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Abstract

It is known that if one could clone an arbitrary quantum state then one could send signals faster than the speed
Here, we show that deletion of an unknown quantum state for which two copies are available would also lead to supe
signalling. However, the (Landauer) erasure of an unknown quantum state does not allow faster-than-light communica
 2003 Published by Elsevier B.V.
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A deep-rooted concept in quantum theory is the
ear superposition principle which follows from the li
earity of the equations of motion [1]. Linear supe
position of states is the key feature which eleva
a two-state system into a qubit. The possibility
exploiting greater information processing ability u
ing qubits is now being investigated in the emerg
field of quantum computation and information tec
nology [2]. Further, linear evolution makes certa
operations impossible on arbitrary superpositions
quantum states. For example, one of the simplest
most profound, principles of quantum theory is th
we cannot clone an unknown quantum state exa
[3,4]. Indeed, stronger statements may be made
stronger assumptions: unitarity of quantum evolut
requires that even a specific pair of non-orthogo
states cannot be perfectly copied [5]. If we give
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the requirement of perfect copies then it is possible
copy an unknown state approximately by determin
tic cloning machines [6–11]. Recent work shows t
non-orthogonal states from a linearly independent
can be probabilistically copied exactly [12,13] and c
evolve into a superposition of differing numbers
copy states [14].

Notwithstanding the above, we might ask: wh
could go wrong if one were to clone an arbitrary sta
In 1982 Herbert argued that the copying of half of
entangled state, such as by a laser amplifier, wo
allow one to send signals faster than light [15]. Th
same year the no-cloning theorem demonstrated
flaw in this proposed violation of causality [3,4]. Thu
the linear evolution of even non-relativistic quantu
theory and special relativity were not in contrad
tion. In fact, one can go a step further and ask if
no-signalling condition (the impossibility of instan
taneous communication) lies behind some of the
sic axiomatic structure of quantum mechanics [1
It turns out that the achievable fidelity of imperfe
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cloning follows from this no-signalling condition [17
18]. Further, it can be shown that even probabilistic
act cloning cannot violate the no-signaling conditi
[19].

Thus, quite a bit is understood about cloning m
chines, but what about other hypothetical machin
Recently, it was proved that given two copies of
unknown quantum state we cannot delete one c
against the other by any physical operation (i.e.,
a trace preserving completely positive transform
tion)—a result called the ‘no-deletion theorem’ [20
This is yet another fundamental consequence of
linearity of quantum theory and is not restricted
the class of unitary operations. The deletion of qu
tum information (in this sense) should not be co
fused with its erasure. Classically, erasure is a pr
itive operation that irreversibly resets a system int
standard state. This erasure involves a thermodyna
cost since the erased information appears as he
the environment—a result known as Landauer e
sure principle [21,22]. Quantum mechanically, eras
would allow for the resetting of even a single qub
By comparison, deletion is the quantum analog of
copying a bit of information from two identical bits
The essential difference is that irreversible erasure
urally carries over from the classical to the quant
world, whereas the analogous uncopying of class
information is impossible for quantum informatio
The quantum no-deleting principle has also been g
eralized to higher-dimensional quantum systems
for non-orthogonal states using unitarity in a con
tional manner [23]. Even though one cannot delete
of a pair of non-orthogonal states perfectly using o
unitary operations one can perform deletion of linea
independent states in a probabilistic manner [24,
Recently, a ‘stronger no-cloning theorem’ has sho
that to copy a state from a non-orthogonal set, that
full information about the clone must already be p
vided in the ancilla state [26]. It has been sugges
that these stronger no-cloning and no-deleting th
rems taken together imply a property of ‘permanen
to quantum information.

In this Letter we ask the question: suppose o
can delete an arbitrary state using a quantum dele
machine, what could go wrong? We show that
one could delete unknown states then one could s
signals faster than light! At first glance this may
surprising as by deleting information we are on
reducing the redundancy at our disposal and
should not in any way affect the signal being sent.
the other hand, however, we know that the linearity
quantum theory has survived to its highest preces
test and that even a little bit of non-linearity wou
allow superluminal signalling. Thus one can perh
understand that since no-deleting is a consequenc
linearity then any process that violates linearity sho
clash with one of the corner stones of special relativ
Therefore, deletion of an arbitrary state should le
to signalling. Finally, we show that the erasure
quantum information does not imply signaling,
expected.

First, let us recall the quantum no-deletion pr
ciple. Consider two copies of an unknown qubit|ψ〉
each in a Hilbert spaceH = C

2. The two copies live
in a three-dimensional symmetric subspace ofH⊗H.
The quantum no-deleting principle states that it is
possible to design a machine that can delete one c
even in the presence of a second identical copy
the unknown quantum state. That is, there is no lin
transformationL :H1 ⊗ H2 ⊗ H3 → H1 ⊗ H2 ⊗ H3
that will take

(1)|ψ〉1|ψ〉2|A〉3 → |ψ〉1|Σ〉2|Aψ 〉3,

where |Σ〉 is the blank state which can be of o
choice,|A〉 is the initial and|Aψ〉 is the final state o
the ancilla. A properly working deleting machine mu
have the final state of the ancilla independent of|ψ〉 to
exclude swapping, however, it will be convenient
include such a possible dependence for the mom
It has been shown by linearity alone that the o
possible operation of the form of Eq. (1) is equivale
to swapping the unknown state onto the Hilbert sp
of ancilla [20,23]. However, this operation cannot
considered as proper deletion in the sense given a
but is in fact (Landauer) erasure [20,22,23].

To show that deletion of an arbitrary state impl
signalling consider the following scenario: let Alic
and Bob be remotely separated and share two p
of EPR singlets|Ψ−〉12 and |Ψ−〉34. (Note that in
proving cloning implies signalling one uses only
single EPR pair shared between Alice and Bob.) Al
has particles 1 and 3 and Bob has 2 and 4. Since
singlet state is invariant under local unitary operat
Ui ⊗ Uj , (i = 1,3, j = 2,4) it is same in all basis
[up to U(1) phase factors]. Let us write the combin
state of the system in an arbitrary (real) qubit ba



210 A.K. Pati, S.L. Braunstein / Physics Letters A 315 (2003) 208–212

rti-
re.
s 1

lt
es

-
he
g
ver,
not

e-

l-
s

ent
his

a-

ine
the
the

itu-
ese
fter
the

the

ese
cate
t of

at
ed

d
hey
out
led
{|ψ〉 = cosθ |0〉 + sinθ |1〉, |ψ̄〉 = sinθ |0〉 − cosθ |1〉}
as

|Ψ−〉12|Ψ−〉34

= 1

2

(|ψ〉1|ψ〉3|ψ̄〉2|ψ̄〉4 + |ψ̄〉1|ψ̄〉3|ψ〉2|ψ〉4

(2)
− |ψ̄〉1|ψ〉3|ψ〉2|ψ̄〉4 − |ψ〉1|ψ̄〉3|ψ̄〉2|ψ〉4

)
.

First we notice that the state of the Bob’s pa
cles 2 and 4 are in a completely random mixtu
Suppose now Alice were to measure her particle
and 3 into the qubit basis{|ψ〉, |ψ̄〉}. If the outcome
were |ψ〉1|ψ〉3, then after communicating the resu
to Bob, Bob’s description for the state of particl
2 and 4 would be|ψ̄〉2|ψ̄〉4. If instead Alice’s out-
come were|ψ̄〉1|ψ̄〉3, then after receiving this infor
mation Bob’s description for his particles would be t
state|ψ〉2|ψ〉4. Similarly, one can find the resultin
states with other choices of measurements. Howe
whatever measurements Alice does, if Bob does
learn the results his description will for them will r
main that of a completely random mixture, i.e.,ρ24 =
1
4I2 ⊗ I2. That is to say that local operations on A
ice’s subspaceH1 ⊗ H3 have no effect on the Bob’
description of the state in the subspaceH2 ⊗ H4. In-
deed, as is well known, the result of any measurem
(von Neumann or POVM) that Bob can perform on
particles will depend only on the reduced density m
trix of the particle 2 and 4.

But suppose Bob has a quantum deleting mach
which can delete an arbitrary state. The action of
quantum deleting machine on the two copies and
ancilla state belonging to the Hilbert spaceH2 ⊗H4⊗
H5 can be described by

|ψ〉2|ψ〉4|A〉5 → |ψ〉2|Σ〉4|Aψ〉5,

|ψ̄〉2|ψ̄〉4|A〉5 → |ψ̄〉2|Σ〉4|Aψ̄〉5,

|ψ〉2|ψ̄〉4|A〉5 → |φ′〉245,

(3)|ψ̄〉2|ψ〉4|A〉5 → |φ′′〉245.

The last two transformations correspond to the s
ation when the states are non-identical and in th
cases the output can be some arbitrary states. A
passing through the quantum deleting machine
combined state of Alice and Bob becomes

|Ψ−〉12|Ψ−〉34|A〉5

→ 1

2

(|ψ〉1|ψ〉3|ψ̄〉2|Σ〉4|Aψ̄〉5

+ |ψ̄〉1|ψ̄〉3|ψ〉2|Σ〉4|Aψ 〉5

− |ψ̄〉1|ψ〉3|φ′〉245− |ψ〉1|ψ̄〉3|φ′′〉245
)

(4)= ∣∣Ψ (out)〉
12345.

Suppose Alice and Bob have pre-agreed that
measurements onto basis states{|0〉, |1〉} means ‘0’
and onto any other (say){|ψ〉, |ψ̄〉} means ‘1’. Now,
Alice performs measurements onto either of th
two choices of basis states but does not communi
the measurement outcome. Since Bob is ignoran
Alice’s measurement, he traces out the particles
Alice’s lab and the ancilla at his lab too. The reduc
density matrix for particles 2 and 4 is given by

ρ24 = tr135
(
ρ
(out)
12345

)
(5)= 1

4

(
I2 ⊗ |Σ〉44〈Σ| + ρ′

24 + ρ′′
24

)
,

where

ρ
(out)
12345=

∣∣Ψ (out)〉
12345

〈
Ψ (out)

∣∣,
ρ′

24 = tr5(|φ′〉245〈φ′|)
and

ρ′′
24 = tr5(|φ′′〉245〈φ′′|).

Since|φ′〉245 and|φ′′〉245 are in general pure entangle
states of the non-identical inputs and the ancilla, t
will depend on the input parameters. After tracing
the ancilla, we will have, in general, mixed entang
states given by

ρ′
24(θ)=

1

4

(
I2 ⊗ I4 + �m′(θ).�σ2 ⊗ I4

+ I2 ⊗ �n′(θ).�σ4 +
∑
ij

C′
ij (θ)σi2 ⊗ σj 4

)
,

ρ′′
24(θ)=

1

4

(
I2 ⊗ I4 + �m′′(θ).�σ2 ⊗ I4

(6)

+ I2 ⊗ �n′′(θ).�σ4 +
∑
ij

C′′
ij (θ)σi2 ⊗ σj 4

)
.
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Thus, it is clear that the reduced density matrix
particles 2 and 4 are no longer completely rand
and instead depend on the choice of basis. This sh
that if Alice measures her particles in the{|0〉, |1〉}
basis then the density matrix of Bob’s particles w
be in ρ24(0). If Alice measures her particles i
{|ψ〉, |ψ̄〉} basis then Bob’s particles will be describ
by a different density matrixρ24(θ). Since these
two statistical mixtures are non-identical Bob c
distinguish them. Therefore, bydeleting an arbitrary
state he can distinguish the two statistical mixtur
and thatwill allow communication of one classical bit
superluminally. It is known that if one allows non
linear operations one can distinguish two statisti
mixtures [27]. This suggests that the action of delet
was probably a non-linear operation beyond the re
of quantum theory.

Furthermore, we can show that erasure of unkno
state does not imply superluminal signalling. La
dauer erasure of information can be accomplished
swapping the last qubit with a standard state and t
dumping it into the environment. Suppose Bob p
forms this erasure operation on the particles at his
posal. In this case, Bob can simply choose the in
state of the ancilla|A〉 to be the blank state|Σ〉. Then,
he swaps the last two qubits inH4 ⊗ H5 and traces
over Hilbert spaceH5. Now instead of transforma
tion (3) we have

|ψ〉2|ψ〉4|Σ〉5 → |ψ〉2|Σ〉4|ψ〉5,

|ψ̄〉2|ψ̄〉4|Σ〉5 → |ψ̄〉2|Σ〉4|ψ̄〉5,

|ψ〉2|ψ̄〉4|Σ〉5 → |ψ〉2|Σ〉4|ψ̄〉5,

(7)|ψ̄〉2|ψ〉4|Σ〉5 → |ψ̄〉2|Σ〉4|ψ〉5.

Using the argument as before, without any commu
cation from Alice to Bob, the two particle density m
trix of Bob’s particles (after swapping and tracing ov
the ancilla) is given by

(8)ρ24 = 1

2
I2 ⊗ |Σ〉44〈Σ|.

Basically Bob has transformed the state of particle
and 5 asI4/2⊗ |Σ〉5〈Σ| → |Σ〉4〈Σ| ⊗ I5/2 and as a
result he has dumped log2 bits of information to
environment in accordance with the Landauer eras
principle. This density matrix does not carry any
formation about Alice’s choice of basis as it is ind
pendent of the parameterθ . Therefore, by erasing th
information Bob will not be able to know onto whic
basis Alice has performed her measurement. Thu
expected, the (Landauer) erasure of an unknown s
does not lead to superluminal signalling.

The quantum no-deletion theorem is a conseque
of the linearity of quantum theory. We have sho
that violation of no-deletion can lead to superlumin
signalling using non-local entangled states. Howe
(Landauer) erasure of information does not allow
any signalling. These two observations further illu
trate the fact that quantum deletion is fundamental
different operation than erasure.

We conclude with a remark that classical inform
tion is physical but has no permanence. By contr
quantum information is physical and has permanence
(in view of the recent stronger no-cloning and n
deleting theorems in quantum information [26]). He
permanence refers to the fact that to ‘duplicate’ qu
tum information the copy must have already exis
somewhere in the universe and to ‘eliminate’ it, it mu
be moved to somewhere else in the universe whe
will still exist. It would be interesting to see if the v
olation of this permanence property of quantum
formation can itself lead to superluminal signallin
That it should be true is seen here partly (since de
ing implies signalling). It remains to be seen wheth
negating the stronger no-cloning theorem leads to
nalling.
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