wigner [4] and the following workg6] have allowed the
system to prepare an arbitrary state, in particular superposi-

tions so that measurement of nonobservables in the sense of

Pa=f J JdXP(X)andXélﬁa(Xa)llfﬁ(Xé) the WAY theorem can be arbitrarily precisely done. How-
R i ever, even if the system of the observed system and the ap-
Xe—iXH|xa><xé|eiXH_ paratus recovers the conservation of the total momentum af-

ter the state preparation, the system cannot completely
The relative-position statéy,) is on the relative-position eliminate the third system. For example, a closed system
Hilbert space and the relative-quantity operators can be dewith the momentum conservation is invariant under transfor-
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mation by its absolute position, so different values of theability of absolute phase is weaker as a restriction to the
total momentum give the same state to the system. Two difsystem, so the superposition rule for the conserved system

ferent values of théotal momenturil become distinct when does not apply here. Such a case, in general, does not allow
these are realized in the extended system. Thus, the extendéd [0 Simply isolate an inference-free subspace and requires
system is necessary for the physical meaning of superpos®? ingredient to approximately do so. In thls_ca_lse of coherent

tions and the superposition states have to be captured in Sjates, we take large total photon number limits to construct

relative-quantity subspace in the extended system. For @ relative-phase subspace.

closed system with momentum conservation, as the eigen- 1aking a set of parameters as

state of the total momentum is the only state consistent, any

state can be represented as EL).and hence the relative- |af :—sing
position subspace always can be constructed. <|§|>1/2 2’
Ill. THE CASE OF LASER OUTPUT FIELD |ﬂ| 0
———-—=C0S3,
In this section, we generalize the argument to cases where (N)l’2 32
unobservability is not guaranteed by global conservation
laws. Our particular interest of such cases here is the laser bo— bp=r. (12

output field. Despite a lack of rigorous proof, the absolute
phase of an electromagnetic field has been considered to Bée two-mode coherent state can be written as the sum of
nonobservabl§l,2]. Due to the nonobservability of absolute spin coherent states, yielding
phasep, the state representation for the laser output field has

an inference in terms of this quantity, and is written as 2 ((NYY2emidpN

— A ()2
|a.py=e" M2, N

Here| 6, ¢, )y is a spinN/2 coherent state with the parametri-

. ) o ) zation(12). Alternatively, the spin coherent state may be pa-
where P(¢) is an untestable prior distribution function, rametrized by¢ (=—(la|/|B))e %) as

which is inference in the state representation. Now we take

NSlob 13
2md ) .

o= | SeP@lale il 4, @
0 K

the state representation of the laser output field as an ex- N2 N 12
ample of the general case to consider construction of the

relative-quantity subspace. The previous argument suggests |9’¢T>N:|§>N:M:E_N,2 E_M

to generalize the state to two modes and take a relative phase 2

of a two-mode coherent state. However, the argument about
state preparation does not apply here, as unobservability of

a_\bsolute phase is a weak_er condition than global conservge o spin coherent statig)y is not dependent on the total
tion law, then we have to find an alternative way to construcbhoton numbeN, then the state for the total photon number

an inference-free subspace. _ 1 i
A two-mode coherent state is given as can be realized as a cohgrgnt statd(bh) e~ %%).
Here, we consider a limit of large total photon number,

X(1+|§|2)*N/2§N/2+M|M>. (14)

la,B)=||ale”?) o || Ble ! ?5) (9 (N)Y?—o0. The contribution of components for smaillto
the sum is negligible and the main contribution is the terms
S alpn f the orderN=(N)"2 In the large limit of N, the spin
_ o—(al?+8%12) ap 0 9 ' P
la.B)=¢ 1 E 0 [n1.nz). (10 coherent state can be contracted to a Weyl-Heisenvgkd)

npon ny!ny! .
v 1 coherent state. Whefn|=|p|, the state can be typically

The total photon number of the stateNs=n,+n, and the ~contracted to a WH coherent state,

difference photon number 8 = (n;—n,)/2 which is either .

integer (for even total photon numbersr half integer(for 10,y |— 2| ale” ). (15
odd total photon numbersThe state(10) can be alterna-
tively expanded by the eigenstates characterized by the
guantum numberdl andM as

&t the limit, this coherent state is approximately separable
with the subspace of the total photon number, and can be
extracted from the sum in EQl3) as

oz o N/2 QN2+ M gN/2=M . NP
—a | R =i
|, B)=¢€ Ngo M;N/Z N N IN,M), |a',,8>2|—\/§|a|efi¢f>®ef<N>/22 ((N)" e '?8) IN)
NI W
(12) =|—V2|ale ")y o|(N)2ei%s). (16)

where(N)=|a|?+|B|2. Obviously this state is not separable The laser output state in the equivalent class of this state
in terms of the two subspac¢fN)} and{|M)}. Unobserv-  with a prior P(¢,) may be given as
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. B The coherent state from laser can be approximately rep-
P=J dopsP () (| — 2| ale ) (— 2| ale '] resented as
®|N) e %) ((N) V2™ %), 17 |, ), Bl=|~|ale”'")(~|ale”'"@pp, (2D

The space of the relative phasgg is independent from the
integral of the absolute phasg;, yielding

p=|—V2|ale”¥)(—V2|ale” ¥|opp, (18 (Ny=|g[*>al?. (22

under the condition

where Hence the state on the subspace of the relative phase is a

coherent state, which is, in fact, what we call a coherent state
ppzf dpsP(dp)|N)e 198)((N)Y2%e %6, (19)  in experiments.
To conclude, we have shown the explicit construction of
Hence the relative-phase subspace can be approximate®) approximate relative-phase Hilbert space. The two-mode
constructed. However, this approximation is not so useful a§oherent state can be represented as a pure coherent state in
the limit brings|e| also to infinity with \/Ea:m>1/2- By the relative-phase subspace under the conditg®). This

. o . state presentation of relative phase does not involve prior
contrast, whena|<|g| is satisfied, the group contraction >.7 % V. . . ; .
! N i . distribution, and hence circumvents the entire discussion
may be taken in the order ¢N). In this case the spin state 4,6t unknowable absolute phase.

|€)y is contracted by a parameter 1/ 3| as

E=—¢€lale™'? (e—wx). (20 ACKNOWLEDGMENTS
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