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This work proposes a complete algebraic model for classical information theory. As a precursor the
essential probabilistic concepts have been defined and analysed in the algebraic setting. Examples from
probability and information theory demonstrate that in addition to theoretical insights provided by the
algebraic model one obtains new computational and analytical tools. Several important theorems of clas-
sical probability and information theory are formulated and proved in the algebraic framework.
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1. Introduction

The present paper proposes an algebraic model of classical information theory. We then carry out a
detailed investigation of the model. The connection between operator algebras and information theory—
both classical and quantum—has appeared in the scientific literature since the beginning of information
theory and operator algebras—(see e.g. Segal, 1960; Umegaki, 1962; Lindblad, 1974; Araki, 1975)
and (Keyl 2002; Kretschmann & Werner 2006; see also Bêny et al., 2007) respectively. The standard
formulation of classical information theory (Ash, 1990; Cover & Thomas, 1999) on the other hand is
sometimes seen as an important application of probability theory. Thus probabilistic concepts such as
distribution function, conditional expectation and independence are vital for the development of infor-
mation theory. Most previous work including those mentioned above focus on some aspects of informa-
tion theory, especially the non-commutative generalizations of the concepts of entropy and for specific
probabilistic concepts they often resort to a representation on some Hilbert space. As a consequence,
there does not appear to be a unified coherent approach based on intrinsically algebraic notions. The
construction of such a model is one of the goals of the paper. As probabilistic concepts play such an
important role in the development of information theory, we devote a fairly large section to an alge-
braic approach to probability. It was Segal (1954), one of the major players in the early development
of operator theory, who first proposed such an algebraic approach to probability theory. Although we
have mostly restricted ourselves to the discrete case, sufficient for our models of communication and
information processes, our proposed model is different from Segal’s. There are other workers such
as Cam (1986), Whittle (1992), Streater (1995) that use algebraic approaches to statistical problem.
Cam uses Banach lattices for the set of observables and expectation values are positive linear func-
tionals. Streater’s approach is close to ours in that he uses a C∗ structure to define classical observables.
However, the ambient probability space is there in the background and is invoked to define notions such
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206 M. K. PATRA AND S. L. BRAUNSTEIN

as independence. We show that this is not necessary. Most important notions from probability theory
can be defined from an abstract perspective. We emphasize that our algebraic analysis was developed
primarily to deal with mathematical communication and information theory. We believe that several
aspects of our approach are novel (see the section-wise synopsis below) and yield deeper insights ito
information processes.

A strong motivation for this paper is the relatively young field of quantum information theory. It is
almost folklore that in quantum mechanics, we are forced to deal with non-commutative entities. Thus,
the language of C∗ algebras, already known to physicists for decades (Emch, 1984; Haag, 1992) as
‘the algebra of observables’ on which many extensions of classical probabilistic concepts can be made,
became a natural setting for quantum information. As a complex quantum information scheme or pro-
tocol has several classical components (e.g. classical communication, coin-tosses, etc.), it is important
that we have a unified model and a single language for quantum and classical information. Such a for-
mulation will be of great help in the difficult task of protocol analysis. Besides a unified framework
will be of significant advantage for theoretical analysis. For example, a deeper study of quantum phe-
nomena like (no) quantum broadcasting (Barnum et al., 2007), quantum Huffman coding (Braunstein
et al., 2000), channel capacity (Schumacher, 1996) to name a few would benefit from the investigations
of these structures. In this framework, we may view a classical process as a special type of process
described by commuting elements. Therefore, it seems appropriate to investigate this special case first.
As we will see the classical structure is quite rich and sheds new light on some familiar aspects of
information theory. There is yet another reason. In quantum mechanics, we have several examples of
observables taking only a finite number of values (the spectrum is finite). But, in classical mechanics, all
variables take on a continuum of values. Therefore, we often see statements like ‘a finite-dimensional
operator like spin is a purely quantum phenomenon that has no classical analogue’. However, when we
talk about information systems finite-dimensional quantum systems have obvious classical analogues.
A two-dimensional quantum ‘source’ corresponds to a classical binary source. Our investigations raise
some questions about the possibility of an alternative formulation of probability theory with a more
algebraic flavour (Segal, 1954). This is interesting in itself. But it is a side issue in this paper and will
only be briefly commented upon. Since our main concern is the mathematical models of information-
processing systems, we will be primarily dealing with discrete systems, thus circumventing some tricky
topological issues.

Let us recall a simple model of a communication system proposed by Shannon (1948) and
Shannon & Weaver (1949). This model has essentially four components: source, channel,
encoder/decoder and receiver. The source could be representing very different kinds of objects:
a human speaker, a radar antenna or a distant star. We usually have some model of the source. The
coding/decoding operation is required for three basic reasons: (i) the source/receiver alphabet and the
channel alphabet may be different, (ii) to maximize the rate of information communication and (ii) to
detect and correct errors due to noise and distortion. Some amount of noise affects every stage of the
operation. So, the behaviour of components are generally modelled as stochastic processes. This is
valid in both the classical and often quantum communication processes. The difference, of course, is in
the description of the two processes. As in any stochastic process, we specify the source by a family Xt

of random variables and the various stages of the communication system are modelled as (stochastic)
transformations of these variables. The parameter t can be continuous or discrete. In this work, our
primary focus will be on discrete processes corresponding to discrete time. Thus, a discrete source
can be viewed as a generator of a countable set of random variables. Let us suppose that the source
‘tosses’ a coin and sends a 1 if it is ‘heads’ and a 0 otherwise. We may model this by a pair of random
variables {Xh, XT } on the probability space {H (heads), T (tails)} such that XH (H)= XT (T)= 1 and
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XH(T)= XT (H)= 0. If the coin is unbiased, we say that the state of the source is given by a probability
measure { 1

2 , 1
2 }. In general, it is {p, q} where 0 � p = 1 − q � 1 is the probability of heads. This simple

model can be generalized to more complicated sources. Besides these elementary random variables
we encounter functions of these variables. Thus, we are led to study algebras of random variables.
The usual textbook definition of a random variable is that it is a (measurable) function on a probability
space S. Hence, in the standard formulation, we need a probability space or sample space to define our
random variables or ‘observables’. Recall that a probability space is a triple (S,M,μ), where S is a set,
the set of elementary or atomic events, M is a σ algebra of subsets and μ is the probability measure.
Thus, if {An} is a sequence of mutually disjoint elements from M, then

μ

(⋃
n

An

)
=

∞∑
n=1

μ(An).

Moreover, μ(S)= 1 and μ(B)� 0 for any B ∈M. These are essentially the Kolmogorov axioms. A
real- or complex-valued random variable is a measurable function form S → R or S → C. Here mea-
surability is with respect to the Borel σ algebra of R or C. We recall that the Borel σ algebra of any
topological space is generated by its open sets. So, in some sense in this formulation the probability
space is fundamental and the notion of random variables is based on the former. However, from an
observer/experimenter point of view, the random variables are the basic entities because these are pre-
cisely the observables. In statistical theories like information theory it is the set of random variables and
their distributions and transformations which are of primary interest. Of course, to compute the prob-
ability distributions of the random variables, we have to appeal to the original probability space. But
once the distributions have been determined for almost all computations they suffice and the underlying
probability or sample space plays little role. The fundamental theorem of Kolmogorov (on existence
of processes; Shiryayev, 1984; Billingsley, 1995) guarantees that given a set of distribution functions
satisfying certain consistency conditions we can reconstruct a probability space and random variables
having these distributions. These observations suggest that we take the algebra of random variables or
observables as our primary structure and derive all relevant quantities from this structure. One of the
advantages is that we deal with a smaller spaces restricted to quantities of interest. In the modelling of
security protocols this is a more realistic approach since different participants have access to different
sets of observables and may assign different probability structures on the same set of events. They may
even assign different event spaces.

In the quantum case there are more fundamental reasons for working with the algebras of observ-
ables. We will not go into these here. The current work is an attempt at formulating (classical) informa-
tion theory in an algebraic framework. We will mainly focus on C∗ and von Neumann algebras. We will
see that most interesting spaces of observables do have a C∗ structure. As mentioned before, we will
be dealing with discrete spaces in this work. We also observe that C∗ algebras have been studied inten-
sively since the pioneering works of Murray, von Neumann, Gelfand, Naimark and Segal and others
starting from 1930s. As we stated at the beginning of this section, several probabilistic and information
theoretic concepts such as conditional expectation, entropy, differential entropy have previously been
investigated in the algebraic context. However, to the best of our knowledge, there is no work inves-
tigating information and communication theory in a purely algebraic framework. Our investigations
indicate that most if not all important concepts and constructs of information theory can be dealt with
in the algebraic framework. The paper is structured as follows.

In Section 2, we give the basic definitions of the algebras of interest. This section is fairly detailed as
we state several structure theorems for finite-dimensional abelian C∗ algebras and their tensor products,
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208 M. K. PATRA AND S. L. BRAUNSTEIN

possibly infinite. There are two reasons for this. The first is to make the paper as self-contained
as possible. The second reason is to demonstrate the power and utility of the algebraic techniques.
However, for ease in reading we defer the proofs to the appendix. We believe that in these special cases
some of the proofs are new. We also give several examples.

Section 3 gives an account of probabilistic concepts from an algebraic perspective. In particular,
we investigate the fundamental notion of independence and demonstrate how it relates to the algebraic
structure. We note that there is a very sophisticated theory of non-commutative or ‘free probability’
(Voiculescu et al., 1992). Our approach in the simpler commutative case is different in several aspects.
One important point in which our approach seems novel is the definition of a probability distribution
function. The definition we give is algebraic in the sense that it depends on the intrinsic properties
of the algebra. Specifically, we define a probability distribution function as the weak limit of a net or
sequence of elements in a subalgebra representing an approximate identity of an ideal or a subalgebra.
To illustrate the practical use of these techniques, we give some typical examples from standard
probability theory. The problem of ‘waiting time’ shows that the algebraic approach can offer new
techniques and insights. Finally, using the definition of distribution function and some other constructs,
we formulate and prove some of the basic limit theorems in this framework. These are used later in
proving results in information theory.

In Section 4, we give a precise algebraic model of information communication system. The fun-
damental concept of entropy is introduced as a limiting value of typical sequences of the algebra. The
notion of typical sequence comes from the limit theorems. In the conventional approach, the limit is
taken in the probability (convergence in measure). In our algebraic case, it corresponds to a weak limit.
The point is, that we can do all this in purely algebraic setting. We also define and study the crucial
notion of a channel. In particular, the channel coding theorem is presented as an approximation result.
Stated informally,

Every channel other than the useless ones can be approximated by a lossless channel with appro-
priate coding.

We also show that the notions of zero-error capacity (Shannon, 1956) is very natural in the algebraic
setting. In the brilliant work, Lovâsz (1979) demonstrated the powers of algebraic methods. We contend
that the intuition for these methods will become clearer in the algebraic models. In the final section, we
summarize our constructions and discuss future work. We summarize this introduction with some of
main points of the algebraic approach in the paper.

(1) The algebraic framework brings observables, the empirical quantities, that are measured or
observed to the forefront.

(2) Most if not all important concepts of probability theory can be formulated in the algebraic frame-
work. The limit theorems, different types of convergence and the notions of statistical indepen-
dence can be formulated in this framework and this offers a fresh perspective on these important
issues. However, our algebraic approach is restricted to random variables taking real or complex
values (or vector-valued random variables at most).

(3) This approach provides additional computational and algorithmic tools. We illustrate this in the
example of ‘waiting time’.

(4) The algebraic framework we believe is more natural in dealing with information and communica-
tion processes. It is the widely accepted model in the quantum processes. We show that even for
classical communication and information such framework is possible. It provides new insights.
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AN ALGEBRAIC FRAMEWORK FOR INFORMATION THEORY 209

(5) We prove several important results from classical information theory. Although some of our
proofs are closely related to the standard proofs, they give us some new insights. For example,
we can see that the commutative nature of the (algebraic) classical model is crucial for some
and why they cannot be generalized to the non-commutative quantum case.

(6) It is possible to give intrinsically ‘algebraic’ proofs for the results where we have adapted the
standard proofs. But we aim to develop such proofs in a more general setting of non-commutative
quantum case. Further, even in a fully algebraic framework it would be certainly fruitful to
supplement algebraic techniques with those burrowed from probability and information theory.
It gives us new insights in the purely algebraic structure!

(7) Some of the proofs, however, use algebraic techniques. For example, in the proof of Kraft
inequality and source coding theorem, we use a Gram–Schmidt-type orthogonalization.

(8) The channel coding theorem is formulated as an approximation result. We approximate the
effect of the given channel on the space of codewords by a lossless channel. The proof is
algebraic and shows the significance of commutativity assumption.

(9) Our algebraic model of classical communication can be easily integrated with quantum systems,
thus offering a unified approach to hybrid systems.

2. Algebraic preliminaries

An algebra A is vector space over a field F with an associative bilinear product: A × A→A. We take
F= C, the field of complex numbers. We deal mostly with unital algebras, that is, algebras with a unit 1.
A Banach algebra is an algebra with a non-negative real function |||| on A such that

||x|| � 0 and ||a|| = 0, iff a = 0,

||x + y|| � ||x|| + ||y|| (triangle inequality),

||xy|| � ||x||||y|| (Banach property),

and A is complete in the topology defined by the norm. A C∗ algebra B is a Banach algebra with an
anti-linear involution ∗ (a map σ is an involution if σ 2 = 1, it is antilinear if σ(x + cy)= σ(x)+ cσ(y),
c a complex number and c̄ its complex conjugate) such that

||xx∗|| = ||x||2 and (xy)∗ = y∗x∗ ∀x, y ∈ B.

This implies that ||x|| = ||x∗||. The quintessential examples of a C∗ algebra are the norm-closed self-
adjoint subalgebras of L(H), the set of bounded operators on a Hilbert space of H . The fundamental
Gelfand–Naimark–Segal (GNS) theorem states that every C∗ algebra can be isometrically embedded
in some L(H). The notion of the spectrum of an operator has an algebraic analogue without reference
to the representation space. The resolvent of an element x in the C∗ algebra B is the set R(x)⊂ C such
that λ ∈ R(x) implies λ1 − x is invertible. The spectrum sp(x) is the complement of the resolvent. The
spectrum is a non-empty closed and bounded subset and hence compact. Define r(x)= sup{|λ| : λ ∈
sp(x)}, the spectral radius. A basic result (Kadison & Ringrose, 1997) states that

r(x)= lim
n→∞ ||xn||1/n.
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210 M. K. PATRA AND S. L. BRAUNSTEIN

An element x is self-adjoint if x = x∗, normal if x∗x = xx∗ and positive (strictly positive) if x is self-
adjoint and sp(x)⊂ [0, ∞)((0, ∞)). A self-adjoint element has a real spectrum and conversely. Since
x = (x + x∗)/2 + i(x − x∗)/2i, any element of a C∗ algebra can be decomposed into self-adjoint ‘real’
((x + x∗)/2) and ‘imaginary’ ((x − x∗)/2i) parts. For a self-adjoint element x, r(x)= ||x||. The positive
elements define a partial order on A: x � y iff y − x � 0 (positive). An important property of positive
elements is that they have unique positive square-roots: if a � 0, there is a unique element b � 0 such
that b2 = a. We write

√
a or a1/2 for the square-root. Since x∗x � 0, it has a unique square-root. If x

is normal, we write |x| = √
x∗x. In particular, if x is self-adjoint, |x| = √

x2. A self-adjoint element x
has a decomposition x = x+ − x− into positive and negative parts where x+ = (|x| + x)/2 and x− =
(|x| − x)/2) are positive. An element p ∈ B is a projection if p is self-adjoint and p2 = p. Given two
C∗ algebras A and B a homomorphism F is a linear map preserving the product and ∗ structures. It is
continuous iff bounded. A continuous isomorphism of C∗ algebras is an isometry (norm preserving). A
homomorphism is positive if it maps positive elements to positive elements. A (linear) functional on A is
a linear map A → C. The GNS construction starts with a positive functional (mapping positive elements
to non-negative numbers) on B. The details may be found in Kadison & Ringrose (1997) and Takesaki
(2002). A positive functional ω such that ω(1)= 1 is called a state. The set of states G is convex.
The extreme points are called pure states and G is the convex closure of pure states (Krein–Millman
theorem). A set B ⊂ A is called a subalgebra if it is a C∗ algebra with the inherited product. That is, it
is a subalgebra in the algebraic sense and it is closed in the norm topology. A subalgebra B is called
unital if it contains the identity of A. Our primary interest will be on abelian (also called commutative)
algebras. The structure theory is a bit different in this case. Of course, the GNS construction is valid and
the elements of the algebra act as multiplication operators on the representing Hilbert space. However,
there is an alternative representation in the abelian case due to Gelfand and Naimark which will be of
primary interest to us. To motivate it consider an example.

Let X be a compact Hausdorff topological space, for example, a closed and bounded set in R
n. Let

C(X ) denote the space of continuous complex functions on X . It includes the constant functions. If we
define addition and multiplication point-wise

(f + g)(x)= f (x)+ g(x), (fg)(x)= f (x)g(x) and ||f || = sup
x∈X

|f (x)| ∀f , g ∈ C(X ), (1)

then C(X ) becomes a complex Banach algebra. Defining f ∗(x)= f (x) then C(X ) is an abelian C∗ alge-
bra. This is a prototype of abelian C∗ algebras (Kadison & Ringrose, 1997). One can generalize to
(essentially) bounded measurable functions on measure spaces with appropriate norm. However, for
the purposes of this paper, it suffices to consider compact spaces with measures defined on Borel σ
algebras. We will dwell more on this point in the next section. A complex function (not necessarily con-
tinuous) is called simple if its range is finite. For example, the indicator function IS of a subset S ⊂ X ,
given by IS(x)= 1 if x ∈ S and 0 otherwise is a simple function. It is not continuous unless S = X or
S is a connected component. Simple functions play a crucial role in probability and integration theory.
From their definition, it follows that the projections in C(X ) are precisely the indicator functions. The
constant functions 1 and 0 are both projections corresponding to S = X and ∅, respectively. These are
the only projections in C(X ) if X is connected. The basic structure theorem for abelian C∗ algebras is
the following.

Theorem 1 An abelian C∗ algebra with unity is isomorphic to the algebra C(X ) for a compact
Hasudorff space X . The isomorphism is an isometry (norm preserving).
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AN ALGEBRAIC FRAMEWORK FOR INFORMATION THEORY 211

The main idea of the proof comes from the following observation. In any function algebra C(X )
for p ∈ X the map σp : f → f (p), f ∈ C(X ) is a linear functional on C(X ). These are multiplicative
functionals in the sense that σp(xy)= σp(x)σp(y). In fact, these are the only possible multiplicative
functionals. The Gelfand representation for an abstract abelian C∗ algebra A identifies the space X as
the set of multiplicative functionals and gives it a topology to make these continuous. The details can
be found in Kadison & Ringrose (1997).

Now let X = {a1, . . . , an} be a finite set with discrete topology. Then A = C(X ) is the set of all func-
tions X → C. The algebra C(X ) can be considered as the algebra of (complex) random variables on the
finite probability space X . Let xi(aj)= δij, i, j = 1, . . . , n. Here δij = 1 if i = j and 0 otherwise. The func-
tions xi ∈ A form a basis for A. Their multiplication table is particularly simple: xixj = δijxi. They also
satisfy

∑
i xi = 1. These are projections in A. They are orthocomplementary in the sense that xixj = 0

for i |= j. We call any basis consisting of elements of norm 1 with distinct elements orthocomplementary
atomic. A set of linearly independent elements {yi} satisfying

∑
i yi = 1 is said to be complete. The next

theorem gives us the general structure of any finite-dimensional algebra.

Theorem 2 Let A be a finite-dimensional abelian C∗ algebra. Then there is a unique (up to permuta-
tions) complete atomic basis B = {x1, . . . , xn}. That is, the basis elements satisfy

x∗
i = xi, xixj = δijxi, ||xi|| = 1 and

∑
i

xi = 1, (2)

Let x =∑
i aixi ∈ A. Then sp(x)= {ai} and hence ||x|| = maxi{|ai|}.

The proof is given in the Appendix. However, note that we could have proved the theorem using the
Gelfand representation. But the above proof is more intrinsic depending mostly on the structure of
the algebra itself. In fact, the Gelfand–Naimark construction is an easy consequence of the theorem in
this case. The theorem can be called a form of spectral theorem. A simple consequence of the theorem
is the spectral theorem for normal operators on finite-dimensional spaces. It is useful to define some
operations on subalgebras of a C∗ algebra. Thus, if B, C ⊂ A are C∗ subalgebras of a C∗ algebra A, then

B + C = {b + c : b ∈ B and c ∈ C} and BC =
{∑

i

bici : bi ∈ B and ci ∈ C

}
.

Corollary 1 Let A be an abelian C∗ algebra satisfying the following conditions. There are finite-
dimensional subalgebras Ak , k = 0, 1, . . . with

A =
∞⋃

k=0

Ak and Ak ⊂ Ak+1 ∀k

and for each k corresponding to Ak there is complementary subalgebra A′
k ⊂ Ak+1 such that AkA′

k = Ak+1,
Ak

⋂
A′

k = {0,1} and for x ∈ Ak , y ∈ A′
k implies xy |= 0 unless x or y is 0. Then there is a countable basis

for A satisfying the first three equations in (2).

Proof. We prove by induction. The case of A0 is proved in the theorem. Assume that we have an atomic
basis {yn

1, . . . , yn
kn
} for An. There is a (unique) atomic basis {xn

1 . . . , xn
mn

} in A′
n. It is now a routine matter

to show that {xn
i yn

j : 1 � kn and 1 � mn} form a basis in An+1. �
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212 M. K. PATRA AND S. L. BRAUNSTEIN

The conditions in the corollary can be slightly weakened by requiring that there be embeddings
(injective algebra homomorphisms) αk : Ak → Ak+1 and α′

k : A′
k → Ak+1 such that the images αk(Ak)

and α′
k(A

′
k) satisfy the conditions stated. Such a structure will appear in the tensor product of algebras to

be defined below. They play an important role in our modelling of information and communication sys-
tems. Let us also note that the basis structure in Theorem 2 may be used to defined a finite-dimensional
C∗ algebra abstractly.

2.1 Tensor products

We next describe an important construction for C∗ algebras. Given two C∗ algebras A and B, the tensor
product A ⊗ B is defined as follows. As a set it consists of all finite linear combinations of symbols of
the form {x ⊗ y : x ∈ A, y ∈ B} subject to the conditions that for all x, u ∈ A, y, z ∈ B and c ∈ C,

(cx)⊗ y = x ⊗ (cy)= c(x ⊗ y),

(x + u)⊗ y = x ⊗ y + u ⊗ y and x ⊗ (y + z)= x ⊗ y + x ⊗ z.
(3)

Thus the tensor product is bilinear. There are no other relations. Note that by definition the products of
the form x ⊗ y span A ⊗ B. Hence, if {xi} and {yj} are bases for A and B, respectively, then {xi ⊗ yj} is a
basis for A ⊗ B. The linear space A ⊗ B becomes an algebra by defining (x ⊗ y)(u ⊗ z)= xu ⊗ yz and
extending by bilinearity. Explicitly,

∑
i

ai(xi ⊗ yi)
∑

j

bj(uj ⊗ zj)=
∑

ij

aibj(xiuj ⊗ yizj).

The ∗ is defined by (x ⊗ y)∗ = x∗ ⊗ y∗ and extending anti-linearly. The problem is defining the norm
since it is not a linear function. In fact, for general C∗ algebras there could be a number of inequivalent
norms on different completions of A ⊗ B. This problem of non-uniqueness, however, does not exist if
one of the factors is abelian or finite-dimensional. Since, in this work we will be primarily concerned
with abelian algebras this point will not be discussed further. Our basic model will be an infinite tensor
product of finite dimensional C∗ algebras which we present next.

Let Ak , k = 1, 2, . . . , be finite-dimensional abelian C∗ algebras with atomic basis Bk =
{xk1, . . . , xknk }. Let B∞ be the set consisting of all infinite strings of the form zi1 ⊗ zi2 ⊗ · · · where all
but a finite number (> 0) of zik s are equal to 1 and if some zik |=1 then zik ∈ Bk . Explicitly, B∞ consists
of strings of the form zi1 ⊗ zi2 ⊗ · · · ⊗ zik ⊗ 1 ⊗ 1 ⊗ · · · , k = 1, 2, . . . and zik ∈ Bik . Let Ã = ⊗∞

i=1Ai be
the vector space with basis B∞ such that zi1 ⊗ zi2 ⊗ · · · ⊗ zik ⊗ · · · is linear in each factor separately:

z11 ⊗ · · · ⊗ (azik + bz′
ik )⊗ zik+1 ⊗ · · · = a(z11 ⊗ · · · ⊗ zik ⊗ zik+1 ⊗ · · · )

+ b(z11 ⊗ · · · ⊗ z′
ik ⊗ zik+1 ⊗ · · · ).

Clearly every α ∈ Ã is a finite linear combination of elements in B∞. We define a product in Ã as
follows. First, for elements of B∞:

(zi1 ⊗ zi2 ⊗ · · · )(z′
i1 ⊗ z′

i2 ⊗ · · · )= (zi1 z′
i1 ⊗ zi2 z′

i2 ⊗ · · · ).
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AN ALGEBRAIC FRAMEWORK FOR INFORMATION THEORY 213

We extend the product to whole of Ã by linearity. Next define a norm by∥∥∥∥∥∑
i1,i2,...

ai1i2···zi1 ⊗ zi2 ⊗ · · ·
∥∥∥∥∥= sup{|ai1i2···|}.

It is straightforward to show that B∞ is an atomic basis. It follows that the above function is indeed an
algebra norm and that Ã is an abelian normed algebra. We also define ∗-operation by(∑

i1,i2,...

ai1i2···zi1 ⊗ zi2 ⊗ · · ·
)∗

=
∑

i1,i2,...

ai1i2···zi1 ⊗ zi2 ⊗ · · · .

It is routine to check that for x ∈ Ã, ||xx∗|| = ||x||2. Finally, we complete the norm and call the resulting
C∗ algebra A. The completion of a norm is a technical device that uses the fact that any normed algebra
X can be isometrically mapped to a norm complete algebra (a Banach algebra) X̂ and the image X is
dense in X̂ (see Kadison & Ringrose, 1997).1 With these definitions A is a C∗ algebra. An important
special case is when all the factor algebras Ai = A. We then write the infinite tensor product C∗ algebra as⊗∞ A. Intuitively, the elements of an atomic basis B∞ of

⊗∞ A correspond to strings from an alphabet
(represented by the basis B). A general element of A is a linear combination of elements of

⊗∞ B.
Of particular interest is the two-dimensional algebra G corresponding to a binary alphabet. Thus we
name

⊗∞ G the binary algebra. Let us fix some notation. For any finite-dimensional C∗ algebra A the
atomic basis B∞ for

⊗∞ A constructed above will be denoted by B∞
A to emphasize the association.

The algebras
⊗∞ A will be our model of signals from a source/encoder which are strings (of arbitrary

length) from some alphabet. We next prove a result that is relevant for coding theory. The proof is in
the appendix.

Proposition 1 Let A be an abelian C∗ algebra of dimension n with atomic basis BA = {x0, . . . , xn−1}.
Let BG = {y0, y1} be the atomic basis of the two-dimensional algebra G defined above. Then there are
injective algebra homomorphisms

J :
∞⊗

G →
∞⊗

A and J ′ :
∞⊗

A →
∞⊗

G

that are isometries.

Let us note that from the injective set maps j and j′ (see the proof in the Appendix) we can construct
a bijective correspondence between the bases B∞

A and B∞
G by a Schroeder–Bernstein-type construction

(see Kleene, 1952) and this can be lifted to an algebra isometry. But for us, the isomorphisms induced
by maps like j and j′ (these are certainly not unique) will be greatest interest. Essentially, what the
proposition says is that it is often sufficient to restrict our attention to the special algebra

⊗∞ G. This
proposition together with the algebraic formulation of the communication model implies that it is suffi-
cient to consider a binary alphabet for theoretical purposes.

The next step is to describe the state space. We recall that states of an algebra A are precisely the
positive functionals ω that are normalized: ω(1)= 1. Given a C∗ subalgebra V ⊂ A the set of states of

1 There are some delicate convergence issues here. Since Ã consisting of finite sums of tensor products is dense in A it often
suffices to prove some statement about Ã and extended it to A by continuity.
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V will be denoted by S (V). Let A =⊗∞
i=1 Ai denote the infinite tensor product of finite-dimensional

algebras Ai. An infinite product state of A is a functional of the form

Ω =ω1 ⊗ ω2 ⊗ · · · such that ωi ∈ S (Ai).

This is indeed a state of A for if αk = z1 ⊗ z2 ⊗ · · · ⊗ zk ⊗ 1 ⊗ 1 · · · ∈ A then

Ω(α)=ω1(z1)ω2(z2) · · ·ωk(zk),

a finite product. Since an arbitrary element of A is the limit of sequence of finite sums of elements of the
form αk , k = 1, 2, . . . ,Ω is bounded by the principle of uniform boundedness (Rudin, 1987). Clearly, it
is positive. A general state on A is a convex combination of product states like Ω .

2.2 Analytic functions on C∗ algebras

In this section, we discuss another useful construction. Let A be a C∗ algebra. Suppose f (z) is an analytic
function whose Taylor series

∑∞
n=0 an(z − c)n is convergent in a region |z − c|< R. The convergence

of the series
∑ ||x − c1||n for ||x − c1||< R implies that the series

∑∞
n=0(x − c1)n converges (we need

completeness of A for this). Thus it makes sense to talk of analytic functions on a C∗ algebra. If we
have an atomic basis {x1, x2, . . .} in an abelian C∗ algebra then the functions are particularly simple in
this basis. Thus if x =∑

i aixi then f (x)=∑
i f (ai)xi provided that f (ai) are defined in an appropriate

domain. We will mostly take this as our definition with the understanding that the constant function c is
identified with c1.

3. Algebraic approach to probability

We have observed that discrete signals from a source are modelled by an abelian algebra. The elements
of the algebra correspond to random variables representing the output of the source. With random vari-
ables we always associate a probability distribution. In the standard treatment of probability theory
the probability or sample space is introduced first. Random variables are defined as (measurable) real
(or complex) functions on this space. One then finds the probability distributions of the random vari-
ables and most important quantities like mean, variance and correlations are based on these distributions.
In particular, the mean or expectation values of functions of random variables play a central role. Note
that random variables can be added and multiplied making it a real algebra (scalars are the constant
random variables). Note also that random variables also represent quantities that are actually measured
or observed the voltage across a resistor, the currents in an antenna, the position of a Brownian particle
and so on. The probability distribution corresponds to the state of the devices that produce these out-
puts. These are often inferred from observations. We will take the alternative view and start with these
observables as our basic objects. In this way, we single out the objects which are relevant to a specific
problem. In the following paragraphs, we formalize these notions.

3.1 Basic notions

A classical observable algebra is an abelian complex C∗ algebra A. It is convenient to use complex
algebras. We can restrict our attention to real algebras whenever necessary. Recall that a state on A
is positive linear functional ω such that ω(1)= 1. We can identify ω with a probability measure as
follows. Suppose (M ,S, P) is probability space (M = sample space, S = σ algebra, P = probability
measure). Let L∞(M ,S, P) (or simply L∞(M ) if the measure structure is clear) be the set of essentially
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bounded measurable complex functions.2 We can give it a C∗ structure as in the case of C(X ), the space
of continuous functions on a compact topological space X (see equation (1)), but using the essential
supremum instead of the ordinary supremum. If B ∈ S, then the indicator function IB ∈ L∞(M , C) and∫

M
IB dP = P(B),

where the integral is defined in the sense of Lebesgue. Note that ωP(f )≡
∫

f dP is a positive linear
functional on L∞(M ). Since ωP(1)= 1, it is a state.

Definition 1 A probability algebra is a pair (A, S) where A is an observable algebra and S ⊂ S (A)
is a set of states. A probability algebra is defined to be fixed if S contains only one state. A probability
algebra A1 = (A1, S1) is defined to be a cover of another A2 = (A2, S2) if there is an algebra homo-
morphism φ : A1 → A2 and a one-to-one correspondence γ : S1 ↔ S2 such that the following conditions
hold: (i) φ is onto and (ii) for all x ∈ A1 and ω ∈ S1: ω(x)= γ (ω)(φ(x)).

Our definition of cover is similar to the one defined in terms of subfields of probability space
(Bahadur, 1955) but is more general since we do not restrict to a fixed a probability space. In order
to see the connection with probability space, we give an example. Let (M1,S1, P1) and (M2,S2, P2) be
two probability spaces. Let Ai be the algebra of bounded random variables on Mi, i ∈ {1, 2}. Let Si con-
sist of a single element ωi defined by ωi(Xi)=

∫
Xi dPi with Xi ∈ Ai. Suppose that we have maps φ and

γ (ω1)=ω2 satisfying the conditions above. Then if X ∈ Ker(φ) then X ∗X ∈ Ker(φ). This implies that∫
X ∗X dP1 = 0. Since X ∗X � 0, X must vanish a.e. Conversely if X vanishes a.e. then so does φ(X ).

So, the kernel consists of ‘negligible’ functions.
Let ω be a state on an abelian C∗ algebra A. Call two elements x, y ∈ A uncorrelated in the state ω

if ω(xy)=ω(x)ω(y). Note that this definition depends crucially on the state: the same two elements
can be correlated in some other state ω′. Two natural questions are immediate. Are there any states for
which every pair of elements of A are uncorrelated? Are there a pair of elements which are uncorrelated
in every state? Two trivial candidates for the second question are 1 and 0. Either of them is uncorrelated
to every element. We implicitly exclude these two trivial cases. Concerning the second question the
answer is negative in general. On the first question, a stateω is called multiplicative if ω(xy)=ω(x)ω(y)
for all x, y ∈ A. Note that the notion of positivity defines a partial order on the space of functionals
making it an ordered vector space (Kadison & Ringrose, 1997). The set of states, S , is convex in the
usual sense that for numbers pi � 0,

∑k
i=1 pi = 1 and states ωi, i = 1, . . . , k the functional

∑
i piωi is

also a state. The extreme points of S are called pure states. In the case of abelian C∗ algebras a state
is pure if and only of it is multiplicative (Kadison & Ringrose, 1997). Thus in a pure state any two
observables are uncorrelated. This is not generally true in the non-abelian quantum case.

Next we come to the important notion of independence. First, given B ⊂ A let A(B) denote the sub-
algebra generated by B (the smallest subalgebra of A containing B). Two subsets B1, B2 ⊂ A are defined
to be independent if all the pairs {(x1, x2) : x1 ∈ A(B1), x2 ∈ A(B2)} are uncorrelated. As independence
and correlation depend on the state we sometimes write ω-independent/uncorrelated to emphasize this.
Clearly, independence is much stronger condition than being uncorrelated. It is easy to construct exam-
ples in three or more dimensions where a pair of observables x, y are uncorrelated but they are not
independent: for example, x2 and y maybe correlated. However, in two dimensions x and y are uncor-
related if and only if one of them is 0 or c1. Let us note that as in the quantum case two dimensions is

2 A function f is said to be essentially bounded if there is a constant K such that |f (x)| �K almost everywhere (a.e.). The
essential supremum is the infimum over all such K: ess sup(|f |)= inf{k : P{x : |f (x)|> k} = 0}.
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an exceptional case. The next theorem (see Appendix for a proof) shows the structural implications of
independence.

Theorem 3 Two sets of observables S1, S2 in a finite-dimensional abelian C∗ algebra A are indepen-
dent in a state ω if and only if for the (unital) subalgebras A(S1) and A(S2) generated by S1 and S2,
respectively, there exist states ω1 ∈ S (A(S1)), ω2 ∈ S (A(S2)) such that (A(S1)⊗ A(S2), {ω1 ⊗ ω2}) is
a cover of (A(S1S2),ω′) where A(S1S2) is the subalgebra generated by {S1, S2} and ω′ is the restriction
of ω to A(S1S2).

We can even extend the above theorem (see Appendix for the proof) to infinite tensor product by
restricting to finite segments. The next step is to extend the notion of independence to more than two
subsets. Let S1, . . . , Sk ⊂ A and ω a state of A. Then the subsets are defined to be ω-independent if for
all xi ∈ A(Si), i = 1, . . . , k we have

ω(x1 · · · xk)=ω(x1) · · ·ω(xk).

Here A(Si) is the subalgebra generated by Si. We can then show that for states ωi ∈ (A(Si)), the restriction
of ω to A(Si) the pair (A(S1)⊗ · · · ⊗ A(Sk),ω1 ⊗ · · · ⊗ ωk) is a cover of A(S1 · · · Sk),ω′, where ω′ is
the restriction of ω to A(S1 · · · Sk), the algebra generated by S1, . . . , Sk . We thus see the relation between
independence and (tensor) product states in the classical or commutative theory. The non-commutative
or quantum case is more delicate and requires careful handling.

3.2 Probability distribution functions

In this section, we investigate another important concept of probability theory—the (cumulative) dis-
tribution function (d.f)—in the algebraic framework. As the paper’s primary concern is an alternative
formulation of mathematical models of information and communication we do not undertake an exten-
sive exploration of the algebraic approach to probability concepts. However, the notion of a distribution
function underpins large part of probability theory and its applications. One of the advantages of using
C∗ or more general Banach algebra is that we have both algebraic and analytical methods at our dis-
posal. The textbook definition of the distribution function of a random variable X on a probability space
{M , P} (here P is the probability measure) is as follows. It is the function

F(x)= P{m ∈ M : X (m)� x} ≡ P{X � x}.
Now any set N ⊂ M is characterized by its indicator function IN . Thus, F(x)= E(I{X�x}), where E is
the expectation. The indicator function is not continuous in general, and so, it will not belong to the
algebra of continuous functions. However, it can be approximated by continuous functions that vanish
at infinity. This is the motivation for our use of a technical device called the approximate unit in C∗

algebras to define: given a subalgebra B ⊂ A of an abelian C∗ algebra let Ba = {x ∈ A : xs = 0 ∀s ∈ B} be
the annihilator of S. This is an ideal3 hence there is an approximate identity. An approximate identity
in an ideal B is a net {yλ} with 0 � yλ � 1 such that xyλ → x (also yλx → x, ∀x ∈ B if the algebra is
non-abelian). For the details, see Kadison & Ringrose (1997). Obviously, Sa cannot contain the identity
of the original algebra unless S = {0}. We only mention that nets (Kelley, 1975) are generalization of
sequences where the indexing set is not required to be countable. However, in the case of separable

3 An ideal of a algebra A is a subset I of A which is closed under addition and for every x ∈ A, xI ⊂ I. A non-zero proper ideal
cannot contain the identity of A.
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algebras (algebras with a dense countable set) the reader may substitute ‘sequence’ for ‘net’. In the
following it will suffice for our purpose to restrict to the separable case although we often use the
language of ‘nets’. We can now define the distribution of a set of observables.

Definition 2 Let S = {x1, x2, . . . , xn} be a finite self-adjoint subset of A where (A,ω) is a fixed proba-
bility algebra. For t= (t1, t2, . . . , tn) ∈ R

n let St ⊂ A denote the set of elements {(ti1 − xi) : i = 1, . . . , n}
and S−

t the set of elements {z− : z ∈ St}, negative parts of members of St. Let {eλ(t)} be approximations
of identity in the annihilator ideal (S−

t )a. Then the ω-distribution of S is defined to be the real function

FS(t)= lim
λ
ω(eλ).

The rationale for this definition is simple. For convenience, restrict to a single random variable.
Suppose X is a bounded random variable on a probability space {Ω ,S, P}. For a real number t let
Xt = tI − X , a random variable. Then the (cumulative) distribution function of X is the probability of
the event Et, where Et = {α ∈Ω : Xt(α)� 0}. For a fixed t, let Xt = Xt+ − Xt−, the difference between
the two non-negative random variables, the positive and negative parts of Xt. Consider now Xt− and
let Gt = {α : Xt(α) < 0} =Ω − Et. Then Xt− is > 0 on Gt and 0 outside it. If Y is any function on Ω
such that YXt− = 0 then Y must vanish on Gt. Conversely, any function Y that vanishes on Gt satis-
fies the equation YXt− = 0. In particular, the indicator function IEt satisfies it. The function IEt is the
identity on (Xt−)a and its expectation value

∫
IEt dP = P(Et). Although the indicator functions are not

generally continuous, we can approximate them by a sequence of continuous functions. This sequence
is an approximate identity in the C∗ algebra of continuous functions. In most cases, the algebras will be
separable. Then the nets can be replaced by sequences. Note that since the net {eλ} is bounded and
increasing the net {ω(eλ)} converge. Finally, let us observe that even though the approximate iden-
tity is not unique the distribution function as defined above is unique. To prove this suppose {eλ}, {fμ}
are two approximate identities. Then using the fact ω(eλfμ − eλ′ fμ′)=ω(fμ(eλ − eλ′)+ eλ′(fμ − fμ′))

is Cauchy as fμ(eλ − eλ′)→ (eλ − eλ′) and eλ′(fμ − fμ′)→ fμ − fμ′ , we conclude that the double-net
{ω(eλfμ)} converges to the limit limλ ω(eλ)= limμ ω(fμ). Extending the definition of the d.f to an
arbitrary element z in the algebra is simple. Write z = x + iy where x and y are self-adjoint. Let
Fx(t) and Fy(t) denote the d.f of x and y, respectively. Then the d.f of z: Fz(t)= Fx(t)+ iFy(t).

Theorem 4 Let x1, . . . , xn be self-adjoint elements of an abelian C∗ algebra A. Let F(t1, . . . , tn) be their
joint distribution function. Then F(t1, . . . , tn) is non-negative, left-continuous and non-decreasing in
each variable. We also have boundary conditions

lim
t1,...,tn→∞ F(t1, . . . , tn)= 1 and lim

t1,...,tn→−∞ F(t1, . . . , tn)= 0.

If the elements are independent and F(ti) denotes the distribution function of xi, then

F(t1, . . . , tn)= F(t1)F(t2) · · · F(tn).

If a sequence xn → x is then the corresponding d.f’s Fxn(t)→ Fx(t).

This is of course a standard result in probability theory, but we give an algebraic proof (see
Appendix). We see that, starting from a purely algebraic definition of independence and distributions,
we can recover their essential properties. In particular, for algebras that are finite or infinite tensor prod-
uct of finite-dimensional algebras, we have the following explicit characterization.
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Proposition 2 Let A be a finite-dimensional abelian C∗ algebra. Let x ∈ ⊗∞A and xa its annihilating
ideal. Suppose x is a finite sum. Then there is a unique (up to permutation) decomposition

x =
∑

aiPi such that PiPj = δijPj and ai |= 0 distinct.

Further, there exist polynomials without constant term gi such that Pi = gi(x). Thus, x =∑
i aigi(x).

Then the ideal xa has an identity 1 − ∑
i Pi.

Proof. Since x is finite sum it may be considered as an element of ⊗nA for some finite n. The space ⊗nA
has a finite atomic basis, say {Y1, . . . , Ym} (m = 2dim(A)). Let x =∑m

i=1 aiYi and let J = {i : ai = 0}. Then
x =∑

i/∈J aiYi. Let Pi be the sum of all Yi for which the coefficients ai are equal, then x =∑
i aiPi with

distinct and non-zero ai. Next use Lagrange interpolation to obtain polynomials gi such that gi(0)= 0
and gi(aj)= δij. To prove uniqueness, let x =∑

j bjQj be another such decomposition. Then xPiQj =
aiPiQj = bjPiQj. Since

∑
i Pix = x for a fixed i, there must be at least one ji with PiQji |= 0 then ai = bji .

There cannot be more than one such ji since the bj’s are distinct. On the contrary, we conclude that
i ↔ ji is a permutation. The last statement follows trivially. �

Let x =∑
i aiPi be as in the proposition. We call this the spectral decomposition of x. If ω is a state,

define

Iω(x)=
∑

i

ω(Pi)Pi.

The map Iω(x) can be considered as a ‘centroid’ of the possible outcomes of measurement of x. We
can extend the proposition to arbitrary element in A = ⊗∞A by using a sequence of finite-dimensional
projections as above to approximate. However, the proposition suffices for most of our requirements.
Now let

Z =
∞∑

k=1

Xk , Xk ∈ ⊗kA,

Z may not be a member of A in general and we treat the above as a formal sum. However, we suppose
that for real t, (t1 − Z)+ = (|t1 − Z| + (t1 − Z))/2 can be expressed as finite sum. We will see an
example below. Then the required identity is given as follows. It is clear that for δ > 0 small enough
|(t + δ)1 − Z| + ((t + δ)1 − Z)=∑

k akYk : ak > 0 is finite sum where Yk constitute an atomic basis.
Let Pδ =∑

k Yk . Then the required identity is given by P0 = limδ→0 Pδ . This is essentially a variant of
equation (10) in Theorem 4.

We note that there is another approach to distribution functions, using characteristic functions, that
can be adapted to our algebraic formulation. Thus given a hermitian element x in a (fixed) probability
algebra (A,ω), define the probability density function (p.d.f) of x as

fx(t)=
∫ ∞

−∞
ω(eiv(x−t1)) dv.

This is easily recognized as the inverse Fourier transform of a characteristic function in the standard
case (if it exists). However, to prove that it satisfies the properties of p.d.f in the case of a C∗ algebra
requires some work. This can be done using the operator algebra version of Radon–Nikodym theorem
(Sakai, 1971). A more important problem with this approach is that it is quite difficult to extend it to the
non-commutative or quantum case (see, e.g. Patra & Braunstein, 2011 for more on this).
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3.3 Examples

In this section, we consider some examples from standard probability theory. It will be demonstrated
that the algebraic approach not only gives a different perspective on some familiar situations but also
provides additional computational tools. First, we review the correspondence between some concepts
from the standard theory with our algebraic model. An event in probability theory is a measurable subset
of the probability space. The random variable characterizing any (measurable) subset S is its indicator
function IS . In the algebraic language, it is a projection QS . The probability of the event corresponds to
the expectation value ω(QS) of the projection. In the cases, we consider the projections will generally
exist in the algebra itself. In some cases we consider infinite formal sums which are not in the algebra
but any finite segment of the sum do belong to the algebra. In the actual computation, we always use
a ‘cut-off’ to restrict to such a finite segment. In the cases where projections are not members of the
algebra, we can find a sequence (or net) that ‘converges in the mean’ to the appropriate projection or
indicator function. This situation generally arises in the continuous case which is only touched upon
peripherally.

(1) Binomial distribution. Consider again infinite sequences of Bernoulli trials as in the second
example of the previous section. We can think of coin-tossing with ‘heads’ signalling success.
Let Z be the observable (random variable) corresponding to the number of successes. What is
its d.f? Let n, k be a positive integers with k < n. We want to find the distribution F(k : n) of Z.
Recall that G is the two-dimensional algebra and let A = ⊗nG. Let {y0, y1} be the atomic basis of
G with y1 corresponding to success. Set

Z =
∑
S

y1 ⊗ y0 ⊗ · · · ⊗ y0 +
∑
S

2y1 ⊗ y1 ⊗ y0 · · · ⊗ y0

+ · · · +
∑
S

r y1 ⊗ y1 ⊗ · · · ⊗ y1︸ ︷︷ ︸
r

⊗ y0 ⊗ y0 ⊗ · · · ⊗ y0︸ ︷︷ ︸
n−r

+ · · · + ny1 ⊗ y1 ⊗ · · · ⊗ y1

=
n∑

r=1

rYr.

Here S denotes the distinct permutations of the factors in the tensor product. Thus, the rth term
Yr is the sum of all

(n
r

)
products with r y1’s. Its value is r. Note that YrYs = δrs. We have

U = |k1 − Z| − (k1 − Z)=
n∑

r=k+1

rYr.

In this case, the identity in the annihilator ideal of U exists and is given by the projection operator
P =∑k

r=0 Yr. Since

F(k : n)=Ω(P)=
k∑

r=0

Ω(Yr)=
k∑

r=0

(
n

r

)
pr(1 − p)n−r with

Ω =ω ⊗ ω ⊗ · · · and ω(y1)= p
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we get the (cumulative) Bernoulli distribution. Note that we can use the above formula to find
the distribution in states where the observables are not independent. Algebraically, the state is
not a product state which means the trials are not independent.

(2) Waiting time. Let us start with a simple version of the problem of waiting time. Suppose that we
have a binary source with fixed probability distribution emitting a bit per unit time. The waiting
time is the time elapsed before the first appearance of 1. It is a random variable or observable W
in our formalism. Using the notation above let

W = y0 ⊗ y1 ⊗ 1 ⊗ · · · + 2y0 ⊗ y0 ⊗ y1 ⊗ 1 ⊗ · · · + 3y0 ⊗ y0 ⊗ y0 ⊗ y1 ⊗ 1 ⊗ · · · + · · · .

This is an unbounded infinite sum and does not belong to the algebra. However, for any t � 0,

FW (t)≡ |t1 − W | + t1 − W

2

= ty1 ⊗ 1 + (t − 1)y0 ⊗ y1 ⊗ 1 + · · · + (t − �t�) y0 ⊗ · · · ⊗ y0︸ ︷︷ ︸
�t� factors

⊗y1 ⊗ 1

is finite (of course, FW (t)= 0 for t< 0). Here �t� is the largest integer � t. Using the trick
explained before the examples, we replace t by t + δ (this is to take into account the case when t
is an integer). The required projection (approximate identity) is

PW (t)= y1 ⊗ 1 + y0 ⊗ y1 ⊗ 1 + · · · + y0 ⊗ · · · ⊗ y0︸ ︷︷ ︸
�t� factors

⊗y1 ⊗ 1.

The distribution function in a state Ω is given by fW (t)=Ω(PW (t)). If Ω =ω ⊗ ω ⊗ · · · is an
infinite product state with ω(y1)= p = 1 − ω(y0), then FW (t)=

∑�t�
k=0 p(1 − p)k .

Next we generalize the problem of waiting time to arbitrary strings. Explicitly, given a
string ξ of length n, the waiting time is the time before a contiguous stream of bits matching
ξ appears. The preceding case is for ξ = 1. We will only construct the observable corresponding
to waiting time W in this general case. It gives a nice illustration of the algebraic techniques.
Let X be the tensor representation of ξ . Waiting time 0 corresponds to the observable X ⊗ 1.
We use the following notation. Write 11 for the identity in the two-dimensional space G and
1k = 11 ⊗ 11 ⊗ · · ·11, the k-fold tensor product. The symbol 1 (without subscripts) will be
reserved for the identity in ⊗∞A. The element Y0 = X ⊗ 1 corresponds to waiting time 0: the
first n symbols received match the given string. We expect the element corresponding to waiting
time 1 will be ‘proportional’ to Y ′

1 = 11 ⊗ X ⊗ 1. Although Y0 and Y ′
1 are projections, they need

not be orthocomplementary in the sense Y ′
1Y0 = 0. So, they do not correspond to mutually exclu-

sive events. Recall that when interpreted as functions on some measure space projections are
indicators of measurable sets (events). We therefore adopt an orthogonalization scheme similar
to Gram–Schmidt. The observable Y1 = Y ′

1 − Y ′
1Y0 is a projection and satisfies Y1Y0 = 0. Viewed

as a function it takes value 1 only when the input string is of the ζ = b0ξ . . . and such that the
prefix of length n of ζ does not match ξ . It corresponds to waiting time 1. Defining inductively, let

Ym = Y ′
m − Y ′

m(Y0 + Y1 · · · + Ym−1)

= 1m ⊗ X ⊗ 1 − 1m ⊗ X ⊗ 1(Y0 + Y1 · · · + Ym−1).
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It is easily verified that YjYk = δjkYk . The element W =∑∞
k=0 kYk corresponds to the waiting time

in this case. Again it is not an element of the algebra but Zt = |t1 − W | + t1 − W is. In principle,
we can compute the expected waiting time from this.

(3) Markov chains. We define a discrete time Markov chain on an observable algebra (A,ω) as
a sequence of positive and unital maps {φ0,φ1, . . .} and an initial element z0 ∈ A. Let A=
{x1, x2, . . .} be a fixed atomic basis. A configuration is a sequence {z0, z1, . . .} where each zi ∈A.
The usual term for what we call configuration is simply ‘state’ but the latter has a very specific
meaning in operator algebras. Let ξn = {z0, z1, · · · , zn} be a finite segment of the configuration.
We are interested in the transition from z0 to zn via the path ξn. The transition probability is
defined recursively as follows.

y1 = φ0(z0), yk = φk−1(zk−1yk−1) and transition probability p
(

z0
ξn−→ zn

)
=ω(znyn).

Let us examine this definition in the special case of stationary Markov chains. A Markov chain
is defined to be stationary if all the transition maps are identical: φ0 = φ1 = φ2 = · · · . For a
stationary chain

p(z0
ξn−→ zn)=ω(znφ(zn−1φ(zn−2φ(· · · z1φ(z0)))))

=ω(z0)φ(in, in−1)φ(in−1, in−2) · · ·φ(i1, i0).

Here φ(i, j) is the (ij)th matrix element of φ with respect to the basis A and zk = xik . This looks very
similar to quantum transition probability. In the later case, xi are projections on a Hilbert space. Further,
when we consider transitions over all possible paths, we get an analogue of Feynman’s ‘sum over paths’
for total transition probability.

3.4 Limit theorems

The limit theorems of probability theory are important for its theoretical structure as well as its empirical
justification. We will be primarily concerned with the bounded case where the proofs are simpler. We
state two of these but prove only the weak law of large numbers. From information theory perspective,
it is perhaps the most useful limit theorem. Let X1, X2, . . . , Xn be independent, identically distributed
(i.i.d) random variables on a probability space Ω with probability measure P. Let μ be the mean of X1

(hence any Xi). We assume that the variance E(X1 − μ)2 is bounded. Here, E(X ) denotes the expectation
value of random variable X .

• Weak law of large numbers. Let

Sn = X1 + · · · + Xn

n
.

Given ε > 0
lim

n→∞ P(|Sn − μ|> ε)= 0.

• Central limit theorem. If 0< E(X 2
1 )= σ <∞, then for any real x as n → ∞

P

(
Sn√
nσ

� x

)
→Φ(x)= 1√

2π

∫ x

−∞
exp (−(t − μ)2/2σ) dx.
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222 M. K. PATRA AND S. L. BRAUNSTEIN

A few comments about these famous limit theorems. These are statements about different types of
convergence (Billingsley, 1995). The theorems can be strengthened but since we are dealing with
bounded random variables the above-mentioned formulations suffice. These theorems require assign-
ing of probabilities. All we have at our disposal is the algebra and one or more positive functionals
(states) which give us expectation values. But we have already seen how to define probability distri-
bution functions. What we need are appropriate projections or approximations to them. Given a self-
adjoint observable x and a real number a write x − a for the element x − a1. Let A(x − a)+ be the
(two-sided) ideal generated by the positive part of x − a.4 Let en = (x − a)+[(x − a)+ + δn]−1, where
0< δn such that limn→∞ δn = 0. Then it can be shown that for any y ∈ A(x − a)+, limn→∞ eny → y in
the norm. Hence, {en} is an increasing sequence approximating identity (see Takesaki, 2002). We write
P(x> a) for this approximate identity in A(x − a)+. It is not unique but that does not matter since all
the limits that we use it to define are independent of the particular choice. The probability correspond-
ing to the ‘event’ x> a is defined to be P(x> a)=ω(P(x> a))= limn→∞ ω(en). Similarly, we can
define P(x< a)=ω(P(x< a)), where P(x< a)= {fn} is an approximate identity in the ideal A(x − a)−
obtained by replacing (x − a)+ by (x − a)− in en. We can define more complicated events by algebraic
operations, but it is not necessary for what follows. We also note that although we use probabilistic lan-
guage in the statements of the results below all the expressions are actually defined in a strictly algebraic
setting without reference to any underlying probability space.

Lemma 1 (Chebyshev inequality) Let x, y ∈ A be self-adjoint where (A,ω) is an observable algebra and
y � 0. For any number ε > 0 we have

P(y> ε)� ω(y)

ε
(Markov)

and

P(|x − ω(x)|> ε)� ω([x − ω(x)]2)

ε2
(Chebyshev).

Proof. Let {en} be an approximate identity in the ideal A(y − ε)+. By definition en � 1. Hence,
ω(y)=ω(yen)+ ω(y(1 − en))�ω(yen). Since (y − ε)− annihilates the ideal A(y − ε)+, ω(yen)=
ω([y − ε]en)+ ω(εen)=ω([y − ε]+en)+ εω(en)� εω(en). Hence, ω(y)� εω(en). Taking limits we
obtain the first inequality. Observe that for any x ∈ A, P(|x|> ε)= P(|x|2 > ε2) for the ideals A(|x| − ε)+
and A(|x|2 − ε2)+ coincide. This follows from the identity |x|2 − ε2 = (|x| + ε)(|x| − ε) and hence
(|x|2 − ε2)+ = (|x| + ε)(|x| − ε)+ plus the fact that |x| + ε is invertible. Now, as P(|x − ω(x)|> ε)=
P(([x − ω(x)]2 > ε2) for self-adjoint x, the second inequality follows from the first by putting y =
(x − ω(x))2 and using ε2 in place of ε. �

We will prove next a convergence result which implies the weak law of large numbers.

Theorem 5 (Law of large numbers (weak)) If x1, . . . , xn, . . . are ω-independent self-adjoint elements
in an observable algebra and ω(xk

i )=ω(xk
j ) for all positive integers i, j and k (they are i.i.d) then

lim
n→∞ω

(∣∣∣∣x1 + · · · + xn

n
− μ

∣∣∣∣k
)

= 0, μ=ω(x1) and k > 0.

4 The ideal generated by a subset B of a C∗ algebra A is the smallest ideal containing B.
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Proof. We may assume μ= 0 (by reasoning with xi − ω(xi) instead of xi). First we prove the state-
ment for k = 2. Then ω(|(x1 + · · · + xn)/n|2)=∑

i ω(x
2
i )/n

2 =ω(x2
1)/n. The first equality follows

from independence (ω(xixj)=ω(xi)ω(xj)= 0 for i |= j) and the second from the fact that they are
i.i.d. The case k = 2 is now trivial. Now let k = 2m. Then |x1 + · · · + xn|k = (x1 + · · · + xn)

k . Put
sn = (x1 + · · · + xn)/n. Expanding sk

n in a multinomial series we note that independence and the fact
that ω(xi)= 0 implies that all the terms in which at least one of the xi has power 1 do not contribute
to ω(sk

n). The total number of the remaining terms is O(n2m − 1). Since the denominator is n2m, we see
that ω(sk

n)→ 0. Since for any x ∈ A, |x| = (x2)1/2 can be approximated by polynomials in x2 we con-
clude that ω(|sn|)→ 0. Finally, using the Cauchy–Schwartz-type inequality ω(|sn|2r+1)�ω(s2

n)ω(s
2r
n ),

we see that the theorem is true for all k. �

Corollary 2 Let x1, . . . , xn and μ be as in the theorem and set sn = (x1 + · · · + xn)/n. Then for any
ε > 0 there exist n0 such that for all n> n0

P(|sn − μ|> ε) < ε.

Proof. Using Chebyshev inequality, we have P(|sn − μ|> ε)= P(|sn − ω(sn)|> ε)�ω(|sn − μ|2)/
ε2. As ω(|sn − μ|2)→ 0 (Theorem 5), there is n0 such that ω(|sn − μ|2) < ε3 for n> n0. �

4. Communication and information

We now come to our original theme: an algebraic framework for communication and information pro-
cesses. We can view information as a measure of our state of ignorance or uncertainty in the following
sense. We are uncertain about the outcomes of a certain experiment. After the observation process, this
uncertainty is removed and we we have gained some information, the more the uncertainty higher the
gain in information. Mathematically, we associate a numerical value with a probability distribution of
some physical quantity which we identify with an observable. Any manipulation of the quantity, for
example, transmitting it or measuring it is given by some operation on the observable. Since our pri-
mary goal is the modelling of information processes, we refer to the simple model of communication in
Section 1 and recast it in the algebraic framework.

4.1 Source and coding

Definition 3 A source is a pair S = (X , S) where X ⊂ A, A a C∗ algebra and S is a set of states.
A source is static if S consists of single state. It is discrete if X is countable.

This definition abstracts the essential properties of a source. A real source could be an animate
(human speech, for example) or inanimate object (a radio transmitter, for example). Its output can be
considered discrete, for example, a keyboard with a fixed alphabet or continuous like radiation from a
star. In this work we will be mainly concerned with discrete sources. Then X will be called the source
alphabet. We assume that at each instant there is a probability distribution on the letters of the alphabet
characterizing the state of the source at that instant. Thus a discrete source is a countable set of random
variables. In the algebraic view, it is a sequence X = {xn} of elements a C∗ algebra. The set of states S,
called the states of the source, provide the probability distributions. If this distribution does not change
(equivalently S consists of a single element) then we have a static source. We will mostly deal with static
sources in this work. When we model transmission of information as a Markov process, the state of the
source is identified with the initial probability distribution. There is dual view. Suppose that a source
S emits letters from a finite alphabet. This implies that we can distinguish two distinct elements of X
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224 M. K. PATRA AND S. L. BRAUNSTEIN

after an observation. We say that the source is unambiguous and model it by demanding that distinct
members of X are orthocomplementary. Then the set X in the above definition is a subset of an atomic
basis (corresponding to the alphabet) of the algebra A. We will exclusively deal with unambiguous
sources. The reason for this elaborate definition is that in general quantum sources do not satisfy this.
Henceforth, the term source will mean a discrete, static, unambiguous source unless stated otherwise.
For a state ω, define

Oω =
n∑

i=1

ω(xi)xi, {x1, . . . , xn} an atomic basis.

We say that Oω is the output of the source in state ω. Intuitively, Oω is a kind of mean ‘point’ in
the space of outputs (compare it with the notion of centre of mass in mechanics). More importantly,
it facilitates the calculation of important quantities and has close analogy with the quantum case. The
quantum analogue may be pictured as follows. The source outputs ‘particles’ in definite ‘states’ xi with
probability pi =ω(xi). Note that here state corresponds to a projection operator. A measurement for xi

means applying the dual operator ωi (ωi(xj)= δij) giving ωi(Oω)= pi.
Let Z = (X ,ω) be a source. Suppose every x ∈ X belongs to a finite-dimensional subalgebra gen-

erated by a (finite) set of ω-independent elements. Then using the Theorem 3 we may assume that
A =⊗∞ B where B is finite-dimensional abelian C∗ algebra and ω is an (infinite) product state. In this
case, each element of X is a tensor product of elements of an atomic basis B of B. The basis B is
identified with the alphabet and X with strings from the alphabet. In the rest of the paper, we assume
that X is the product basis of atomic elements. For example, if B is the two-dimensional algebra with
atomic basis {y0, y1}, then X is the set of elements of the form z1 ⊗ z2 ⊗ · · · ⊗ zk ⊗ 1 ⊗ 1 ⊗ · · · , where
zi ∈ {y0, y1}.

4.2 Source coding

Let B be a finite-dimensional C∗ algebra and A =⊗∞ B. We consider ⊗nB as a subalgebra of A via the
standard embedding (all ‘factors’ beyond the nth place equal 1). Let Xn be its atomic basis in some fixed
ordering and let X =⋃

n Xn. Let B′ be another finite-dimensional C∗ algebra and A′ =⊗∞ B′. A source
coding is a linear map f : B → T ⊂∑m

k�1 ⊗kB′. Here T is the linear subspace. It induces a (linear) map

⊗nf : ⊗nB → A′ given by ⊗n f (x1 ⊗ · · · ⊗ xn)= f (x1)⊗ · · · ⊗ f (xn),

where ⊗nf extends to a unique map F : A → A′. Note that we first induce a map on ⊗nB, n = 1, 2, . . . ,
and then lift it to A. We allow the map f to take values that are not simple products. Moreover, f need
not be unital. For classical communication, we require that each atomic basis element xi ∈ B be mapped
to a tensor product of atomic basis elements. Since we are dealing with classical information, it will be
implicitly assumed that all the codes are classical. Let us consider an example to clarify these points.

Example Let {x0, x1, x2, x3} be an atomic basis for B. Let B′ = G with atomic basis {y0, y1}. Define
f1 by f1(x0)= y0, f1(x1)= y1, f1(x2)= y0 ⊗ y1 and f1(x3)= y1 ⊗ y0. Denote by f̂1 its extension to tensor
products. Since f̂1(x0 ⊗ x1)= y0 ⊗ y1 = f̂1(x2), f̂1 is not injective. Hence it cannot be inverted on its
range. Consider next the map f2(x0)= y0, f2(x1)= y0 ⊗ y1, f2(x2)= y0 ⊗ y1 ⊗ y1 and f2(x3)= y1 ⊗ y1 ⊗
y1. This map is invertible but one has to look at the complete product before finding the inverse. It is
not prefix-free.

Now going back to the general formulation, a code f : B → T is defined to be prefix-free if for
distinct members x1, x2 in an atomic basis of B, f ′(x1)f ′(x2)= 0 where f ′ is the map f ′ : B →⊗∞ B′
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induced by f . That is, distinct elements of the atomic basis of B are mapped to orthocomplementary ele-
ments. Recall that two elements x, y of an algebra are considered orthocomplementary if their product
xy = 0. Now, in the standard formulation an alphabet is a finite set and a code is a map from Y → Z+

where Y , Z are alphabets and Z+ is the set of non-empty finite strings from Z. The definition of prefix-
free in this case is clear. In the algebraic language, the free monoidal structure defined by concatena-
tion is replaced by the tensor structure. Then the ‘code-word’ z1 ⊗ z1 ⊗ · · · ⊗ zk ⊗ 1 ⊗ 1 ⊗ · · · is not
orthogonal to another z′

1 ⊗ z′
1 ⊗ · · · ⊗ z′

m ⊗ 1 ⊗ 1 ⊗ · · · with k � m if and only if z1 = z′
1, . . . , zk = z′

k .
We observe that one has to be careful about correspondence between the two approaches. For example,
one might be tempted to identify the identity 1 with the empty string but the 1 is the sum of the mem-
bers of an atomic basis! The binary operation ‘+’ has a relatively lesser role in the classical formalism,
but it is crucial in the quantum framework (via superposition principle). Our first result is a useful and
well-known inequality proved using algebraic techniques.

Lemma 2 (Kraft inequality) Let B be an n-dimensional abelian C∗ algebra. Corresponding to a finite
sequence k1 � k2 � · · · � km of positive integers, let α1, . . . ,αm be a set of prefix-free elements in∑

i�1 ⊗iB such that αi ∈ ⊗ki B. Further, suppose that each αi is a tensor product of elements from a
fixed atomic basis of B. Then

m∑
i=1

nkm−ki � nkm . (4)

Proof. Let = {y1, . . . , yn} be the fixed atomic basis of B and set km = M . We can then restrict our
attention to the finite-dimensional algebra Z =∑M

i=1 ⊗iB. Let α1 = z1
1 ⊗ · · · ⊗ z1

k1
⊗ 1 ⊗ · · · ⊗ 1 where

z1
i ∈ . Let β = z1

1 ⊗ · · · ⊗ z1
k1

and
Z1 = {β ⊗ γ : γ ∈ ⊗M−k1 B}.

Then Z1 ⊂ ⊗M B is a subalgebra (without unit) of dimension nM−k1 . The assumption that αi are prefix-
free implies α2,α3, . . . ,αM must be in Z′

1 the ‘orthogonal’ complement to Z1 in Z. Dimension of Z′
1 =

nM − nM−k1 . Repeating this argument with α2, . . . ,αkm−1 we conclude that αkm must be in a subspace
of dimension nM − nM−k1 − nM−k2 − · · · − nM−km−1 . Since αkm is non-zero the nM − nM−k1 − nM−k2 −
· · · − nM−km−1 � 1. This is equivalent to the relation (4). �

With the notation of the lemma we call the sequence W = {α1, . . . ,αm} decipherable if the tensor
product of any two distinct finite-ordered sequence of elements from W are distinct. The sequences
may have repeated elements. The Kraft inequality is valid for decipherable sequences (MacMillan,
1953). However, the proof is essentially combinatorial. The Kraft inequality also provides a sufficiency
condition for prefix-free code (Ash, 1990; Cover & Thomas, 1999). Thus the existence of a decipherable
code of word lengths (k1, k2, . . . , km) implies the existence of a prefix-free code of same word lengths.
In the following, we restrict ourselves to prefix-free codes. If g : A → ⊗∞B is a prefix-free code, then it
maps orthogonal elements to orthogonal elements. It is therefore an algebra isomorphism (a one-to-one
homomorphism). Next we have a technical lemma that is useful in finding bounds.

Lemma 3 Let f be a continuous real function on (0, ∞) such that xf (x) is convex and limx→0 xf (x)= 0.
Let A be a finite-dimensional C∗ algebra with atomic basis {x1, . . . , xn} and ω a state on A. Then for any
set of numbers {ai : i = 1, . . . , n; ai > 0 and

∑
i ai � 1} we have

ω

(∑
i

f

(
ω(xi)

ai

)
xi

)
� f (1).
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Proof. Let ω(xi)= pi. We have to show that
∑

pif (pi/ai)� f (1). First assume that all pi > 0 and∑
i ai = 1. Then ∑

i

pif (pi/ai)=
∑

i

ai
pi

ai
f

(
pi

ai

)
� f

(∑
pi

)
= f (1)

by convexity of xf (x). The general case can be proved by starting with ai corresponding to pi > 0 and
adding extra aj’s to satisfy

∑
i ai = 1 if necessary. The corresponding pj is set to 0. Now define a new

function g(x)= xf (x), x> 0 and g(0)= 0. The conclusion of the lemma follows by arguing as above
with g. �

Using the lemma for the function f (x)= log x and Lemma 2, we easily deduce the following.

Proposition 3 (Noiseless coding) Let S be a source with output Oω ∈ A, a finite-dimensional C∗

algebra with atomic basis {x1, . . . , xn} (the alphabet). Let g be prefix-free code such that g(xi) is a tensor
product of ki members of the code basis. Then

ω

(∑
i

log nkixi + logOω

)
� 0.

Next we give a simple application of Theorem 5. First define a positive functional Tr on a finite-
dimensional abelian C∗ algebra A with an atomic basis {x1, . . . , xd} by Tr=ω1 + · · · + ωd , where ωi

are the dual functionals to the basis: ωi(xj)= δij. It is clear that Tr is independent of the choice of atomic
basis. Informally, the function Tr gives the dimension of a projection.

Theorem 6 (Asymptotic Equipartition Property (AEP)) Let S be a source with output Oω =∑d
i=1 ω(xi)xi where ω is a state on the finite-dimensional algebra with atomic basis {xi}. Then given

ε > 0 there is a positive integer n0 such that for all n> n0 d sign.

P(2−n(H(ω)+ε) � ⊗nOω � 2−n(H(ω)−ε)) > 1 − ε,

where H(ω)= −ω(log2(Oω)) is the entropy of the source and the probability distribution is calculated
with respect to the stateΩn =ω ⊗ · · · ⊗ ω (n factors) of ⊗nA. If Q denotes the identity in the subalgebra
generated by (εI − | log2(⊗nOω)+ nH |)+, then

(1 − ε)2n(H(ω)−ε) � Tr(Q)� 2n(H(ω)+ε).

Before proving the theorem some explanations are necessary. First log2 x (= ln x/ ln 2) is usually
defined for strictly positive elements of a C∗ algebra.5 We extend the definition to all non-zero x � 0.
The standard method of extending complex functions (continuous or analytic) functions to a C∗ algebra
is via functional calculus (Kadison & Ringrose, 1997). However, in our case it is simpler. Let {yi} be a
atomic basis in an abelian C∗ algebra. Let y =∑

i aiyi with ai � 0. Then define log2 y =∑
i biyi where

bi = log ai if ai > 0 and 0 otherwise. This definition implies that some standard properties of log are no
longer true (e.g. 2log x |= x). But in the present context it gives the correct result when we take expectation
values as in the formulas in the theorem. A somewhat longer but mathematically better justified route
is to ‘renormalize’ the state. Thus if ω(xi)= 0 for k indices we define ω′(xi)= δ, where δ is arbitrarily
small but positive and ω′(xj)=ω(xj)− kδ where ω′(xj) > kδ. If we can prove the theorem now for ω′

5 Henceforth log will be always with respect to base two unless specified otherwise.
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and since the relations are valid in the limit δ→ 0 then we are done. We will not take this path but
implicitly assume that the probabilities are positive. Finally, note that the element Q is a projection on
the subalgebra generated by (εI − | log2(⊗nOω)− nH |)+. It corresponds to the set of strings whose
probabilities are between 2−nH−ε and 2−nH+ε . The integer Tr(Q) is simply the cardinality of this set.

Proof of the theorem. First note that log ab = log a + log b for elements a, b � 0 in A. We can write
⊗nOω = X1X2 · · · Xn where Xi = 1 ⊗ 1 ⊗ · · · ⊗ Oω ⊗ 1 ⊗ · · · ⊗ 1 with logOω the ith factor. The fact
that Ωn is a product state on ⊗nA (corresponding to a source whose successive outputs are indepen-
dent) implies that Xi are independent and i.i.d. We can now apply the corollary to Theorem 5 yielding
P(| log (⊗nOω)−Ωn(log X1)|> ε)= P(| log (⊗nOω)− ω(log (Oω))|> ε). �

4.3 Communication channels

Every form of communication requires channels through which signals are sent and received. It is per-
haps the most important component in the mathematical models of communication. We will not be
dealing with real channels which are complex physical objects—the atmosphere, a telephone cable, a
bus on the mainboard of a computer are some examples. Our object is to give simple mathematical mod-
els of a channel which still yield interesting results relevant for concrete channels. The original paper
of Shannon characterized channels by a transition probability function. Thus, the channel (precisely a
two-way channel) has an input alphabet X and output alphabet Y and a sequence of random functions
φn : X n → Y n. The latter are characterized by probability distributions pn(y(n)|x(n)), the interpretation
being: φn(x(n))= y(n) with conditional probability pn(y(n)|x(n)). Note that the distribution depends on the
entire history. We say that such a channel has (infinite) memory. A channel has finite memory if there is
an integer k � 0 such that if x(n) = xnxn−1 · · · xn−k+1 · · · x1 then pn(y(n)|x(n))= pn(y(n)|x′(n)) for any string
x′

n of length n such that x′
n = xn, . . . , x′

n−k+1 = xn−k+1. That is, the probability distribution depends on
the most recent k symbols seen by the channel. A channel is memoryless if k = 1. Since we will be deal-
ing mostly with discrete memoryless channels (without feedback) (DMC), this property will be tacitly
assumed unless stated otherwise. In the memoryless case, it is easy to show the simple form of transition
probabilities

pn(y
(n)|x(n))= pn(y1 · · · yn|x1 · · · xn)= p(y1|x1)p(y2|x2) · · · p(yn|xn). (5)

This motivates us to define the channel transformation matrix C(yj|xi) with yj ∈ Y and xi ∈ X . As
before in this work, X and Y will be finite sets. Since the matrix C(yj|xi) is supposed to rep-
resent the probability that the channel outputs yj on input xi, we must have

∑
j C(yj|xi)= 1 for

all i. In other words, matrix C(ij)= C(yj|xi) is row stochastic. This is the standard formulation
(Khinchin, 1957; Ash, 1990; Cover & Thomas, 1999).6 We now turn to the algebraic formulation. We
restrict ourselves to two-terminal channels here.

Definition 4 A DMC C = {X , Y , C} where X and Y are abelian C∗ algebras of dimension m and n,
respectively, and C : Y → X is a unital positive map. The algebras X and Y will be called the input and
output algebras of the channel, respectively. Given a state ω on X we say that (X ,ω) is the input source
for the channel.

We recall that a positive map C : Y → X is a linear map such that C(y)� 0 if y � 0. Sometimes, we
write the entries of C in the more suggestive form Cij = C(yj|xi) where {yj} and {xi} are atomic bases for

6 In this work, we will not deal with channel coding and decoding. Including these concepts is not difficult but complicates the
notation.
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Y and X , respectively. Thus C(yj)=
∑

i Cijxi =
∑

i C(yj|xi)xi. Note that in our notation C is an m × n
matrix. Its transpose C�

ji = C(xi|yj) is the channel matrix in the standard formulation. We have to deal
with the transpose because the channel is a map from the output alphabet to the input alphabet. This may
be counterintuitive but observe that any map Y → X defines a unique dual map S(X )→ S(Y), on the
respective state spaces. Informally, a channel transforms a probability distribution on the input alphabet
to a distribution on the output. In other words, given an input source, there is a unique output source
determined by the channel. Let us note that in case of abelian algebras every positive map is guaranteed
to be completely positive (Takesaki, 2002). This is no longer true in the non-abelian case. Hence, for the
quantum case, complete positivity has to be explicitly imposed on (quantum) channels.

We characterize a channel by input/output algebras (of observables) and a positive map. Like the
source output we now define a useful quantity called channel output. Corresponding to the atomic basis
{yi} of Y , let ⊗kyi(k) be an atomic basis in ⊗nY . Here i(k)= (i1i2 · · · ik) is a multi-index. Similarly, we
have an atomic basis {⊗kxj(k)} for ⊗kX . The level-k channel output is defined to be

Ok
C =

∑
i(k)

yi(k) ⊗ C(k)(yi(k)). (6)

Here C(k) represents the channel transition probability matrix on the k-fold tensor product corresponding
to strings of length k. In the DMC case it is simply the k-fold tensor product of the matrix C. The channel
output defined here encodes most important features of the communication process. First, given the
input source function7 Iωk =∑

i ω
k(xi(k))xi(k), the output source function is defined by

Oω̃k = I ⊗ Tr⊗kX ((1 ⊗ Iωk )Ok
c)=

∑
i

∑
j

C(yi(k)|xj(k))ω
k(xj(k))yi(k). (7)

Here, the state ω̃k on the output space ⊗kY can be obtained via the dual ω̃k(y)= C̃k(ωk)(y)=ωk(Ck(y)).
The formula above is an alternative representation which is very similar to the quantum case. The joint
output of the channel can be considered as the combined output of the two terminals of the channel.
This is obtained by not tracing out over the input in equation (7). Thus the joint output

JΩ̃k = (1 ⊗ Iωk )Ok
C =

∑
ij

Ωk(yi(k) ⊗ xj(k))yi(k) ⊗ xj(k) with

Ωk(yi(k) ⊗ xj(k))= C(yi(k)|xj(k))ω(xj(k)).

(8)

Let us analyse the algebraic definition of channel given above. For simplicity of notation, we restrict
ourselves to level 1. The explicit representation of channel output is∑

i

yi ⊗
∑

j

C(yi|xj)xj.

We interpreted this as follows: if on the channel out-terminal yi is observed then the input could be xj

with probability C(yi|xj)ω(xj)/
∑

j C(yi|xj)ω(xj). Now suppose that for a fixed i C(yi|xj)= 0 for all j
except one say, ji. Then on observing yi at the output we are certain that the the input is xji . If this is true
for all values of y, then we have an instance of a lossless channel. It is easy to write the channel matrix

7 We called this the source output before. But as the channel has two terminals we call it input source function to avoid
confusion.
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in this case. Thus, given 1 � j � n, let dj be the set of integers i for which C(yi|xj) > 0. The lossless
property implies that {dj} form a partition of the set {1, . . . , m}. The corresponding channel output is

OC =
∑

j

⎛
⎝∑

i∈dj

C(yi|xj)yi

⎞
⎠ ⊗ xj.

Clearly lossless channels are the most desirable for communication of information. At the other extreme
is the useless channel in which there is no correlation between the input and the output. To define it
formally, consider a channel C = {X , Y , C} as above. The map C induces a map C′ : Y ⊗ X → X defined
by C′(y ⊗ x)= xC(y). Given a state ω on X the dual of the map C′ defines a state ΩC on Y ⊗ X :
ΩC(y ⊗ x)=ω(C′(y ⊗ x))= C(y|x)ω(x). We call ΩC the joint (input–output) state of the channel. A
channel is useless if Y and X (identified as Y ⊗ 1 and 1 ⊗ X , respectively) are ΩC independent.

Lemma 4 A channel C = {X , Y , C} with input source (X ,ω) is useless iff the matrix Cij = C(yj|xi) is of
rank 1.

Proof. Suppose C is useless. Note that ΩC(1 ⊗ x)=ω(x) and ΩC(y ⊗ 1)= ω̃(y), where ω̃(y)=
ω(C(y)) is the image of ω under the dual of the map C. ThenΩC independence implies C(yj|xi)ω(xi)=
ω(xi)ω̃(yj). We may assume that all ω(xi) > 0 (otherwise we just discard it). Hence, C(yj|xi)= ω̃(yj)

and this proves necessity. Now if Cij has rank 1, then all the rows are non-zero multiples of any one row,
say the first. Since C is a row stochastic matrix, the rows must be identical, that is, Cij = aj = ω̃(yj) and
independence is trivially verified. �

The definition of a useless channel captures the intuition that if there is no correlation between
the input and output then we can recover practically nothing. The channel coding theorem asserts that
apart from this extreme case we can decode the output to recover a large portion of the input with high
probability of success. The algebraic version of the channel coding theorem assures that it is possible to
approximate, in the long run, an arbitrary channel (excepting the useless case) by a lossless one.

Theorem 7 (Channel coding) Let C be a channel with input algebra X and output algebra Y . Let {xi}n
i=1

and {yj}m
j=1 be atomic bases for X and Y , respectively. Given a state ω on X , if the channel is not useless

then for each k there are subalgebras Yk ⊂ ⊗kY , Xk ⊂ ⊗kX , a map Ck : Yk → Xk induced by C and a
lossless channel Lk : Yk → Xk such that

lim
k→∞

Ω(|OCk − OLk |)= 0 on Tk = Yk ⊗ Xk .

Here Ω = ⊗∞ΩC and on ⊗kY
⊗⊗kY it acts as Ωk = ⊗kΩC where ΩC is the state induced by the

channel and a given input state ω. Moreover, if rk = dim(Xk), then log rk/k = R + O(1/k). R is called
transmission rate. Further, any R< I(X , Y) is achievable where the mutual information

I(X , Y)=Ω(log OC − log Oω̃).

First let us clarify the meaning of the above statements. The theorem simply states that on the chosen
set of codewords the channel output of Ck induced by the given channel can be made arbitrarily close to
that of a lossless channel Lk . Since a lossless channel has a definite decision scheme for decoding, the
choice of Lk is effectively a decision scheme for decoding the original channel’s output when the input
is restricted to our ‘code-book’. This in turn implies that the probability of error tends to 0.
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Proof. From an atomic basis of ⊗kX , choose a subset Ak of cardinality rk (to be determined). Let Xk

be the subalgebra generated by Ak . Write C(k) for the k-fold tensor product of C. Let Qk be the identity
on Xk (it is the sum of all the members of Ak). For an atomic basis Bk of ⊗kY , let

B′
k = {y ∈ Bk : QkC(k)(y) |= 0}.

Let Yk be the subalgebra generated by B′
k and Ck : Yk → Xk denote the linear map Ck(y)= QkC(k)(y).

Informally, if we restrict the messages to observables in Ak then the output algebra is Yk . The new
channel map is Ck . We now have a new channel C̃k = (Xk , Yk , Ck). Throughout the most of the proof
we will assume that we are working in Tk = YK ⊗ Xk with the appropriate maps. We next define Lk

as follows. For yi ∈ B′
k let Ck(yi)=

∑
j Ck(yi|xj)xj, xj ∈ Ak . For fixed yi let ir be the index for which

Ck(yi|xir) is maximum (if there are more than one index equal to this maximum choose one arbitrarily).
Let Lk(yi)= xir where Lk is a channel map which defines a lossless channel. As we see below, Lk does
approximate OCk in Tk with small error (in probability). What this means is that with high probability
we can correctly associate a unique and correct input to a given channel output.8 Set rk = 2kR and let

Oω̃k =
∑
y∈B′

k

ω̃(y)(y ⊗ 1) and Oωk =
∑
x∈Ak

ω(x)(1 ⊗ x).

Here Oω̃k and Oωk are, respectively, the input and output source function for the channel C̃k . By
construction both are strictly positive and hence invertible. Let Zk be the identity on the ideal gen-
erated by (log OCk − log Oω̃k − k(R + ε))+ = (log (OCk O−1

ω̃k )− k(R + ε))+, ε > 0 in Tk .9 Note that
OCk = OΩk O−1

ωk on Tk . Since

Zk|OCk O
−1
ω̃k − 2k(R+ε)| = (OCk O

−1
ω̃k − 2k(R+ε))+ = Zk(OΩk O−1

ωk O−1
ω̃k − 2k(R+ε))� 0

and Z2
k = Zk , we conclude that ZkOωk � ZkOΩk O−1

ω̃k 2−k(R+ε) � Zk2−k(R+ε). The last inequality follows
from the fact that OΩk O−1

ω̃k � 1. We also have |OCk − OLk | � 1k andΩk(Zk)= Tr(ZkOΩk ). The last fact
is true for any projection as can be verified using an atomic basis. We now have

Ωk(Zk|OCk − OLk |)�Ωk(Zk)= Tr(ZkOΩk )� Tr(ZkOωk )

� 2−k(R+ε) Tr(Zk)� 2−k(R+ε)rk = 2−kε .

Hence Ωk(Zk|OCk − OLk |)→ 0 as k → ∞. To complete the proof we look at the complementary
part: (1k − Zk)|OCk − OLk | where 1k is the identity in Tk . Consider the projection 1k − Zk . Zk is
the identity in the annihilating ideal of Fk−, where Fk = (log OCk − log Oω̃k − k(R + ε)1). Let Gk =
(log (⊗kOCO−1

ω̃ )− k(R + ε)1) ∈ ⊗kY ⊗k X . Then since Fk is the restriction of Gk to a subspace
Gk = Fk + F ′

k , there is an F ′
k ∈ ⊗kY ⊗ ⊗kX with FkF ′

k = 0 (we use the fact the channel is memo-
ryless). Hence Gk− = Fk− + F ′

k−. It follows that Fk− � Gk− and Z′
k , the identity on the annihilating

ideal of Gk− satisfies Z′
k � Zk . This implies Ω(1k − Zk)�Ω(1 − Z′

k). By definition Ω(1 − Z′
k)=

8 We have combined two types of decoding scheme: the ideal observer decoding (Ash, 1990) and typical set decoding (Cover
& Thomas, 1999).

9 This ideal is Tk(log (OCk O−1
ω̃k )− k(R + ε))+. Note that we write the scalar k(R + ε) instead of the more accurate k(R + ε)1k

where 1k is the unit in Tk .
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P(log ⊗kOCO−1
ω̃ /k − (R + ε) < 0) is the probability that Gk/k < R + ε. But

Ω(|(log ⊗kOCO−1
ω̃ )/k −Ω(log OC − log Oω̃)1|)→ 0 as k → ∞

follows from the law of large numbers (see Theorem 5 and its corollary). Since the mutual informa-
tion I(X |Y)=Ω(log OCO−1

ω̃ )=Ω(log OC − log Oω̃)= H(Y)− H(Y |X ) and H(Y |X ) is the conditional
entropy. Thus if we have R< I(X , Y), say R � I(X , Y)− 2ε, then Ω(1 − Z′

k)= P(log ⊗kOCO−1
ω̃k /k −

(R + ε) < 0)� P(| log (⊗kOCO−1
ω̃ )/k − I(X |Y)1|> ε)= but the latter → 0 (recall that I(X |Y)=

Ω(log (⊗kOCO−1
ω̃ )), the expectation value). Putting it all together we have for any ε > 0 and R �

I(X , Y)− 2ε

Ω((1k − Zk)|OCk − OLk |)�Ω(1k − Zk)�Ω(1 − Z′
k)

= P(| log (⊗kOCO−1
ω̃ )/k −Ω(log (⊗kOCO−1

ω̃ )1|> ε))→ 0 as k → ∞.

As we already have Ω(Zk|OCk − OLk |)→ 0, the proof is complete. �

Note that in invoking the law of large numbers we have to lift to the full algebra because Ω is
not a state in the code space. The channel coding theorem implies that it is possible to choose a set of
‘codewords’ which can be transmitted with high reliability. Moreover, from the proof, it is clear that
any decoding scheme may be used although the convergence rate may be poor for a random decod-
ing scheme. It is easy to see that for a lossless channel the input entropy H(X ) is equal to the mutual
information. We may think of this as conservation of entropy or information which justifies the term
‘lossless’. Since it is always the case that H(X )− H(X |Y)= I(X , Y) the quantity H(X |Y) can be con-
sidered the loss due to the channel. The channel coding theorem is perhaps the most celebrated theorem
in Shannon’s work although his proof was not rigorous. Such proofs were given by others later (see,
for example, Cover & Thomas, 1999 and the references therein). The algebraic version of the theorem
serves two primary purposes. First, we attempt to make the proof as ‘algebraic’ as possible. More
importantly, it gives us the commutative perspective from which we will seek possible extensions to the
non-commutative case. Secondly, the channel map L can be used for a decoding scheme. Thus, we may
think of a coding–decoding scheme for a given channel as a sequence of pairs (Xk , Lk) as above. Thus
given any positive number R< I(X , Y), there is subalgebra Xk of dimension

⌊
2Rk

⌋
in ⊗kX such that

the map Ck : Yk → Xk , where Yk is as defined above and Ck is the restriction of the channel map C(k)

of degree k to Yk can be approximated by a lossless channel map Lk . So, we can consider I(X , Y) as a
bound on the rate R at which messages can be transmitted reliably. Now I(X , Y) depends on the initial
probability distribution and hence the channel capacity is defined as

C= sup
ωX

I(X , Y),

where ωX runs through the set of states in X . There is a converse to the channel coding theory which
states that any achievable rate R satisfies R � C. An algebraic version of this can be formulated and
proved but we omit it. An alternative (and perhaps operational) version of the capacity would be
C′ = supωX

R. We use this in the next section on proving results on capacities of new channels that
are defined by combining some existing channels. The coding theorems can be extended to more com-
plicated scenarios like ergodic sources and channels with finite memory or feedback. We will not pursue
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232 M. K. PATRA AND S. L. BRAUNSTEIN

these issues further here. But we are confident that these generalizations can be appropriately formulated
and proved in the algebraic framework.

4.3.1 Zero error capacity and algebra of channels. In this section, we continue with some further
developments of communication channels. We use the notation of previous section. First consider the
characterization of a lossless channel by the channel L output vector

OL =
∑

j

⎛
⎝∑

i∈dj

L(yi|xj)yi

⎞
⎠ ⊗ xj,

where the sets dj ⊂ {1, . . . , , n} form a partition. Let ωi be the dual functional or states. Then the above
condition can be restated as: L is lossless if the elements

yj = IY ⊗ ωi(OL)=
∑
i∈dj

L(yi|xj)yi,

are mutually ‘orthogonal’: yiyj = 0 if i |= j. In the case of an arbitrary channel C define similarly

yj = IY ⊗ ωi(OC)=
∑
i∈γj

C(yi|xj)yi,

where γj ⊂ {1, . . . , n} such that i ∈ γj if and only if C(yi|xj) > 0. Now let N′ be subset of an atomic
basis of X of maximal cardinality such that for every distinct pair xi, xj ∈ N′ the corresponding ‘outputs’
yi and yj = 0 are orthocomplementary. Let N be the subalgebra generated by N′. We observe that this
notion of orthocomplementarity was stated in Körner & Orlitsky (1998) without the algebraic structure
introduced here. We similarly define subalgebras Nk of ⊗kX such that the images of atomic basis in ⊗kY
under the (transposed) channel map of level k are orthocomplementary. Let N(C, k) be the dimension
of Nk . Although the subalgebras Nk need not be unique, the dimensions are (being maximal). The simple
observation that if {α1, . . . ,αr} and {β1, . . . ,βs} are two orthocomplementary sets in algebras A and B,
respectively, then {αi ⊗ βj : 1 � i � r and 1 � j � s} is an orthocomplementary set implies the following
useful property:

N(C, k + l)� N(C, k)N(C, l).

If the code words are restricted to some subalgebra Nk , then the messages can be decoded with zero-
error probability. The notion of zero-error capacity is defined similar to the ordinary capacity as the
limit R0(C)= limk→∞ log N(C, k)/k. The calculation of R0(C) is a difficult problem and following
Shannon (1956) it is translated to problem in graph theory. Curiously, some of the most powerful tools
in graph theory used for analysing this problem are algebraic (see Körner & Orlitsky, 1998). Indeed,
the brilliant work of Lovâsz (1979) uses orthogonality relations (in a scalar product sense) to solve
a conjecture of Shannon. However, we will not explore these ideas further as our goal is to lay the
foundations of an algebraic framework for classical and quantum information. In this context, let us
point out some striking differences between the two. Although we use sums of vectors and tensors, it
is the basic atomic vectors which have proper interpretation. For example, we can only interpret an
expression like α= p1x1 + p2x2 + p3x3 (p1 + p2 + p3 = 1) as a formal sum. In a classical system, we
cannot have genuine superposition of observables. Another way of viewing this is that in the classical
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case we have only one measurement basis, namely, x1, x2, . . . , the atomic basis. But in a quantum system
it is possible in principle to observe in any basis which is a combination of the given one.

Let us now look at another construction introduced by Shannon (1956). Suppose we have two
channels

C = (X , Y , C) and C ′ = (X ′, Y ′, C′).

We form two new channels: the sum and product channels.

• Product channel. The product channel C ⊗ C ′ is defined as

C ⊗ C ′ = (C ⊗ C′, X ⊗ X ′, Y ⊗ Y ′).

• Sum channel. The sum channel C ⊕ C ′ is defined as

C ⊕ C ′ = (C ⊕ C′, X ⊕ X ′, Y ⊕ Y ′).

The above definition implies that for the new channel C̄ = (C̄, X̄ , Ȳ), which stands for either the product
or sum channel, we have k-level maps C̄k = ⊗kC̄ on the space (of k-strings) ⊗kX̄ to ⊗kȲ . After a
bit of algebra it is easily shown that for the two operations the level k operation is equivalent to the
following:

• Product channel:

⊗kC̄ ∼ ⊗kC
⊗

⊗kC′, ⊗kX̄ ∼ ⊗kX
⊗

⊗kX ′, ⊗kȲ ∼ ⊗kY
⊗

⊗kY ′.

• Sum channel:

⊗kC̄ ∼ ⊗kC
⊕

⊗kC′, ⊗kX̄ ∼ ⊗kX
⊕

⊗kX ′, ⊗kȲ ∼ ⊗kY
⊕

⊗kY ′.

The equivalence in these relations refers to statistical equivalence in the sense that the outputs have
same value in appropriate product states. There are some implicit assumption; the most important one
being that the two channels are non-interfering. This is often a reasonable assumption in the classical
case but not for quantum channels. We conclude the section with a result on the capacity K of product
and sum channels. In the case of interfering channels, the situation is much more complicated.

Proposition 4 The capacity L of product and sum channels are given by the following formulas.

K(C ⊗ C′)= K(C)+ K(C′) and K(C ⊕ C′)= log (exp (K(C))+ exp (K(C′))).

Proof (Sketch). The formulas follow from the fact that for any two spaces M and N

dim (M ⊗ N)= dim (M ) dim (N) and dim (M ⊕ N)= dim (M )+ dim (N).

Now from Theorem 7 we get two lossless channel maps Lk1 , L′
k2

on channels C and C ′ approximating
the respective channel maps. Let Xk1 ⊂ ⊗k1 X and Yk2 ⊂ ⊗k2 Y denote the subalgebras on which L and
L′ are defined, respectively. Take k = max (k1, k2). If k1 � k = k2, then we can extend Lk1 to a map on
an appropriate subspace Xk ⊂ ⊗kX such that the approximation condition holds and log dim(Xk1)/k1 =
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234 M. K. PATRA AND S. L. BRAUNSTEIN

log dim(Xk)/k + O(1/k). This will imply that

K(C ⊗ C′)� K(C)+ K(C′).

The converse is proved by showing first that any approximation lossless channel L̄ may be assumed to
be a product channel because of the independence of X and X ′ and hence for any δ > 0

K(C ⊗ C′) >K(C)+ K(C′)− δ.

Thus, we have the first formula of the proposition. The second formula is slightly more complicated.
Informally, we use the fact that, if we have two subspaces Xk and X ′

k of ‘codewords’, then the subspace
Xk ⊕ X ′

k is appropriate codeword subalgebra for the sum channel. If R1 and R2 are the respective rates,
then we have

dim(Xk ⊕ X ′
k)∼ mkR1 + m′kR2 , where dim X (X ′)= m(m′).

Now reasoning as in the product case we get the formula for capacity of sum channels. �

The proof in the above proposition shows that relations between various channel capacities are
related to corresponding relations between the dimensions. The point is that information theoretic con-
cepts are mapped on to algebraic concepts. We can do more sophisticated analysis for deeper results
combining combinatorial and algebraic techniques. For example, Lovâsz’s seminal work (Lovâsz, 1979)
can be put in the present algebraic context giving insight to the origins of some of the constructions.

5. Conclusion and preview of the future work

In the preceding sections, we have laid the basic algebraic framework for information theory. This
work was devoted to classical parts of information theory corresponding to abelian algebras. Since
information theory relies heavily on probabilistic concepts, we devoted a major part of the paper to
algebraic probability theory. Although we often confined our discussion to finite-dimensional algebras
corresponding to finite sample spaces, it is possible to extend it to infinite-dimensional algebras of
continuous sample spaces. In this regard, a natural question is: can the algebraic formulation replace
Kolmogorov axiomatics based on measure theory? Naively, the answer is no because the assumption of
a norm-compete algebra imposes the restriction that the random variables that they represent must be
bounded. Moreover, the GNS construction implies that the algebraic framework is essentially equivalent
to (almost) bounded random variables on a locally compact space. In order to deal with the unbounded
case we have to go beyond the normed algebra structures. A possible course of action is indicated in the
examples given in Section 3.3: via the use of a ‘cut-off’. A more general approach would be to consider
sequences which converge in a topology weaker than the norm topology to elements of a larger algebra.
These and other related issues on foundations are deep and merit a separate investigation.

The second major theme of this paper is information theory in the algebraic framework. As some the
most important results of information theory concern finite or discrete alphabet, we have primarily dealt
with these cases only. In this context, we can treat ergodic sources, channels with finite memory and
multi-terminal channels. These topics will be investigated in the future in the non-commutative setting.
However, let us recall one of the principal motivations of this paper: the construction of a single frame-
work for dealing with quantum and classical information. We have seen that the algebraic theory in the
commutative case already indicates the close analogies between the two cases. We will delve deeper
into these analogies and aim to throw light on some basic issues such as quantum Huffman coding
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(Braunstein et al., 2000), channel capacities and general no-go theorems among others, once we formu-
late the appropriate models. In this context, let us mention that many investigators have recognized the
importance of the algebraic framework but a comprehensive algebraic model which can be extended to
infinite-dimensional case is lacking. We aim to address these important issues in subsequent work.
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Appendix

Proof of Theorem 2. Let {y1, . . . , yn} be a basis for A. Since the self-adjoint elements (yi + y∗
i )/2 and

i(yi − y∗
i )/2 span A, we can choose an independent set. Hence, we may assume that the yi are self-

adjoint. Then each y2
i is positive and hence possesses a square-root |yi|. Moreover, |yi| � yi (Kadison

& Ringrose, 1997; Brattelli, 2002).10 We can therefore write each yi = (|yi| + yi)/2 − (|yi| − yi)/2, as
the difference of two positive elements. Again, choosing an independent set, we may assume that yi

themselves are positive with norm 1. Let S = {z : z � 0 and ||z|| � 4}. S is convex and compact (being
closed and bounded) and yi ∈ S. Hence, by the Krein–Millman theorem (Kadison & Ringrose, 1997),
S is the convex closure of its extreme points.11 We may assume that these extreme points have norm
1 (obviously discarding 0). Since each yi can be written as a finite convex sum of its extreme points,
we can pick a basis x1, . . . , xn of extreme points. We complete the proof by showing that the xi’s satisfy
equations (2) and that they are unique.

Now ||xi|| = 1 implies that for any |λ|> 1, λ− xi = λ(1 − λ−1xi) is invertible. This can be proved by
using the geometric series of (1 − λ−1xi)

−1. Hence if a ∈ sp(xi), then 0 � a � 1 and 1 − xi is positive.
Since sp(xi − x2

i )= {a − a2 : a ∈ sp(xi)} and a − a2 � 0, it follows that xi − x2
i � 0. As xi = (2(xi −

x2
i )+ 2x2

i )/2, a convex combination of two positive elements in S and xi is a non-zero extreme point,
we must have xi − x2

i = 0 or xi − x2
i = x2

i . The last possibility is ruled out because it would imply ||xi|| =
2||x2

i || = 2||xi||2 = 2. Hence x2
i = xi. To prove that they are orthogonal, observe that xi − xixj = xi(1 − xj)

is positive. Thus xi = (2xi(1 − xj)+ 2xixj)/2 is a convex combination of points in S. Hence, as before
either xixj = 0 or xi = xixj. With xj in place of xi we conclude that xixj = 0 or xj = xixj. Thus the only
possibility for xi |= xj is that xixj = 0.

To prove the decomposition property let 1=∑
i aixi. Squaring and using the orthogonality of xi’s

we conclude that ai = 1 or 0. If some ak = 0, then xk = xk1= xk
∑

i aixi = 0. Hence, all ak = 1. Finally,
let {zi} be another basis satisfying (2). Let zi =

∑
j bijxj. As before, bij = 1 or 0 and the matrix (bij) is

a 0–1 matrix. For fixed i, let Ti be the set of integers j such that bij = 1. Then xixj = 0, i |= j implies Ti

and Tj are disjoint. This along with the last condition in (2) implies that Ti’s form a partition of the set
{1, . . . , n}. Thus each Ti is a singleton and the matrix (bij) has exactly one 1 in each row and column. It
is a permutation matrix.

Let x =∑
i aixi be an element of A. Then λ1 − x =∑

i(λ− ai)xi. This is invertible iff λ |= ai, i =
1, . . . , n with inverse

∑
i(λ− ai)

−1xi. The proof is complete. �

Proof of Proposition 1. We observe that it is sufficient to define an injective set map j (respectively j′)
from B∞

G to B∞
A (respectively B∞

A to B∞
G ). For we can first extend these to linear maps J (respectively

J ′) on the appropriate spaces. The fact that the bases are atomic will ensure that these are injective
algebra homomorphisms, in fact, isometries. Let

j(z1 ⊗ · · · ⊗ zk ⊗ 1 ⊗ · · · )= φ(z1)⊗ · · · ⊗ φ(zk)⊗ 1 ⊗ · · · ,

10 Bratteli (p. 35) gives a proof which does not use Gelfand representation.
11 Recall that extreme points of a convex set are those which cannot be written as a non-trivial convex combination of some

members of the set

 at U
niversity of L

eeds on July 4, 2013
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/


AN ALGEBRAIC FRAMEWORK FOR INFORMATION THEORY 237

where zi ∈ {y0, y1} and φ(y0)= x0, φ(y1)= x1. To construct j′ let the binary representation of the integer
n − 1 be of length k + 1 where k = �log2 n�. For 0 � r � n − 1 r = br

0 + br
12 + br

222 + · · · + br
k2k be the

binary representation of r of length k + 1 (pad it with 0’s if necessary). Let ψ : BA → B∞
G be the map

defined by

ψ(xr)= ybr
0
⊗ ybr

1
⊗ · · · ⊗ ybr

k

extend it to a map j′ : B∞
A → B∞

G by

j′(z1 ⊗ · · · ⊗ zk ⊗ 1 ⊗ · · · )= φ(z1)⊗ · · · ⊗ φ(zk)⊗ 1 ⊗ · · · .

The map j′ is injective and the proof is complete. �

Proof of Theorem 3. First assume that S1 = {x} and S2 = {y}. Let {x1, . . . , xn} be an atomic basis of A.
Let x =∑

i aixi and y =∑
i bixi. Some of these coefficients may be 0 and some may be equal. Write

x = a1P1 + a2P2 + · · · + akPk and y = b1Q1 + b2Q2 + · · · + blQl.

Here the ai’s are distinct and Pi = xi1 + xi2 + · · · + xir corresponding to all basis elements whose coeffi-
cients are equal to ai. Similarly, for Qj’s. Note that PiPm = δim and QjQs = δjs. By Lagrange interpolation
there are polynomials fi(λ), i = 1, . . . , k and gj, j = 1, . . . , l such that fi(ar)= δir and gj(bs)= δjs. Since
x, y are ω independent,

ω(fi(x)gj(y))=ω(PiQj)=ω(Pi)ω(Qj). (9)

The subalgebra A(S1)(A(S2)) is generated by the Pi’s (Qj’s). Clearly {Pi : i = 1, . . . , k} and {Qj : j =
1, . . . , l} are atomic bases for A(S1) and A(S2), respectively. Define states ω1 and ω2 of A(S1) and
A(S2), respectively, by restricting ω to these subalgebras. Let φ : X ⊗ Y → A′ be the natural map
φ(u ⊗ v)= uv. Using equation (9), it is a routine check that (A(S1)⊗ A(S2), {ω1 ⊗ ω2}) is a cover of
(A(S1, S2),ω′).

Now for the general case. Since A(S1) and A(S2) are subalgebras of A they have atomic bases {ui}
and {vj}, respectively. As in the previous case we have polynomials {pi} and {qj} in several variables
such that pi(x1, . . . , xki)= ui and qj(y1, . . . , ymj)= vj, where xi ∈ S1 and qi ∈ S2. We do not have easy
interpolating polynomial in this case. By repeating the argument of the singleton case above, we get the
appropriate cover and complete the proof. The converse is clear from the definition of a cover and the
fact that in a product state ω1 ⊗ ω2(z1 ⊗ z2)=ω1(z1)ω2(z2). �

Proof of Theorem 4. We sketch an algebraic proof in the current setting. The most direct approach is
to use the notion of continuous function calculus which essentially asserts that continuous functions
on the spectrum can be lifted to define functions on the algebra. More precisely, given an element
x ∈ A there is an isometric algebra homomorphism between the algebra of continuous functions on the
spectrum of x, C(sp(x)) and the closed subalgebra C(x) generated by x (Kadison & Ringrose, 1997).
Thus for every function f (u) on sp(x) there is a unique element f (x) in C(x) such that if f (u)� 0 then
f (x)� 0. Since for any real c and δ > 0, |t + δ − u| − (t + δ − u)� |t − u| − (t − u) we infer that |t +
δ − x| − (t + δ − x)� |t − x| − (t − x) for self-adjoint x ∈ A. Now for any y ∈ A if xy = 0 then |x|y = 0
and hence x+y = x−y = 0. So if x � z and v ∈ A, then zv = 0 implies xv = 0. Thus the annihilator ideal
of |t + δ − x| − (t + δ − x) contains the annihilator ideal of |t − x| − (t − x). The continuity follows
from the following construction which is useful for calculating distributions. Write x(t)= t1 − x, t=
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(t1, t2, . . . , tn) and χ(t)= x1(t1)+ × x2(t2)+ × · · · × xn(tn)+. For integer m> 0 let

em(t+ 1/m)= mχ(t+ 1/m)(1 + mχ(t+ 1/m))−1 ≡ mχ(t+ 1/m)

1 + mχ(t+ 1/m)
, (10)

where t+ 1/m = (t1 + 1/m, t2 + 1/m, . . . , tn + 1/m). Although em(t+ 1/m) is not a member of the
annihilating ideal S−(t)a of S−(t) it belongs to S−(t+ 1/m)a ⊃ S−(t)a. Let eλ(t) be an approximate
identity in S−(t)a. One can show using the Gelfand representation that

lim
λ
ω(eλ(t))= lim

m→∞ω(em(t)).

We omit the details but the reader can convince herself by taking an algebra of functions.
This implies the first part of the theorem. To prove the boundary conditions, we use the fact that the

spectrum of any element x ∈ A is bounded by ||x||. Hence, for t<−||x||, t1 − x has a strictly negative
spectrum. Then (t1 − x)− = −(t1 − x) is invertible and its annihilator ideal consists of 0 alone. Conse-
quently, F(t, . . . , )= 0 for all t<−||x||. The other extreme case is proved similarly, t1 − x being strictly
positive for t> ||x||. Finally, suppose the elements {x1, x2, . . . , xn} are independent. Since x+ lies in the
closed subalgebra generated by x the definition of independence and equation (10) implies that the joint
distribution function is a product. One proves the last statement using a sequence like (10). �
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