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Abstract—We consider the problem of privacy in direct com-
munications, showing how quantum mechanics can be useful to
guarantee a certain level of confidentiality. In particular, we review
a continuous variable approach recently proposed by us [Pirandola
et al., Europhys. Lett., vol. 84, pp. 20013-1–20013-6, 2008]. Here, we
analyze the degree of privacy of this technique against a broader
class of attacks, which includes non-Gaussian eavesdropping.

Index Terms—Cloning, continuous variables, error correction,
Gaussian states, non-Gaussian attacks, quantum communication,
security.

I. INTRODUCTION

QUANTUM mechanics provides a nice solution to an old
cryptographic problem, i.e., the key distribution prob-

lem [1], [2]. Going further, we consider whether or not quan-
tum mechanics could profitably be exploited even for direct
confidential communication, without resorting to the use of
predistributed private keys. Since many quantum communica-
tion protocols like quantum key distribution (QKD) [1], [2]
and quantum teleportation [3] have been extended to continu-
ous variable systems [4]–[11], i.e., quantum systems associated
with infinite-dimensional Hilbert spaces [12], [13], we find it
rather natural to address the problem of direct communication
in this framework. Here, an important role has been played by
the bosonic modes of the radiation field and Gaussian states.
In particular, coherent states of the radiation have become the
most appealing choice for implementing many quantum infor-
mation tasks. Along this line, we have shown [14] how a sender
(Alice) can exploit coherent states of a bosonic mode in order
to send confidential messages to a receiver (Bob), with an ac-
ceptable degree of privacy. This is the first proof of principle of
a (quasi) confidential quantum direct communication (QDC) in
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the framework of continuous variable systems. In particular, this
QDC can be implemented in an easy way, since it exploits the
same “quantum hardware” of the standard continuous variable
QKD, even if this is done via a completely different logic of
classical operations and communications.1 The price one pays
in order to have a simple technique of QDC is that a notion
of “degree of privacy” must replace the one of unconditional
security (used in QKD). This means that we allow a potential
eavesdropper (Eve) to access a limited fraction of the informa-
tion, even if this fraction can be evaluated in advance and also
made very small.

The ideal situation for a QDC occurs when Alice and Bob
are connected by a noiseless channel, so that the unique noise
they have to correct is due to the continuous structure of quan-
tum phase space.2 However, in general, this is not the case, and
the honest users must randomly switch instances of direct com-
munication with instances of statistical checks on the quantum
channel. As soon as they detect the presence of a nontolerable
noise, they promptly stop the communication. The maximum
noise that can be tolerated is connected to the maximum amount
of information that they are willing to give up to an eavesdrop-
per. In other words, a good QDC protocol should enable Alice
and Bob to communicate the entire message when the noise is
suitably low, while losing a small amount of information when
it is not. According to [14], the maximum information that Eve
can steal can be made small at will, but at the expense of the effi-
ciency of the protocol, corresponding to the ratio of the number
of communicated bits to the number of quantum systems used.
An alternative approach consists of the use of classical error-
correcting codes, which makes Eve’s perturbation more evident
to Alice and Bob’s statistical checks. This approach enables the
honest users to reduce the number of stolen bits while keep-
ing the efficiency of the protocol fixed. This improvement is
proven assuming the model of eavesdropping is also taken fixed,
i.e., Eve is restricted to a Gaussian attack given by a universal
Gaussian cloner.

In this paper, we thoroughly review the results of [14], giving
a more detailed description of the various protocols for QDC,
together with the basic ideas that are behind them. Furthermore,
we provide a deeper analysis of the possible eavesdropping
strategies. In particular, we consider new kinds of attacks that
are non-Gaussian and consist of the intermittent use of Gaussian

1These classical steps are very cheap since they involve just classical
computers and standard communication lines (like telephone lines).

2Note that, in a realistic experimental setting, such an intrinsic noise could
include some “trusted” environmental noise that is not referable to Eve.
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cloners. These intermittent attacks are proven to be more pow-
erful in the eavesdropping of QDC when it is aided by classical
error correction. As a result, the improvement given by the clas-
sical codes is no longer clear if Eve is also allowed to optimize
her strategy. Despite this open problem, the new concepts and
the basic schemes for QDC still have great potentialities to be
explored.

The paper is organized as follows. In Section II, we re-
view the basic protocol for QDC together with its Gaussian
eavesdropping. In Section III, we review QDC with repeti-
tion codes. Its security analysis is performed in Section III-C
for Gaussian eavesdropping and in Section III-D for a non-
Gaussian generalization. Finally, the conclusions are given in
Section IV. A discussion of possible variants for QDC is given in
Appendixes I–III.

II. BASIC PROTOCOL FOR QDC

A. Continuous Variables of a Bosonic Mode

Let us consider a bosonic mode with Hilbert space H and
ladder operators â, â† satisfying [â, â†] = 1. Equivalently, this
system can be described by a pair of quadrature operators

q̂ =
â + â†
√

2
p̂ =

â − â†

i
√

2
(1)

satisfying the dimensionless canonical commutation relation
(CCR) [q̂, p̂] = i. From the previous CCR, we see that an arbi-
trary state of the system ρ must fulfill the uncertainty principle

V (q̂)V (p̂) ≥ 1
4

(2)

where V (x̂) := Tr(ρx̂2) − [Tr(ρx̂)]2 denotes the variance of an
arbitrary quadrature x̂ = q̂ or p̂. In particular, an arbitrary coher-
ent state |ᾱ〉 saturates (2) symmetrically, i.e., V (q̂) = V (p̂) :=
∆ = 1/2, where the value 1/2 quantifies the so-called quantum
shot noise. This is the fundamental noise that affects the disjoint
measurements of the quadratures q̂ and p̂ of a coherent state
(via homodyne detection [15]). Such a noise is instead doubled
to ∆ = 1 when the two quadratures are measured jointly (via
heterodyne detection [15]).

According to the Wigner representation, an arbitrary density
operator ρ is equivalent to a characteristic function χ(λ) :=
Tr[ρD̂(λ)], where D̂(λ) := exp(λâ† − λ∗â) is the displacement
operator. Equivalently, ρ can be described by a Wigner function,
which is a quasi-probability distribution defined by the Fourier
transform

W (α) :=
∫

C

d2λ

π2 exp (λ∗α−λα∗) χ(λ). (3)

In (3), the Cartesian decomposition of the complex variable
α = (q + ip)/

√
2 provides the real eigenvalues q and p of the

quadrature operators of (1). Such variables span the phase space
K = {q, p} of the system, and therefore represent its fundamen-
tal continuous variables. For a coherent state |ᾱ〉, the Wigner
function takes the form

W|ᾱ〉(α) = G1/2(α − ᾱ) (4)

Fig. 1. Square lattice of step size 2Ω in phase space. The center of each cell is
specified by an amplitude αuu ′ , where (u, u′) is a pair of integers representing
the address of the cell. Each address (u, u′) is associated with a pair of bits
(U, U ′) given by the parities of u and u′ (see the binary digits at the border of
the figure). The picture also shows the masking procedure that adds a mask αM

to the amplitude αuu ′ in order to create a continuous and Gaussian signal ᾱ.

where

GV (α − ᾱ) :=
1

πV
exp

(
−|α − ᾱ|2

V

)
(5)

is a complex Gaussian function with mean ᾱ and variance V .
As a consequence, the measurement of the arbitrary quadrature
x̂ provides outcomes x, which are distributed according to the
real Gaussian

G∆(x − x̄) =
1√
2π∆

exp
[
− (x − x̄)2

2∆

]
(6)

where ∆ = 1/2 for homodyne detection while ∆ = 1 for het-
erodyne detection.

B. Phase-Space Lattice Encoding

Let us discretize the phase space K by introducing a square
lattice whose unit cell has size equal to 2Ω (see Fig. 1). An
arbitrary cell can be addressed by a pair of integer indices (u, u′)
and its center specified by the coordinates

qu = 2Ωu pu ′ = 2Ωu′ (7)

or equivalently, by the complex amplitude

αuu ′ =
qu + ipu ′√

2
. (8)

Due to the introduction of this discrete structure, two bits of
information may be simply encoded in quantum phase space. In
fact, an arbitrary cell of address (u, u′) can be associated with
a pair of bits (U,U ′), representing the parities of the indices u
and u′. In this approach, Alice encodes two classical bits (U,U ′)
by choosing a cell whose address (u, u′) is randomly selected
according to the relations

u = 2m + U u′ = 2m′ + U ′ (9)
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Fig. 2. Intrinsic error probability ε(Ω) in the decoding of Alice’s bit U from
the q-quadrature of the coherent state.

where m and m′ are random integers.3 Then, she considers the
complex amplitude αuu ′ pointing at the center of that cell and
prepares a corresponding coherent state |αuu ′ 〉. Such a state is
finally sent to Bob, who performs a heterodyne detection in
order to estimate the amplitude αuu ′ , and therefore the encoded
information (U,U ′). It is clear that, even in the presence of a
noiseless communication channel, Bob’s decoding cannot be
noiseless since the Gaussian shape of the coherent state spreads
over the whole of phase space. Such a spread inevitably leads to
an intrinsic error in the decoding process, which occurs when
the coherent state is projected by the measurement to wrong
peripheral cells.

Let us evaluate the probability ε of an intrinsic error when
Bob decodes Alice’s bit U from the position quadrature q̂ (the
argument may be repeated for the other quadrature). Since Bob
performs a heterodyne detection on the coherent state, the mea-
sured value q will be distributed around qu according to a
Gaussian distribution with noise variance equal to ∆ = 1, i.e.,
G1(q − qu ). Suppose, for simplicity, that U = 0 is encoded in
qu = 0. According to Fig. 2, an error occurs whenever the mea-
sured value q falls in one of the crossed cells, i.e., having odd
index u = ±1,±3, . . . (which would lead to the incorrect re-
construction of U = 1 by Bob). Hence, the probability of an
intrinsic error (per quadrature) is equal to

ε(Ω) = 2
∞∑

j=0

∫ (4j+3)Ω

(4j+1)Ω
dqG1(q). (10)

Now, if we fix a tolerable value for the intrinsic error proba-
bility, we find the corresponding size Ω to be used for the lattice.
In particular, tolerating ε = 1% implies adopting Ω � 2.57. On
the one hand, the use of a low value for ε enables the hon-
est users to approach noise-free communication. On the other
hand, a large value for Ω makes the protocol particularly fragile
to eavesdropping. In fact, Eve can optimize her attack on the
structure of the lattice, e.g., by using a nonuniversal cloner that

3Ideally, the two integers m and m′ are both uniformly distributed on Z.
More realistically, we can choose two continuous values from a wide Gaussian
distribution, and round them to the nearest integers.

is optimized on the centers of the cells. More simply, Eve can
detect the state, reconstruct its cell, and resend another state that
is centered in that cell. By resorting to this intercept–center–
resend strategy, Eve is able to remove the noise most of the time
for a sufficiently large Ω. Luckily, we are able to preclude such
strategies by resorting to the classical procedure shown in the
next section.

C. Masking the Message and Testing the Channel

In order to hide the lattice from Eve, Alice can simply add
a mask to her message. After the computation of the message
amplitude αuu ′ , Alice classically adds a mask amplitude αM , in
such a way that the total amplitude ᾱ := αM + αuu ′ is randomly
distributed according to a complex Gaussian GV (ᾱ) with large
variance V � Ω (see Fig. 1). Operationally, the whole encoding
procedure can be described as follows.

1) Lattice encoding: Alice encodes the message bits (U,U ′)
into a message amplitude αuu ′ .

2) Masking: Alice picks a signal amplitude ᾱ from a
wide Gaussian distribution and computes the mask
αM = ᾱ − αuu ′ connecting the signal and message.

3) Quantum preparation: Alice prepares a signal coherent
state |ᾱ〉 to be sent to Bob.

Having prepared the triplet αuu ′ (message), αM (mask), and
|ᾱ〉 (signal state), Alice can now perform her quantum and clas-
sical communications (see Fig. 3). First, Alice sends the signal
state |ᾱ〉 to Bob, who heterodynes it with outcome β � ᾱ. Then,
after Bob’s detection,4 Alice classically publicizes the mask αM .
After these two steps, Bob gets the pair (β, αM ) from his detec-
tion and Alice’s classical communication. Then, Bob is able to
unmask the signal by computing β − αM � ᾱ − αM = αuu ′ ,
and therefore estimates the message bits (U,U ′) via lattice
decoding.

Clearly, the same decoding steps can be followed by Eve too.
However, the key point is that Eve must choose the probing
interaction before knowing the value of the mask. Since the
signal ᾱ is continuous (Gaussian) and highly modulated, Eve is
prevented from using any kind of interaction, which privileges
a particular portion of the phase space. The most natural choice
is therefore a universal Gaussian interaction. A possible model
is given by the universal Gaussian quantum cloning machine
(UGQCM) [16]. Such a machine maps the signal state |ᾱ〉 into
a pair of output clones ρB (sent to Bob) and ρE (taken by Eve),
with each one equal to a Gaussian modulation of |ᾱ〉 〈ᾱ|, i.e.,

ρK =
∫

d2µGσ 2
K

(µ)D̂(µ)|ᾱ〉〈ᾱ|D̂†(µ), K = B,E

(11)
where the cloning-noise variances σ2

B and σ2
E symmetrically

affect the quadratures and satisfy the optimality condition

σ2
B σ2

E =
1
4

(12)

4In order to be sure that Bob has received and detected the state, Alice must
require a classical communication from him.
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Fig. 3. MM: From the message bits (U, U ′), Alice computes the message
amplitude αuu ′ (lattice encoding), and then adds the mask αM achieving the
signal amplitude ᾱ. Then, Alice prepares and sends to Bob the signal state |ᾱ〉,
which is heterodyned by Bob with outcome β (step 1 in the picture). After
detection, Bob classically informs Alice (step 2), and then, Alice classically
communicates the mask αM (step 3). Finally, Bob is able to unmask the signal
(β − αM ), thus reconstructing αuu ′ , and therefore (U, U ′).

Fig. 4. CM: Alice picks up a Gaussian amplitude ᾱ and prepares a coher-
ent state |ᾱ〉. Such a state is sent to Bob and heterodyned with outcome β
(step 1 in the picture). Then, Bob classically informs Alice (step 2), and Alice
communicates the value of the signal ᾱ (step 3). Finally, Bob computes the test
variable τ := β − ᾱ to infer the amount of noise σ2 in the channel.

directly imposed by (2).5 As a consequence of (11), the arbitrary
quadrature x̂ of the clone K = B,E has a marginal distribu-
tion equal to G∆+σ 2

K
(x − x̄). The performance of the resulting

attack will be explicitly studied in Section II-D.
The aforementioned procedure of directly communicating

message bits is called the message mode (MM) of the proto-
col. However, Alice and Bob must also understand how much
the channel is perturbed during the communication process in
order to control the amount of information that is left to a po-
tential eavesdropper. Assuming an attack with UGQCM, this
corresponds to estimating the value of the noise σ2

B := σ2 that
is added by Eve to the channel. A real-time check of this noise
is possible if Alice randomly switches from instances of MM to
suitable instances of control mode (CM). In CM, Alice does not
process any text message but only prepares and sends the sig-
nal state |ᾱ〉 (see Fig. 4). Then, after Bob’s detection (outcome
β), Alice communicates the value ᾱ of the signal amplitude.

5Strictly speaking, the machine considered is a symmetric and optimal
1 → 2 UGQCM [16].

At that point, Bob extracts from (β, ᾱ) the actual value of the
test variable τ := β − ᾱ, which is then used to infer the total
noise ∆B = 1 + σ2 affecting the signal. As soon as they rec-
ognize a nontolerable noise, i.e., σ2 > σ̃2 for some threshold
noise σ̃2 , they stop the communication. Hereafter, we assume
a zero-tolerance protocol where no added noise is tolerated
in the channel, i.e., σ̃2 = 0. We shall see that the QDC pro-
tocol can be applied in realistic situations even with such a
strict condition.6

Let us show how the real-time check of the quantum channel
works in detail. Let us consider the Cartesian decomposition
τ = (q + ip)/

√
2 of Bob’s test variable. If the channel is noise-

less, then the arbitrary quadrature x = q or p is only affected
by heterodyne noise ∆ = 1, i.e., it is distributed according to
a Gaussian distribution G1(x). By contrast, if Eve perturbs the
quantum channel using a UGQCM with noise σ2 �= 0, then
x follows a wider Gaussian distribution G1+σ 2 (x). By recon-
structing the experimental distribution of x from consecutive
outcomes {x1 , x2 , . . .}, Bob must therefore distinguish between
the two theoretical distributions G1(x) and G1+σ 2 (x). In other
words, Bob must distinguish between the two hypotheses{

H0 : (Eve = no) ⇔ σ2 = 0
H1 : (Eve = yes) ⇔ σ2 �= 0.

(13)

Let us fix the confidence level r of this hypothesis test,
i.e., the probability to reject H0 though it is true. This level
must be sufficiently low (e.g., r = 5 × 10−7), so that the di-
rect communication can be effectively completed in absence
of Eve. For each instance of CM, Bob makes two indepen-
dent tests, one for each quadrature. Hence, after M CMs, he
has collected 2M quadratures values {q1 , p1 , . . . , qM , pM } :=
{x1 , x2 , . . . , x2M −1 , x2M }, and he can construct the estimator

v :=
2M∑
l=1

x2
l . (14)

Then, the hypothesis H0 is accepted if and only if

v < V2M,1−r (15)

where Vi,j is the jth quantile of the χ2 distribution with i de-
grees of freedom. In other words, Alice and Bob continue their
direct communication in MM as long as the condition of (15) is
satisfied in CM.

D. Gaussian Eavesdropping

Let us explicitly analyze what happens when the quantum
communication channel is subject to Gaussian eavesdropping
via a UGQCM.7 In an individual UGQCM attack (see Fig. 5),
Eve clones the signal input, and then heterodynes her output to
derive her estimate γ of the signal amplitude ᾱ. After the release
of the mask’s value αM , Eve infers the message amplitude

6A zero-tolerance protocol does not promptly stop in realistic situations
(where σ2 �= 0) because the underlying hypothesis test is intrinsically imperfect
(i.e., its probability to fail is always nonzero).

7Note that an individual UGQCM attack can be mapped into an individual
entangling-cloner attack, corresponding to a lossy channel with thermal noise
(see, e.g., [17]).
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Fig. 5. Individual UGQCM attack. Eve uses a UGQCM to eavesdrop the
quantum communication line. Eve heterodynes her clone to get her estimate
γ of the signal amplitude ᾱ. After the public unmasking of the signal, Eve
estimates αuu ′ , and therefore the message bits (U, U ′).

αuu ′ , and therefore the input bits (U,U ′). In this process, Eve
introduces an added noise σ2 on the Alice–Bob channel (i.e.,
∆B = 1 + σ2), while her output is affected by a total noise equal
to ∆E = 1 + (4σ2)−1 . This is the sum of the cloning noise
σ2

E = (4σ2)−1 , given by the UGQCM, and the measurement
noise ∆ = 1, given by the heterodyne detector.

First of all, we must evaluate the probability of accepting
H0 (hence continuing the communication) notwithstanding the
presence of Eve. In other words, we must compute the prob-
ability ΠM (σ2) that Eve evades M CMs while introducing a
noise σ2 �= 0. After M CMs, the estimator of (14) follows the
distribution

PM (v) =
vM −1

2M (M − 1)!(1 + σ2)M
exp

[
− v

2(1 + σ2)

]
. (16)

As a consequence, the probability to accept H0 is equal to

ΠM (σ2) =
∫ V2 M , 1−r

0
dνPM (v)

=
Γ(M, 0) − Γ

(
M, (V2M,1−r /2(1 + σ2))

)
(M − 1)!

(17)

where

Γ(z, a) :=
∫ +∞

a

dt tz−1e−t (18)

is the incomplete gamma function.
Besides Eve’s survival probability of (17), we must also eval-

uate the amount of information that Eve can get during her unde-
tected life in the channel. Such a quantity is limited by the total
noise experienced by Eve, which is equal to ∆E = 1 + (4σ2)−1 .
For a given ∆E , we now calculate the average information Eve
can steal in a single run of MM. Starting from the outcome
of the measurement γ and the knowledge of the mask αM ,
Eve estimates Alice’s amplitude αuu ′ via the variable γ − αM .
The corresponding quadrature x will be distributed according to
a Gaussian distribution G∆E

(x − xu ). Then, by repeating the
same derivation leading to (10), we can compute Eve’s error

probability in decoding Alice’s bit (U or U ′), which is equal to

p(∆E ) = 2
∞∑

j=0

∫ (4j+3)Ω

(4j+1)Ω
dxG∆E

(x). (19)

Let us assume that every message bit is a bit of information,
i.e., the input message is not compressible. As a consequence,
the average amount of information, which is eavesdropped in a
single MM, is given by

IAE (∆E ) = 2{1 − H[p(∆E )]} (20)

where

H(p) := −p log p − (1 − p) log(1 − p). (21)

By replacing ∆E = 1 + (4σ2)−1 := ∆E (σ2) in (20), we de-
rive IAE = IAE (σ2), i.e., the average amount of information
that is stolen for a given noise σ2 in the Alice–Bob channel.
Such a quantity can be directly combined with ΠM = ΠM (σ2)
of (17). This means that we can express Eve’s survival proba-
bility as a function of the stolen information. In fact, let us fix
the probability c of a CM, so that N runs of the protocol can
be divided into cN CMs and (1 − c)N MMs, on average. As a
consequence, Eve’s survival probability is equal to

ΠcN (σ2) := P (22)

and the average number of stolen bits is equal to

(1 − c)NIAE (σ2) := I. (23)

Then, for every σ2 , we can consider the function P = P (I).
In particular, let us fix c = 69/70, so that the protocol has
efficiency

E :=
number of bits

number of transmitted systems
=

1
35

. (24)

For several values of σ2 , we can (numerically) evaluate the
function P = P (I), as shown in Fig. 6. From this figure, we
can see that, if the noise is low, e.g., σ2 = 0.01, Eve steals very
little information (�1 bit) while Alice and Bob complete an
almost noiseless QDC. In particular, Alice is able to transmit
�1.5 × 104 bits of information by using N � 5 × 105 systems.
Note that the maximum length of the QDC is roughly bounded
by the verification of r−1 hypothesis tests, and therefore, it is
limited to about 4(1 − c)(cr)−1 bits (i.e., � 1.2 × 105 bits or
�4 × 106 systems using the aforementioned parameters). If the
attack is more noisy (e.g., σ2 = 1), Eve again steals little in-
formation (�1 bit). In such a case, in fact, Eve is promptly
detected by the honest parties who, however, are prevented
from exchanging information (denial of service). According to
Fig. 6, Eve’s best strategy corresponds to using a UGQCM with
σ2 � 1/20, so that she can steal a maximal amount of about
80 bits before being revealed (using a cutoff of P = 1%). In
such a case, Alice transmits �630 bits by using N � 2.2 × 104

systems.
How can we decrease the maximal amount of stolen infor-

mation? The simplest solution consists in increasing the CM
probability c, so that the possible presence of Eve is detected
before sending too many bits. Clearly, this approach has a price
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Fig. 6. Survival probability P versus the number of stolen bits I . QDC with
parameters Ω = 2.57 and c = 69/70 (so that ε = 1% and E = 1/35). The curves
refer to individual UGQCM attacks with different values of added noise σ2 .

to pay, which is a decrease of the efficiency E of the protocol. An
alternative solution consists of making the decoding more sensi-
tive to the presence of added noise. Such an approach is possible
by introducing classical error-correcting codes, and its pros and
cons are explored in the following section. In particular, this
solution is good against Gaussian attacks but its advantages are
not completely clear in the presence of non-Gaussian attacks.

III. QDC WITH REPETITION CODES

A. Basic Idea in Using Classical Codes

In the basic scheme of QDC with continuous variables, a
noiseless communication is possible up to an intrinsic error
probability ε, which depends on the step Ω of the phase-space
lattice. In particular, such a probability decreases for increasing
Ω. An alternative way for decreasing ε consists of leaving Ω
unchanged while introducing a classical error-correcting code
for encoding/decoding. Such procedures are equivalent for a
noiseless channel, since ε is sufficiently small and the codes
work very well in that case. However, the scenario is different
as the channel becomes noisier. In such a case, in fact, the
correcting codes have a nonlinear behavior, which makes their
performance rapidly deteriorate. Such a nonlinear effect can
be exploited to critically split the correction capabilities, and
therefore the information gains, between the Alice–Bob channel
and Alice–Eve channel.

Let us consider the simple case of an n-bit repetition code,8

where an input bit U = {0, 1} is encoded into a logical bit
Ū = {0̄, 1̄} of n physical bits via the codewords

0̄ = 00 · · · 0︸ ︷︷ ︸
n

1̄ = 11 · · · 1︸ ︷︷ ︸
n

. (25)

By choosing an odd n = 2m + 1 (with m = 1, 2, . . .), we can
apply a nonambiguous majority voting criterion. This means that
every bit-flip error of weight t < m + 1 is correctable, while ev-
ery bit-flip error of weight t ≥ m + 1 is not. Let us now consider

8Clearly, one can consider other and more efficient classical error-correcting
codes like, e.g., the Hamming codes. For a review of classical error correction,
see [18].

Fig. 7. Probability of an uncorrectable error Pn versus the single bit-flip
probability p. Here, we consider repetition codes with n = 7, 15, 35, 103.

a memoryless channel, where each physical bit is perturbed in-
dependently with the same bit-flip probability p, as happens in
the case of individual Gaussian attacks. Then, the probability of
an uncorrectable error is simply given by

Pn (p) =
n∑

k=m+1

(
n
k

)
pk (1 − p)n−k . (26)

As is evident from Fig. 7, the correction capability of the n-bit
repetition code rapidly worsens as the single bit-flip probability
approaches 1/2. This is due to the nonlinear behavior of Pn =
Pn (p), which becomes more manifest when n increases. In
particular, for a sufficiently large n, the curve displays a critical
point p̃ after which the correction capability suddenly starts to
deteriorate very quickly (e.g., p̃ � 0.3 for n = 35 and p̃ � 0.4
for n = 103). Exactly, these critical points can be exploited to
improve the QDC by transforming the communication protocol
into a threshold process, where the sensitivity to added noise is
remarkably amplified.

For a repetition code of fixed length n, we have a corre-
sponding critical value p̃. Then, we can choose a lattice whose
step is critical. This is the value Ω̃ such that the intrinsic error
probability is critical, i.e., ε(Ω̃) = p̃. On the one hand, when
the channel is noiseless, Bob is able to recover the codewords
and reconstruct the logical bit with a very low error probability
PB = Pn (p̃). On the other hand, when the channel is noisy, Al-
ice’s information is split into two subchannels: the Alice–Bob
channel, with added noise σ2

B := σ2 , and the Alice–Eve chan-
nel, with added noise σ2

E = (4σ2)−1 . The corresponding error
probabilities are, respectively, given by

PB = Pn (p̃ + pB ) PE = Pn (p̃ + pE ) (27)

where pB = pB (σ2
B ) and pE = pE (σ2

E ) are monotonic func-
tions of the added noises (and therefore linked by the uncer-
tainty principle). Now, if Eve tries to hide herself by perturbing
the Alice–Bob channel with a relatively small pB , then her dual
pE will always be big enough to perturb p̃ into the nonlinear re-
gion. As a consequence, Eve will tend to experience PE � 1/2
gaining her negligible information.
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Fig. 8. Sum of the mutual information IA B + IA E on the plane (Ω, σ2 ). The
values increase from 0 (white area) to 2 (black area). Note how the behavior of
the borders changes around the critical value Ω̃ � 1.

Let us explain the previous point in terms of mutual infor-
mation. In particular, let us fix the repetition code to the value
n = 35, so that we have p̃ � 0.3 and a corresponding critical
value Ω̃ � 1 for the lattice. Starting from an arbitrary Ω, one can
see that Ω̃ is indeed optimal for Alice and Bob. For every bit of
information that is encoded by Alice, the amount of information
decoded by Bob and Eve is, respectively, given by

IAB = 1 − H(PB ) := IAB (Ω, σ2) (28)

IAE = 1 − H(PE ) := IAE (Ω, σ2) (29)

where PB and PE are the logical error probabilities in (27) with
n = 35. Since the added noises satisfy the uncertainty relation
of (12), a similar relation holds for the mutual information, i.e.,

IAB (Ω, σ2) + IAE (Ω, σ2) = µ(Ω, σ2) (30)

where µ(Ω, σ2) ≤ 2 is numerically shown in Fig. 8. Let us also
consider the difference of information

D(Ω, σ2) :=
∣∣IAB (Ω, σ2) − IAE (Ω, σ2)

∣∣ . (31)

Such a quantity is a point-by-point measure of how much IAB

and IAE are different. In particular, the maximum value D = 1
corresponds to the maximal separation {IAB , IAE } = {0, 1} or
{1, 0}. As we can see from Fig. 9, the points (Ω, σ2) with Ω = 1
(i.e., with Ω � Ω̃) correspond to the broadest areas of separation.
In other words, the critical condition Ω � Ω̃ enhances the split
between IAB and IAE .

B. Protocol With Repetition Codes

Let us explicitly show how to use an n-bit repetition code for
encoding/decoding. This is possible by simply adding preen-
coding and postdecoding classical steps to the basic protocol of
Section II. The message bits (U,U ′) are preencoded into a pair
of logical bits

Ū = U1U2 · · ·Un Ū ′ = U ′
1U

′
2 · · ·U ′

n (32)

via the n-bit repetition code. Each pair of physical bits (Uk , U ′
k )

is then subject to the same encoding as before, i.e., lattice

Fig. 9. Difference D := |IA B − IA E | on the plane (Ω, σ2 ). The values in-
crease from D = 0 (white area) to D = 1 (black area). Note how the areas of
separation (black areas) are broader at the critical value Ω̃ � 1.

encoding (Uk , U ′
k ) → αuk u ′

k
:= αk , masking αk → αk +

αM = ᾱ, and quantum preparation ᾱ → |ᾱ〉. Then, after n
MMs, Bob will have collected perturbed versions of the n pairs
(U1 , U

′
1), . . . , (Un , U ′

n ). By applying standard error recovery
(majority voting), he will then perform the postdecoding of
(U,U ′). In the same way as before, these instances of MM
(each one carrying a single physical bit of a codeword) must
be randomly switched with instances of CM, where Alice skips
encoding and simply sends Gaussian signals ᾱ for testing the
channel (exactly as in Fig. 4).

Let us choose a repetition code with n = 35 and a lattice
with Ω = 1 � Ω̃. The latter choice implies an intrinsic error
probability ε in decoding the physical bits (Uk , U ′

k ), which is
equal to the critical value of the code p̃ � 32%. After error
recovery, the intrinsic error probability ε̄ affecting the logical
bits (Ū , Ū ′) is sufficiently low and corresponds to P35(p̃) � 1%.
Then, let us also choose c = 1/2 for the CM’s probability, so
that we have an efficiency E = 1/35. Note that the values of ε̄
and E correspond to the ones chosen for the basic protocol of
Section II (where ε̄ = ε of course). Such parameters equalize
the performances of the two protocols in the case of a noiseless
quantum channel. As a consequence, we are in a situation to
make a fair comparison between the protocols when malicious
noise is present in the channel.

C. Gaussian Eavesdropping

Let us analyze the effect of an individual UGQCM attack.
On every cloned system, affected by a noise σ2

E = (4σ2)−1 ,
Eve detects the complex amplitude γ via heterodyne detection.
Then, she estimates the signal amplitude ᾱ up to a total noise
∆E = 1 + σ2

E . After Alice’s declaration of the mask αM , Eve
derives the message amplitude, and therefore a pair of physical
bits (Uk , U ′

k ). Each physical bit will be affected by an error
probability p(∆E ) as in (19). After n eavesdropped MMs, Eve
will be able to decode Alice’s logical bits (Ū , Ū ′) by majority
voting, up to an error probability PE = Pn [p(∆E )] [see (26)].
For each logical bit, the acquired information is simply equal to
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Fig. 10. Survival probability P versus the number of stolen bits I . QDC with
repetition code n = 35, and parameters Ω = 1 � Ω̃, c = 1/2 (so that ε̄ � 1%
and E = 1/35). The curves refer to individual UGQCM attacks with different
values of added noise σ2 .

1 − H(PE ). As a consequence, for each MM, Eve acquires on
average

IAE (σ2) =
2[1 − H(PE )]

n
(33)

bits of information (simply because two logical bits are sent via
n physical systems).

Now, let us consider the probability that Eve evades M CMs.
Since the CM is implemented exactly as before, we again have
ΠM (σ2) as in (17). Such a quantity can be combined with the
one of (33). After N runs of the protocol, we have an average of
cN CMs and (1 − c)N MMs, so that Eve’s survival probabil-
ity is again ΠcN (σ2) := P and the stolen information equal to
(1 − c)NIAE (σ2) := I . Then, for every σ2 , we can again eval-
uate the curve P = P (I), expressing Eve’s survival probability
as a function of the stolen bits. According to Fig. 10, the best
choice for Eve is a UGQCM with σ2 � 0.3, which enables her to
steal about ten bits of information before being detected. Such a
result is a strong improvement with respect to the basic protocol,
where 80 bits were left to Eve. Note that, for a low value of the
noise like σ2 = 0.1, Eve gets �1 bit while Alice transmits �320
bits of information by using N � 1.1 × 104 systems. The maxi-
mal length of QDC is here bounded by 4(1 − c)(ncr)−1 � 3500
bits, i.e., N � 1.2 × 105 quantum systems.

It is important to note that the strong improvement brought
by the classical codes is proven provided the eavesdropping
strategy is fixed, i.e., Eve is restricted to an individual Gaussian
attack where all the signal systems are attacked by a UGQCM.
The idea of using repetition codes is, in fact, based on the
condition that all the systems are perturbed exactly in the same
way. However, this is not true in general, and we can design more
appropriate strategies for Eve, which are specifically optimized
against the use of classical codes. This is the argument of the
following section.

D. Non-Gaussian Eavesdropping via Intermittent Attacks

In Section III-C, the QDC with repetition codes has been
tested against the same kind of attack considered for the basic

QDC. This attack is an individual UGQCM attack, which is in-
deed a Gaussian attack if it is applied to every quantum system
that is sent through the channel. Note that the same Gaussian
interaction provided by the UGQCM generates an overall non-
Gaussian attack if it is applied to only a fraction of the signal
systems. This because an intermittent use of Gaussian interac-
tions corresponds to the generation of an average non-Gaussian
interaction.

In this section, we introduce the notion of intermittent at-
tacks, which are individual non-Gaussian attacks based on the
intermittent use of a UGQCM. They are characterized by two
parameters: the frequency parameter ω and the noise parameter
σ2 . The frequency parameter ω defines the probability that Eve
attacks a signal system via a UGQCM (and then detects the out-
put clone via heterodyning). The noise parameter σ2 defines the
cloning noise variance, which is introduced by the UGQCM on
the signals that are effectively attacked. Then, for N transmitted
systems, a fraction Nω is subject to cloning interactions with
noise σ2 , while another fraction N(1 − ω) is not perturbed by
Eve. On average, Bob’s output quadrature x = q, p will follow
the non-Gaussian distribution

Fω,σ 2 (x) = ωG1+σ 2 (x) + (1 − ω)G1(x) (34)

where G∆(x − x̄) is defined in (6). Clearly, in the particular
case of ω = 1, this attack becomes Gaussian and coincides with
an individual UGQCM attack.

An intermittent attack can allow Eve to probe a subset of the
systems very heavily, instead of probing all the systems with a
weaker interaction. This peculiarity plays a nontrivial role in the
case of QDC with repetition codes, where the eavesdropping
of a single bit of a codeword can be sufficient to reconstruct
all the encoded logical information. Here, we explicitly show
the superiority of the intermittent attacks against the use of
repetition codes. For the sake of simplicity, we consider only
those attacks whose frequencies can be written as ω = t/n,
where n is the length of the code and t is an odd integer between
1 and n.

After N runs of the protocol, an intermittent attack of fre-
quency ω (and noise σ2) will affect an average of Nω systems,
where cNω are in CM and (1 − c)Nω are in MM. Let us con-
sider the MM first. For each codeword of length n, there is an
average of t = nω bits attacked by Eve. Over these bits, Eve
adopts the criterion of majority voting in order to reconstruct
the codeword. As a consequence, the probability of a logical
error is equal to the probability of having at least (t + 1)/2 bit
flips, i.e.,

PE (t) =
t∑

k= t + 1
2

(
t
k

)
pk (1 − p)t−k (35)

where p = p(∆E ) is the single bit-flip probability in the Alice–
Eve channel, which is determined by ∆E = 1 + (4σ2)−1 . Then,
for each MM, Eve extracts on average

IAE (σ2 , ω) =
2{1 − H[PE (t)]}

n
(36)
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Fig. 11. Survival probability P versus the number of stolen bits I . QDC
with repetition code n = 35, and parameters Ω = 1 � Ω̃, c = 1/2 (so that
ε̄ � 1% and E = 1/35). The curves refer to intermittent attacks with different
parameters (ω, σ2 ). In particular, we have chosen ω = 1, 1/7, 3/35, 1/35 and
the corresponding optimal noises σ2 = 0.3, 0.35, 0.39, 0.4.

bits of information. After N runs of the protocol, we have an
average of (1 − c)N instances of MM, and therefore, Eve has
stolen I = (1 − c)NIAE (σ2 , ω) bits of information. Now, let us
consider the CM. For each instance of CM, Bob performs two
hypothesis tests, so that an average of 2cN tests are done after
N runs of the protocol. Bob must distinguish between the two
hypotheses of (13), which here means to distinguish between
the two distributions Fω,0(x) = G1(x) (which is Gaussian) and
Fω,σ 2 (x) with σ2 �= 0 (which is non-Gaussian). Suppose that
Bob knows exactly which are the instances of CM that are at-
tacked by Eve. This assumption clearly puts a lower bound on
the eavesdropping capabilities of Eve, which is however suf-
ficient to prove the result. In this case, Bob is able to isolate
the cNω attacked instances of CM from the cN(1 − ω) in-
stances that are not attacked. On the attacked subset, Bob can
now perform 2cNω tests in order to distinguish between two
Gaussian distributions, i.e., G1+σ 2 (x) and G1(x). Then, we
have to consider the estimator of (14), but now with M = cNω.
As a consequence, the survival probability of Eve after N runs
of the protocol is now given by P = ΠcN ω (σ2).

For every intermittent attack specified by the pair {ω, σ2}, we
can now relate the survival probability P to the number of stolen
bits I , i.e., we can consider the function P = P (I). By adopt-
ing the previous parameters for the QDC protocol, i.e., n = 35,
Ω = 1, and c = 1/2, we derive the curves of Fig. 11 for differ-
ent values of the pair {ω, σ2}. In particular, we have chosen
the frequencies ω in the set {1, 1/7, 3/35, 1/35} and taken the
corresponding optimal noises σ2 that maximize Eve’s stolen in-
formation. As expected, the value of the optimal noise increases
for decreasing frequency. In particular, the best performance is
achieved for ω = 1/35 (lowest frequency) and σ2 = 0.4 (high-
est noise), where Eve is able to eavesdrop 20 bits. Note that
this value is actually a lower bound on Eve’s capabilities, i.e.,
Eve is able to steal at least 20 bits. In fact, except for the
case ω = 1 (Gaussian attack), all the curves are actually lower
bounds on the actual performances of Eve. Nevertheless, this
is sufficient to prove the superiority of the intermittent attacks
in the eavesdropping of QDC with repetition codes. Note that

the actual performances of these non-Gaussian attacks could be
much better. It is not excluded that they could completely annul
the advantages brought by the use of the classical codes.

IV. CONCLUSION

In this paper, we have thoroughly reviewed the results of [14],
and we have also provided a deeper analysis of possible eaves-
dropping strategies. In particular, the usage of classical correct-
ing codes for QDC leads to the birth of new kind of attacks, the
intermittent attacks, which are non-Gaussian and outperform
the standard Gaussian attacks considered in [14]. Because of
this new strategy, the real advantages of using classical codes
for QDC are not completely clear. Despite this open problem,
the adoption of a basic QDC, with a suitable CM probability,
always enables the honest users to decrease the number of stolen
bits to any desired value. Clearly, this is done at the expense of
the efficiency of the protocol. This tradeoff between the degree
of privacy and efficiency of the protocol is quite intuitive in our
derivation. In future work, it would be interesting to investigate
the existence of a precise relation between these two quantities.
However, in order to derive this kind of relation, the cryptoanal-
ysis of the QDC should be first extended to more general eaves-
dropping models, e.g., collective Gaussian attacks [19], [20].
At the present stage, our protocols represent a simple proof of
principle of a confidential QDC in the framework of continuous
variable systems, whose performances are not definitive at all
and could be greatly improved in future investigations.

As already discussed in [14], our protocols for QDC allow
an effective communication only when a small amount of noise
affects the quantum channel, thus restricting their current ap-
plication to relatively short distances. Despite this restriction,
there are, however, nontrivial situations where they can be used
in a profitable way. As explained in [14], one of the possible
applications can be mutual entity authentication [21], where the
two users identify each other by comparing the bits of a predis-
tributed and secret authentication key. In this case, the usage of
QDC is particularly profitable in the presence of quantum im-
personation attacks [22], which are promptly revealed by small
sessions of our protocols.

APPENDIX I

QDC USING HOMODYNE DETECTOR

Simple variants of the previous protocols for QDC can be
implemented via homodyne instead of heterodyne detection. It
is sufficient that Alice encodes one single bit in the lattice by
setting U = U ′. Then, Bob randomly switches between q̂ and p̂
measurements, with the exact sequence being communicated to
Alice at the end of the quantum communication. In such a case,
Eve is forced to a delayed-choice strategy, where she has to keep
all her ancillas before making the correct homodyne measure-
ment on each of them. Similar results can be easily proven for
these variants by considering that now the measurement noise
is ∆ = 1/2.
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APPENDIX II

UNIFYING CMS AND MMS

Whenever the QDC is based on heterodyne detection and
implemented with a CM probability c = 1/2 (as in the case of
the protocol of Section III-B), one can decide to distribute the
CMs and MMs on all the quantum systems. This is possible by
randomly choosing a quadrature for the encoding and the other
for the check. Then, after Bob’s heterodyne detection, Alice
declares the quadrature to be used for public comparison.

APPENDIX III

POSTPONED QDC

In the basic protocol of Section II, after Bob’s detection, Alice
declares which mode she has used (MM or CM) and the corre-
sponding classical information (mask amplitude αM or signal
amplitude ᾱ). An alternative protocol consists in delaying this
declaration until the end of the quantum communication. At this
point, Alice will only declare the instances in CM and the corre-
sponding amplitudes. Such a procedure enables Alice and Bob
to evaluate the noise of the channel before revealing any confi-
dential information. From such an estimation, Alice computes
the amount of information IAE that Eve can steal if she unmasks
the message. If IAE is negligible (according to a preagreed tol-
erance level), then Alice unmasks all the MMs, communicating
her message to Bob. Otherwise, she has to abort. Alternatively,
when IAE is not negligible but less than IAB , Alice and Bob can
possibly use the remaining systems for distributing a secret key.
Note that such a postponed protocol takes no advantage from the
use of codes. Furthermore, it can be simply implemented with
c = 1/2, and therefore also modified according to Appendix II.
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