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Abstract—This work proposes an algebraic model for classical
information theory. We first give an algebraic model of proba-
bility theory. Information theoretic constructs are based on this
model. In addition to theoretical insights provided by our model
one obtains new computational and analytical tools. Several
important theorems of classical probability and information
theory are presented in the algebraic framework.

I. INTRODUCTION

The present paper reports a brief synopsis of our work on

an algebraic model of classical information theory based on

operator algebras. Let us recall a simple model of a commu-

nication system proposed by Shanon [Sha48]. This model has

essentially four components: source, channel, encoder/decoder

and receiver. Some amount of noise affects every stage of

the operation and the behavior of components are generally

modeled as stochastic processes. In this work our primary

focus will be on discrete processes. A discrete source can be

viewed as a generator of a countable set of random variables.

In a communication process the source generates sequence

of random variables. Then it is sent through the channel

(with encoding/decoding) and the output at the receiver is

another sequence of random variables. Thus, the concrete

objects or observables, to use the language of quantum theory,

are modeled as random variables. The underlying probability

space is primarily used to define probability distributions or

states associated with the relevant random variables. In the

algebraic approach we directly model the observables. Since

random variables can be added and multiplied 1they constitute

an algebra. This is our starting point. In fact, the algebra of

random variables have a richer structure called a C� algebra.

Starting with a C� algebra of observables we can define

most important concepts in probability theory in general and

information theory in particular. A natural question is: why

should we adopt this algebraic approach? We discuss the

reasons below.

First, it seems more appropriate to deal with the “concrete”

quantities, viz. observables and their intrinsic structure. The

choice of underlying probability space is somewhat arbitrary

as a comparison of standard textbooks on information theory

[CT99], [CK81] reveals. Moreover, from the algebra of ob-

servables we can recover particular probability spaces from

representations of the algebra. Second, some constraints, may

have to be imposed on the set of random variables. In security

protocols different participants have access to different sets of

observables and may assign different probability structures. In

this case, the algebraic approach seems more natural: we have

to study different subalgebras. Third, the algebraic approach

1We assume that they are real or complex valued.

gives us new theoretical insights and computational tools. This

will be justified in the following sections. Finally, and this

was our original motivation, the algebraic approach provides

the basic framework for a unified approach to classical and
quantum information. All quantum protocols have some clas-

sical components, e.g. classical communication, “coin-tosses”

etc. But the language of the two processes, classical and

quantum, seem quite different. In the former we are dealing

with random variables defined on one or more probability

spaces where as in the latter we are processing quantum states

which also give complete information about the measurement

statistics of quantum observables. The algebraic framework is

eminently suitable for bringing together these somewhat dis-

parate viewpoints. Classical observables are simply elements

that commute with every element in the algebra.

The connection between operator algebras and information

theory—classical and quantum—have appeared in the sci-

entific literature since the beginnings of information theory

and operator algebras—both classical and quantum (see e.g.

[Ume62], [Seg60], [Ara75], [Key02], [BKK07], [KW06]).

Most previous work focus on some aspects of information

theory like the noncommutative generalizations of the con-

cepts of entropy. There does not appear to be a unified and

coherent approach based on intrinsically algebraic notions.

The construction of such a model is one of the goals of the

paper. As probabilistic concepts play such an important role

in the development of information theory we first present an

algebraic approach to probability. I. E. Segal [Seg54] first

proposed such an algebraic approach model of probability

theory. Later Voiculescu [VDN92] developed noncommutative

or “free probability” theory. We believe several aspects of our

approach are novel and yield deeper insights to information

processes. In this summary, we have omitted most proofs or

give only brief outlines. The full proofs can be found in our

arXiv submission [PB]. A brief outline of the paper follows.

In Section II we give the basic definitions of the C� alge-

bras. This is followed by an account of probabilistic concepts

from an algebraic perspective. In particular, we investigate

the fundamental notion of independence and demonstrate how

it relates to the algebraic structure. One important aspect in

which our approach seems novel is the treatment of proba-

bility distribution functions. In Section III we give a precise

algebraic model of information/communication system. The

fundamental concept of entropy is introduced. We also define

and study the crucial notion of a channel as a (completely)

positive map. In particular, the channel coding theorem is

presented as an approximation result. Stated informally: Every
channel other than the useless ones can be approximated by a
lossless channel under appropriate coding. We conclude the

paper with some comments and discussions.
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II. C� ALGEBRAS AND PROBABILITY

A Banach algebra A is a complete normed algebra [Rud87],

[KR97]. That is, A is an algebra over real (R) or com-

plex numbers (C), for every x � A the norm ��x�� � 0
is defined satisfying the usual properties and every Cauchy

sequence converges in the norm. A C� algebra B is a Banach

algebra[KR97] with an anti-linear involution � (x�� � x and

�x � cy�� � x� � cy�, x, y � B and c � C) such that

��xx��� � ��x��2 and �xy�� � y�x��x, y � B. This implies

that ��x�� � ��x���. We often assume that the unit I � B. The

fundamental Gelfand-Naimark-Segal (GNS) theorem states

that every C� algebra can be isometrically embedded in some

L�H�, the set of bounded operators on a Hilbert space of H .

The spectrum of an element x � B is defined by sp�x� � 	c �
C : x
cI invertible �. The spectrum is a nonempty closed and

bounded set and hence compact. An element x is self-adjoint

if x � x�, normal if x�x � xx� and positive (strictly positive)

if x is self-adjoint and sp�x� � 0,����0,���. A self-adjoint

element has a real spectrum and conversely. Since x � x1�ix2

with x1 � �x� x���2 and x1 � �x� x���2i any element of

a C� algebra can be decomposed into self-adjoint “real” and

“imaginary” parts. The positive elements define a partial order

on A: x � y iff y
x � 0 (positive). A positive element a has

a unique square-root
�

a such that
�

a � 0 and ��a�2 � a.

If x is self-adjoint, x2 � 0 and �x� �
�

x2. A self-adjoint

element x has a decomposition x � x�
x� into positive and

negative parts where x� � ��x��x��2 and x� � ��x�
x��2�
are positive. An element p � B is a projection if p is self-

adjoint and p2 � p. Given two C�-algebras A and B a

homomorphism F is a linear map preserving the product and
� structures. A homomorphism is positive if it maps positive

elements to positive elements. A (linear) functional on A is a

linear map A � C. A positive functional ω such that ω��� � 1
is called a state. The set of states G is convex. The extreme

points are called pure states and G is the convex closure of

pure states (Krein-Millman theorem). A set B � A is called a

subalgebra if it is a C� algebra with the inherited product. A

subalgebra is called unital if it contains the identity of A. Our

primary interest will be on abelian or commutative algebras.

The basic representation theorem (Gelfand-Naimark) [KR97]

states that: An abelian C� algebra with unity is isomorphic to
the algebra C�X� continuous complex-valued functions on a
compact Hausdorff space X .

Now let X � 	a1, . . . , an� be a finite set with discreet

topology. Then A � C�X� is the set of all functions X �
C. The algebra C�X� can be considered as the algebra of

(complex) random variables on the finite probability space X .

Let xi�aj� � δij , i, j � 1, . . . , n. Here δij � 1 if i � j and 0
otherwise. The functions xi � A form a basis for A. Their

multiplication table is particularly simple: xixj � δijxi. They

also satisfy
�

i xi � �. These are projections in A. They are

orthogonal in the sense that xixj � 0 for i � j. We call any

basis consisting of elements of norm 1 with distinct elements

orthogonal atomic. A set of linearly independent elements 	yi�
satisfying

�
i yi � � is said to be complete. The next theorem

gives us the general structure of any finite-dimensional algebra.

Theorem 1. Let A be a finite-dimensional abelian C� al-

gebra. Then there is a unique (up to permutations) complete
atomic basis B � 	x1, . . . , xn�. That is, the basis elements
satisfy

x�i � xi, xixj � δijxi, ��xi�� � 1 and
�
i

xi � �, (1)

Let x � �i aixi � A. Then sp�x� � 	ai� and hence ��x�� �
maxi	�ai��.

We next describe an important construction for C� algebras.

Given two C� algebras A and B, the tensor product A � B
is defined as follows. As a set it consists of all finite linear

combinations of symbols of the form 	x� y : x � A, y � B�
subject to the conditions that the map �x, y� � x�y is bilinear

in each variable. Hence, if 	xi� and 	yj� are bases for A and

B respectively then 	xi� yj� is a basis for A�B. The linear

space A�B becomes an algebra by defining �x�y��u�z� �
xu � yz and extending by bilinearity. The � is defined by

�x�y�� � x��y� and extending anti-linearly. We will define

the norm in a more general setting. Our basic model will be

an infinite tensor product of finite dimensional C� algebras

which we present next.

Let Ak, k � 1, 2, . . . , be finite dimensional abelian C�

algebras with atomic basis Bk � 	xk1, . . . , xknk
�. Let B� be

the set consisting of all infinite strings of the form zi1�zi2�� � �
where all but a finite number (� 0) of zik

s are equal to � and

if some zik
� � then zik

� Bk. Let Ã � ��

i�1Ai be the vector

space with basis B� such that zi1�zi2�� � ��zik
�� � � is linear

in each factor separately. We define a product in Ã as follows.

First, for elements of B�: �zi1 �zi2 �� � � ��z�i1 �z�i2 �� � � � �
�zi1z

�

i1
� zi2z

�

i2
� � � � � We extend the product to whole of Ã

by linearity. Next define a norm by:

��
�

i1,i2,...

ai1i2���zi1 � zi2 � � � � �� � sup	�ai1i2�����

B� is an atomic basis. It follows that Ã is an

abelian normed algebra. We define �-operation by��
i1,i2,... ai1i2���zi1 � zi2 � � � �

��
� �

i1,i2,... ai1i2���zi1 �
zi2 � � � � It follows that for x � Ã, ��xx��� � ��x��2. Finally, we

complete the norm [KR97] and call the resulting C� algebra

A. With these definitions A is a C� algebra. We call a C�

algebra B of finite type if it is either finite dimensional

or infinite tensor product of finite-dimensional algebras. An

important special case is when all the factor algebras Ai � A.

We then write the infinite tensor product C� algebra as�
�

A. Intuitively, the elements of an atomic basis B� of�
�

A correspond to strings from an alphabet (represented

by the basis B). Of particular interest is the 2-dimensional

algebra D corresponding to a binary alphabet.

The next step is to describe the state space. Given a C�

subalgebra V � A the set of states of V will be denoted by

S �V �. Let A � ��

i�1Ai denote the infinite tensor product of

finite-dimensional algebras Ai. An infinite product state of A
is a functional of the form Ω � ω1 � ω2 � � � � such that ωi �
S �Ai� This is indeed a state of A for if αk � z1� z2�� � ��
zk � � � � � � � � A then Ω�α� � ω1�z1�ω2�z2� � � �ωk�zk�, a

finite product. A general state on A is a convex combination

of product states like Ω. Finally, we discuss another useful
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construction in a C� algebra A. If f�z� is an analytic function

whose Taylor series
�
�

n�0 an�z � c�n converges in a region

�z� c� � R. Then the series
�
�

n�0�x� c��n converges and it

makes sense to talk of analytic functions on a C� algebra. If

we have an atomic basis �x1, x2, . . . � in an abelian C� algebra

then the functions are particularly simple in this basis. Thus

if x �
�

i aixi then f�x� �
�

i f�ai�xi provided that f�ai�
are defined in an appropriate domain.

We gave a brief description of C� algebras. We now

introduce an algebraic model of probability which is used

later to model communication processes. In this model we

treat random variables as elements of a C� algebra. The

probabilities are introduced via states. A classical observable

algebra is a complex abelian C� algebra A. We can restrict

our attention to real algebras whenever necessary. The Riesz

representation theorem [Rud87] makes it possible identify ω
with some probability measure. A probability algebra is a pair

�A, S� where A is an observable algebra and S 	 S �A� is a

set of states. A probability algebra is defined to be fixed if S
contains only one state.

Let ω be a state on an abelian C� algebra A. Call two elements

x, y 
 A uncorrelated in the state ω if ω�xy� � ω�x�ω�y�.
This definition depends on the state: two uncorrelated elements

can be correlated in some other state ω�. A state ω is called

multiplicative if ω�xy� � ω�x�ω�y� for all x, y 
 A. The

set of states, S , is convex. The extreme points of S are

called pure states. In the case of abelian C� algebras a state

is pure if and only of it is multiplicative [KR97]. Thus, in

a pure state any two observables are uncorrelated. This is

not generally true in the non-abelian quantum case. Now we

can introduce the important notion of independence. Given

S 	 A let A�S� denote the subalgebra generated by S
(the smallest subalgebra of A containing S). Two subsets

S1, S2 	 A are defined to be independent if all the pairs

��x1, x2� : x1 
 A�S1�, x2 
 A�S2�� are uncorrelated.

As independence and correlation depend on the state we

sometimes write ω-independent/uncorrelated. Independence is

a much stronger condition than being uncorrelated. The next

theorem states the structural implications of independence.

Theorem 2. Two sets of observables S1, S2 in a finite
dimensional abelian C� algebra A are independent in a
state ω if and only if for the subalgebras A�S1� and A�S2�
generated by S1 and S2 respectively there exist states ω1 

S �A�S1��, ω2 
 S �A�S2�� such that �A�S1��A�S2�, �ω1�
ω2�� is a cover of �A�S1S2�, ω

�� where A�S1S2� is the
subalgebra generated by �S1, S2� and ω� is the restriction
of ω to A�S1S2�.

We thus see the relation between independence and (tensor)

product states in the classical theory. Next we show how

one can formulate another important concept, distribution
function (d.f) in the algebraic framework. We restrict our

analysis to C� algebras of finite type. The general case is

more delicate and is defined using approximate identities in

subalgebras in [PB]. The idea is that we approximate indicator

functions of sets by a sequence of elements in the algebra. In

the case of finite type algebras the sequence converges to a

projection operator JS . Thus, if we consider a representation

where the elements of A are functions on some finite set

F then JS is precisely the indicator function of the set

S� � �c : xi�c�� ti � 0 : c 
 F and i � 1, . . . , n�. The set S�

corresponds to the subalgebra �St�a and JS , a projection in

A, acts as identity in �St�a. From the notion of distribution

functions we can define now probabilities Pr�a � x � b� in

the algebraic context. We can now formulate problems in any

discrete stochastic process in finite dimensions. The algebraic

method actually provides practical tools besides theoretical

insights as the example of “waiting time” shows [PB]. Now

we consider the algebraic formulation of a basic limit theorem

of probability theory: the weak law of large numbers. From

information theory perspective it is perhaps the most useful

limit theorem. Let X1, X2,    , Xn be independent, identically

distributed (i.i.d) bounded random variables on a probability

space Ω with probability measure P . Let μ be the mean of

X1. Recall the Weak law of large numbers. Given ε � 0

lim
n��

P ��Sn �
X1 �    �XN

n
� μ� � ε� � 0

We have an algebraic version of this important result.

Theorem 3 (Law of large numbers (weak)). If x1, . . . , xn, . . .
are ω-
independent self-adjoint elements in an observable algebra
and ω�xk

i � � ω�xk
j � for all positive integers i, j and k

(identically distributed) then

lim
n��

ω��
x1 �    � xn

n
�μ�k� � 0 where μ � ω�x1� and k � 0

Using the algebraic version of Chebysev inequality the

above result implies the following. Let x1, . . . , xn and μ be

as in the Theorem and set sn � �x1 �    � xn��n. Then

for any ε � 0 there exist n0 such that for all n � n0

P ��sn � μ� � ε� � ε

III. COMMUNICATION AND INFORMATION

We now come to our original theme: an algebraic frame-

work for communication and information processes. Since our

primary goal is the modeling of information processes we refer

to the simple model of communication in the Introduction and

model different aspects of it. In this work we will only deal

with sources with a finite alphabet.

Definition. A source is a pair S � �B,Ω� where B is an
atomic basis of a finite-dimensional abelian C� algebra A
and Ω is a state in

�
�

A.

This definition abstracts the essential properties of a source.

The basis B is called the alphabet. A typical output of the

source is of the form x1 � x2 �    � xk � ��    
 B�, the

infinite product basis of
�
�

A. We identify x̂k � ��  ���
xk���   with the kth signal. If these are independent then

Theorem 2 tells us that Ω must be product state. Further, if

the state of the source does not change then Ω � ω�ω�   
where ω is a state in A. For a such state ω define: Oω ��n

i�1 ω�xi�xi, �x1, . . . , xn�, xi 
 B We say that Oω is the

“instantaneous” output of the source in state ω. Let A� be

another finite-dimensional C� algebra with atomic basis B�

A source coding is a linear map f : B � T �
�m

k�1�
kA�.

Such that for x 
 B, f�x� � x�i1 � x�i2 �    � x�ir
, r � k
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with x�ij
� B�. Thus each “letter” in the alphabet B is coded

by “words” of maximum length k from B�.

A code f : B � T is defined to be prefix-free if for distinct

members x1, x2 in an atomic basis of B, f ��x1�f
��x2� � 0

where f � is the map f � : B �
��

B� induced by f . That

is, distinct elements of the atomic basis of B are mapped to

orthogonal elements. Thus the “code-word” z1 � z1 � � � � �
zk � � � � � � � � is not orthogonal to another z�1 � z�1 �
� � � � z�m � � � � � � � � with k � m if and only if z1 �
z�1, . . . , zk � z�k. The useful Kraft inequality can be proved

using algebraic techniques. Corresponding to a finite sequence

k1 � k2 � � � � � km of positive integers let α1, . . . , αm be a

set of prefix-free elements in
�

i�1�
iA� such that αi � �

kiA�.

Further, suppose that each αi is a tensor product of elements

from B�. Then
m�

i�1

nkm�ki � nkm (2)

This inequality is proved by looking at bounds on dimensions

of a sequence of orthogonal subspaces. In the following,

we restrict ourselves to prefix-free codes. Using convexity

function f�x� � 	 log x and the Kraft inequality 2 we deduce

the following.

Proposition 1 (Noiseless coding). Let S be a source with
output Oω � A, a finite-dimensional C� algebra with atomic
basis 
x1, . . . , xn� (the alphabet). Let g be prefix-free code
such that g�xi� is a tensor product of ki members of the code
basis. Then ω�

�
i kixi � logOω�  0

Next we give a simple application of the law of large

numbers. First define a positive functional Tr on a finite

dimensional abelian C� algebra A with an atomic basis


x1, . . . , xd� by Tr � ω1 � � � � � ωd where ωi are the dual

functionals. It is clear that Tr is independent of the choice of

atomic basis.

Theorem 4 (Asymptotic Equipartition Property (AEP)). Let
S be a source with output Oω �

�d
i�1 ω�xi�xi where ω is a

state on the finite dimensional algebra with atomic basis 
xi�.
Then given ε � 0 there is a positive integer n0 such that for
all n � n0

P �2n�H�ω��ε� � �nOω � 2n�H�ω�	ε�� � 1	 ε

where H � ω�log2�Oω�� is the entropy of the source and the
probability distribution is calculated with respect to the state
Ωn � ω�� � ��ω (n factors) of �nA. If Q denotes the identity
in the subalgebra generated by �εI 	 � log2��

nOω� � nH��	
then

�1	 ε�2n�H�ω��ε� � Tr�Q� � 2n�H�ω�	ε�

Note that the element Q is a projection on the subalgebra

generated by �εI 	 � log2��
nOω� 	 nH��	. It corresponds to

the set of strings whose probabilities are between 2�nH�ε and

2�nH	ε. The integer Tr�Q� is simply the cardinality of this

set.

We now come to the most important part of the commu-

nication model: the channel. The original paper of Shannon

characterized channels by a transition probability function. We

will consider only (discrete) memoryless channel (DMS). A

DMS channel has an input alphabet X and output alpha-

bet Y and a channel transformation matrix C�yj �xi� with

yj � Y and xi � X . Since the matrix C�yj �xi� represents

the probability that the channel outputs yj on input xi we

have
�

j C�yj �xi� � 1 for all i: C�ij� � C�yj �xi� is row
stochastic. This is the standard formulation. [CK81], [CT99].

We now turn to the algebraic formulation.

Definition. A DMS channel C � 
X, Y, C� where X and Y
are abelian C� algebras of dimension m and n respectively

and C : Y � X is a unital positive map. The algebras X and

Y will be called the input and output algebras of the channel

respectively. Given a state ω on X we say that �X, ω� is the

input source for the channel.

Sometimes we write the entries of C in the more suggestive

form Cij � C�yj �xi� where 
yj� and 
xi� are atomic bases

for Y and X respectively. Thus C�yj� �
�

i Cijxi ��
i C�yj �xi�xi. Note that in our notation C is an m � n

matrix. Its transpose CT
ji � C�yj �xi� is the channel ma-

trix in the standard formulation. We have to deal with the

transpose because the channel is a map from the output

alphabet to the input alphabet. This may be counterintuitive

but observe that any map Y � X defines a unique dual map

S�X� � S�Y �, on the respective state spaces. Informally,

a channel transforms a probability distribution on the input

alphabet to a distribution on the output. We characterize

a channel by input/output algebras (of observables) and a

positive map. Like the source output we now define a useful

quantity called channel output. Corresponding to the atomic

basis 
yi� of Y let �kyi�k� be an atomic basis in �nY .

Here i�k� � �i1i2 . . . ik� is a multi-index. Similarly we have

an atomic basis 
�kxj�k�� for �kX . The level-k channel

output is defined to be Ok
C �
�

i�k� yi�k� � C�k��yi�k��. Here

C�k� represents the channel transition probability matrix on

the k-fold tensor product corresponding to strings of length

k. In the DMS case it is simply the k-fold tensor product

of the matrix C. The channel output defined here encodes

most important features of the communication process. First,

given the input source function Iωk �
�

i ωk�xi�k��xi�k� the

output source function is defined by Oω̃k � I � Tr
kX����
Iωk�Ok

c � �
�

i

�
j C�yi�k��xj�k��ω

k�xj�k��yi�k�. Here, the

state ω̃k on the output space �kY can be obtained via the dual

ω̃k�y� � C̃k�ωk��y� � ωk�Ck�y��. The formula above is an

alternative representation which is very similar to the quantum

case. The joint output of the channel can be considered as the

combined output of the two terminals of the channel. Thus the

joint output

JΩ̃k � ��� Iωk�Ok
C �
�

ij

Ωk�yi�k� � xj�k��yi�k� � xj�k�,

Ωk�yi�k� � xj�k�� � C�yi�k��xj�k��ω�xj�k��
(3)

Let us analyze the algebraic definition of channel given

above. For simplicity of notation, we restrict ourselves to

level 1. The explicit representation of channel output is�
i yi�

�
j C�yi�xj�xj We interpreted this as follows: if on the

channel’s out-terminal yi is observed then the input could be

xj with probability C�yi�xj�ω�xj��
�

j C�yi�xj�ω�xj�. Now
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suppose that for a fixed i C�yi�xj� � 0 for all j except one

say, ji. Then on observing yi at the output we are certain

that the the input is xji . If this is true for all values of

y then we have an instance of a lossless channel. Given

1 � j � n let dj be the set of integers i for which

C�yi�xj� � 0. If the channel is lossless then �dj� form a

partition of the set �1, . . . , m�. The corresponding channel

output is OC �
�

j

��
i�dj

C�yi�xj�yi

�
	 xj . At the other

extreme is the useless channel in which there is no correlation

between the input and the output. To define it formally, con-

sider a channel C � �X, Y, C� as above. The map C induces

a map C � : Y 	 X 
 X defined by C ��y 	 x� � xC�y�.
Given a state ω on X the dual of the map C � defines a state

ΩC on Y 	 X: ΩC�y 	 x� � ω�C ��y 	 x�� � C�y�x�ω�x�.
We call ΩC the joint (input-output) state of the channel. A

channel is useless if Y and X (identified as Y 	� and �	X
resp.) are ΩC-independent. It is easily shown that: a channel
C � �X, Y, C� with input source �X, ω� is useless iff the
matrix Cij � C�yj �xi� is of rank 1. The algebraic version

of the channel coding theorem assures that it is possible to

approximate, in the long run, an arbitrary channel (excepting

the useless case) by a lossless one.

Theorem 5 (Channel coding). Let C be a channel with input
algebra X and output algebra Y . Let �xi�

n
i�1 and �yj�

m
j�1 be

atomic bases for X and Y resp. Given a state ω on X , if the
channel is not useless then for each k there are subalgebras
Yk � 	kY, Xk � 	kX , a map Ck : Yk 
 Xk induced by C
and a lossless channel Lk : Yk 
 Xk such that

lim
k��

Ω��OCk
�OLk

�� � 0 on Tk � Yk 	Xk

Here Ω � 	�ΩC and on 	kY 		kY it acts as Ωk � 	kΩC

where ΩC is the state induced by the channel and a given
input state ω. Moreover, if rk � dim�Xk� then R � log rk

k ,
called transmission rate, is independent of k.

Let us clarify the meaning of the above statements. The

theorem simply states that on the chosen set of codewords the

channel output of Ck induced by the given channel can be

made arbitrarily close to that of a lossless channel Lk. Since

a lossless channel has a definite decision scheme for decoding

the choice of Lk is effectively a decision scheme for decoding

the original channel’s output when the input is restricted to

our “code-book”. This implies probability of error tends to 0.

Hence, it is possible to choose a set of “codewords” which can

be transmitted with high reliability. The proof of the theorem

[PB] uses algebraic arguments only. The theorem guarantees

“convergence in the mean” in the appropriate subspace which

implies convergence in probability. For a lossless channel the

input entropy H�X� is equal to the mutual information. We

may think of this as conservation of entropy or information

which justifies the term “lossless”. Since it is always the

case that H�X� �H�X�Y � � I�X, Y � the quantity H�X�Y �
can be considered the loss due to the channel. The algebraic

version of the theorem serves two primary purposes. It gives

us the abelian perspective from which we will seek possible

extensions to the non-commutative case. Secondly, the channel

map L can be used for a decoding scheme. Thus we may think

of a coding-decoding scheme for a given channel as a sequence

of pairs �Xk, Lk� as above.

The coding theorems can be extended to more complicated

scenarios like ergodic sources and channels with finite mem-

ory. We will not pursue these issues further here. But we

are confident that these generalizations can be appropriately

formulated and proved in the algebraic framework. In the

preceding sections we have laid the basic algebraic framework

for classical information theory. Although, we often confined

our discussion to finite-dimensional algebras corresponding to

finite sample spaces it is possible to extend it to infinite-

dimensional algebras of continuous sample spaces. These

topics will be investigated in the future in the non-commutative

setting. We will delve deeper into these analogies and aim to

throw light on some basic issues like quantum Huffman coding

[BFGL00], channel capacities and general no-go theorems

among others, once we formulate the appropriate models.
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