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Quantum direct communication with continuous variables
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Abstract – We show how continuous-variable systems can allow the direct communication of
messages with an acceptable degree of privacy. This is possible by combining a suitable phase-
space encoding of the plain message with real-time checks of the quantum communication channel.
The resulting protocol works properly when a small amount of noise affects the quantum channel.
If this noise is non-tolerable, the protocol stops leaving a limited amount of information to a
potential eavesdropper.
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Introduction. – In recent years, quantum communi-
cation protocols have been extended to the domain of
continuous-variable (CV) systems, i.e., quantum systems,
like the bosonic modes of the radiation field, which are
characterized by infinite dimensional Hilbert spaces [1]. In
particular, it has been understood how a sender (Alice)
can exploit bosonic modes in order to send analog signals
to a receiver (Bob) and then extract a secret binary key
from these signals [2,3]. Beyond the possibility of such
a continuous-variable quantum key distribution (QKD),
here we show how to use these systems in order to
perform a (quasi)confidential quantum direct communi-
cation (QDC) [4], i.e., the (quasi)private communication
of a message from Alice to Bob which is directly encoded
in CV systems.
The ideal situation for QDC trivially occurs when Alice

and Bob are connected by a noiseless channel. However,
in general, this is not the case and the honest users must
randomly switch their confidential communication with
real-time checks on the channel. As soon as they detect
the presence of a non-tolerable noise, they promptly
stop the communication. The maximum noise that can
be tolerated is connected to the maximum amount
of information that they are willing to give up to an
eavesdropper. In other words, a good QDC protocol
should enable Alice and Bob to communicate all the
message when the noise is suitably low, while losing a
small amount of information when it is not.

(a)E-mail: pirs@mit.edu

Let us consider a bosonic mode described by quadra-
ture operators q̂ and p̂, satisfying [q̂, p̂] = i. An arbi-
trary state of the system (density operator ρ) must
fulfill the uncertainty principle V (q̂)V (p̂)� 1/4, where
V (x̂) =Tr(ρx̂2)− [Tr(ρx̂)]2 denotes the variance of the
arbitrary quadrature x̂= q̂ or p̂. In particular, coherent
states satisfy V (q̂) = V (p̂) :=∆, where ∆= 1/2 represents
the quantum shot-noise. This is the fundamental noise
that affects disjoint measurements of the quadratures
q̂ and p̂ (homodyne detection), and it is doubled to
∆= 1 when the two quadratures are jointly measured
(heterodyne detection). A density operator ρ may be
faithfully represented by the Wigner quasi-probability
distribution W (q, p), whose continuous variables q and p
are the eigenvalues of the quadratures. In this phase-space
representation, states with Gaussian Wigner functions
are called Gaussian states. This is the case of a coherent
state |ᾱ〉, whose Gaussian Wigner function is centered at
ᾱ= 2−1/2(q̄+ ip̄). For coherent states the detection of an
arbitrary quadrature x̂ provides outcomes x following the
marginal distribution

G∆(x− x̄) = 1√
2π∆

exp

[
− (x− x̄)

2

2∆

]
, (1)

where ∆= 1/2 for homodyne and ∆= 1 for heterodyne.

The protocol. – Let us show how Alice can transmit
message bits by using the phase-space of a bosonic mode.
We discretize the phase-space via a square lattice of half-
step size Ω. Then, an arbitrary cell specifies the values
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Fig. 1: Square lattice in phase-space with unit cell of size 2Ω.
Each cell specifies the values of a pair of bits (u, u′).

of two bits (u, u′) which are given by the parity of its
address along the q and p axes (see fig. 1). In a simple
lattice encoding, Alice embeds two bits (u, u′) by randomly
choosing a target cell with parities (u, u′) or, equivalently,
by constructing the message amplitude αuu′ pointing at
the center of that target cell. Then, in a first naive
protocol, Alice directly prepares the coherent state |αuu′〉
from the message amplitude αuu′ . Such a state is sent to
Bob, who performs a heterodyne detection for extracting
αuu′ and, therefore, the pair (u, u

′). Notice that, even in
the presence of a noiseless channel, Bob’s decoding cannot
be perfect since the Gaussian shape of the coherent state
spreads over the whole phase-space and this leads to an
intrinsic error. It is easy to check that the probability of
an intrinsic error (per transmitted bit) is

ε(Ω,∆)= 2

∞∑
j=0

∫ (4j+3)Ω
(4j+1)Ω

dx G∆(x). (2)

In particular, here we fix Ω� 2.57 in order to have the
reasonable low value of ε= 1%. On the one hand, such
a choice for Ω enables Bob to approach an error-free
decoding when the communication channel is noiseless.
On the other hand, it makes the protocol fragile to
eavesdropping since Eve can optimize her attack to the
structure of the lattice, e.g., by using non-universal
quantum cloning machines.
Fortunately, we can preclude these strategies by adding

a simple classical (masking) step to the above procedure.
In fact, after having computed the message amplitude
αuu′ , Alice can add a mask amplitude αM , in such a way
that the total signal amplitude ᾱ := αM +αuu′ is contin-
uously distributed in phase-space according to a spread
Gaussian (see fig. 1). Then, in a second refined protocol,
Alice prepares the message αuu′ , the mask αM and the
signal state |ᾱ〉 (see fig. 2). As a first step, Alice sends the
signal state |ᾱ〉 to Bob, who heterodynes it with outcome

Masking

Lattice

( U , U )’

+ =

Message

BobAlice

σ2

M

uu’ M

M

M =- uu’

Unmasking

( U , U )’

Decoding

“click”

1 1

1

2

3

3

Fig. 2: Message mode (MM). From the message bits (u, u′),
Alice computes the message amplitude αuu′ (lattice encoding)
and then adds the mask αM achieving the signal amplitude ᾱ.
Then, Alice prepares and sends to Bob the signal state |ᾱ〉,
that Bob heterodynes with outcome β (step 1 in the picture).
After detection, Bob classically informs Alice (step 2) and,
then, Alice classically communicates the mask αM (step 3).
At that point, Bob is able to unmask the signal (β−αM ), thus
reconstructing αuu′ and, therefore, (u, u

′).

β � ᾱ. Then, after Bob’s confirmation of detection, Alice
classically communicates the mask αM . As a consequence
of these steps, Bob gets the pair (β, αM ) from his detec-
tion and Alice’s communication. Then, Bob is able to
unmask the signal by computing β−αM � ᾱ−αM = αuu′
and, therefore, retrieves the message bits (u, u′) via lattice
decoding. The key point here is that Eve must choose the
probing interaction before knowing the value of the mask.
Since the continuous signal ᾱ is highly modulated, the
best choice is to adopt a universal interaction which does
not privilege any particular portion of the phase-space.
Here, we consider for Eve the usage of a universal Gaussian
quantum cloning machine (UGQCM) [5]. Such a machine
maps the signal state |ᾱ〉 into a pair of output clones ρB
(sent to Bob) and ρE (taken by Eve), equal to a Gaussian
modulation of |ᾱ〉 〈ᾱ| with cloning variances σ2B := σ2 and
σ2E = (4σ

2)−1. This means that the arbitrary quadrature
x̂ of the clone K =B,E has a marginal distribution equal
to GK

∆+σ2
K

(x− x̄).
The above procedure of directly communicating

message bits is called the message mode (MM) of the
protocol. However, Alice and Bob have to also perform
real-time controls of the added noise σ2 on the channel.
This is possible if Alice randomly switches from message
mode instances to suitable instances of control mode
(CM) (see fig. 3) [6]. In control mode, Alice does not
process any text message but only prepares and sends the
signal state |ᾱ〉. Then, after Bob’s detection (outcome β),
Alice communicates the value ᾱ of the signal amplitude.
At that point, Bob extracts from (β, ᾱ) the actual value
of the test variable τ := β− ᾱ which is then used to infer
the total noise ∆B = 1+σ

2 affecting the signal. As soon
as they recognize a non-tolerable noise, i.e., σ2 > σ̃2 for
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Fig. 3: Control mode (CM). Alice picks up a Gaussian ampli-
tude ᾱ and prepares a signal coherent state |ᾱ〉. Such a state
is sent to Bob, who heterodynes it with outcome β (step 1 in
the picture). Then, Bob classically informs Alice (step 2) and
Alice communicates the value of the signal ᾱ (step 3). At that
point, Bob computes the test variable τ := β− ᾱ and tests the
noise of the channel.

some threshold noise σ̃2, they stop the communication.
Hereafter, we assume a zero-tolerance protocol where no
added noise is tolerated on the channel, i.e., σ̃2 = 0. We
shall see that the QDC protocol can be applied in realistic
situations even with such a strict condition1.
Let us show how the real-time check works in detail.

For each control mode, Bob collects the two quadratures
x= q, p of the test variable τ . Then, after M control
modes, he has collected 2M quadratures values
{x1, x2, · · ·, x2M−1, x2M} which give the estimator

v=
∑2M
l=1 x

2
l . By using this estimator, Bob must distin-

guish the two hypotheses

H0 =no Eve⇔ σ2 = 0, H1 =yes Eve⇔ σ2 �= 0. (3)

Let us fix the confidence level r (i.e., the probability to
reject H0 though true) to a reasonably low value (e.g.,
r= 5× 10−7). Then, the hypothesis H0 is accepted if and
only if

v < V2M,1−r, (4)

where Vi,j is the j-th quantile of the χ2 distribution with i
degrees of freedom. In other words, Alice and Bob continue
their direct communication in MM as long as the condition
of eq. (4) is satisfied in CM.
Let us explicitly analyze what happens when the chan-

nel is subject to eavesdropping. In an individual UGQCM
attack, Eve clones the signal input and, then, heterodynes
her output to estimate the signal amplitude ᾱ. After the
release of the mask’s value αM , Eve infers the message
amplitude αuu′ and, therefore, the input bits (u, u

′). In
this process, Eve introduces an added noise σ2 on the
Alice-Bob channel, while her output is affected by a total

1A zero-tolerance protocol does not promptly stop in realistic
situations (where σ2 �= 0) because the confidence level r cannot be
equal to zero.

noise equal to ∆E = 1+ (4σ
2)−1. On the one hand, we

must compute the probability ΠM (σ
2) that Eve evadesM

control modes while introducing noise σ2 �= 0. After some
algebra we get

ΠM (σ
2) =

[
Γ(M, 0)−Γ

(
M,
V2M,1−r
2(1+σ2)

)]/
(M − 1)!,

(5)

where Γ(z, a) :=
∫ +∞
a
dt tz−1e−t is the incomplete gamma

function. On the other hand, we must evaluate the amount
of information she can steal during her undetected life
on the channel. Let us assume that every input bit
is a bit of information. As a consequence, the stolen
information per MM is equal to IAE = 2[1−H(p)], where
H(p) :=−p log p− (1− p) log(1− p) and p= ε(Ω,∆E) can
be computed from eq. (2). By combining ΠM and IAE ,
we can derive Eve’s survival probability as a function
of the stolen information. Let c be the probability of a
control mode, so that N runs of the protocol are composed
by cN control modes and (1− c)N message modes, on
average. As a consequence, the survival probability will
be P := ΠcN (σ

2) and the average number of stolen bits
will be I := (1− c)NIAE(σ2). Then, for every value of c
and σ2, we can determine the function P = P (I). Let us
fix c= 69/70 so that the protocol has efficiency

E := #bits

#systems
=
1

35
. (6)

In fig. 4, we have numerically plotted P = P (I) for several
values of the added noise σ2. If the noise is low, e.g.,
σ2 = 0.01, Eve steals very little information (� 1 bit) while
Alice and Bob complete an almost noiseless QDC. In
particular, Alice is able to transmit � 1.5× 104 bits of
information by using N � 5× 105 systems. Notice that
the maximum length of the QDC is roughly bounded by
the verification of r−1 hypothesis tests and, therefore, it
is limited to about 4(1− c)(cr)−1 bits (i.e., � 1.2× 105
bits or � 4× 106 systems using the above parameters). If
the attack is more noisy (e.g., σ2 = 1), Eve again steals
little information (� 1 bit). In such a case, in fact, Eve is
promptly detected by the honest parties who, however, are
prevented from exchanging information (denial of service).
According to fig. 4, Eve’s best strategy corresponds to use
a UGQCM with σ2 � 1/20, so that she can steal � 80 bits
before being revealed (for a cut-off of P = 1%). In such
a case, Alice transmits � 630 bits by using N � 2.2× 104
systems.
How can we decrease the maximal amount of stolen

information? One possible solution is to increase further
the control mode probability c, so that the eventual
presence of Eve is detected before sending too many
bits. However, this approach affects the efficiency E . An
alternative and better solution consists of making the
decoding more sensitive to the presence of added noise.
Such an approach is possible by introducing classical error
correcting codes.
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Fig. 4: Survival probability P vs. the number of stolen bits I. In
(a) no codes are used while in (b) a repetition code with n= 35
is used. The curves refer to UGQCM attacks with different
values of added noise σ2.

Improving QDC via repetition codes. – In the
basic scheme of QDC with continuous variables, noise-
less communication is possible up to an intrinsic error
probability ε depending on Ω. In particular, such a prob-
ability decreases for increasing Ω. An alternative way for
decreasing ε consists of leaving Ω unchanged while intro-
ducing a classical error correcting code. Such procedures
are essentially equivalent for a noiseless channel, since ε is
sufficiently small and the codes work very well in that
case. However, the scenario is different as the channel
becomes noisier. In such a case, in fact, the correcting
codes have a non-linear behavior which makes their perfor-
mance rapidly deteriorate. Such a non-linear effect can
be exploited to critically split the correction capabilities,
and therefore the information gains, between the Alice-
Bob channel and the Alice-Eve channel.
For the simplest case of an n-bit repetition code, an

input bit U = {0, 1} is encoded into a logical bit Ū = {0̄, 1̄}
of n physical bits via the codewords

0̄ = 00 · · · 0︸ ︷︷ ︸
n

, 1̄ = 11 · · · 1︸ ︷︷ ︸
n

. (7)

By choosing an odd n= 2m+1 (with m= 1, 2, · · ·), we
can apply a non-ambiguous majority voting criterion. This
means that every bit-flip error of weight t <m+1 is
correctable, while every bit-flip error of weight t�m+1
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Fig. 5: Probability of an uncorrectable error Pn vs. the single
bit-flip probability p. Here, we consider repetition codes with
n= 7; 15; 35; 103.

is not. Let us now consider a memoryless channel, where
each physical bit is perturbed independently with the same
bit-flip probability p (as happens in the case of individual
attacks). Then, the probability of an uncorrectable error
is given by

Pn(p) =
n∑

k=m+1

(
n
k

)
pk(1− p)n−k. (8)

For a sufficiently large n, the curve Pn(p) displays a critical
point after which the correction capability suddenly starts
to deteriorate very quickly (see, e.g., fig. 5, showing p̃� 0.3
for n= 35 and p̃� 0.4 for n= 103). Exactly these critical
points enable one to improve the QDC by transforming the
communication protocol into a threshold process, where
the sensitivity to added noise is remarkably amplified.
Let us choose a critical lattice’s half-step Ω̃, i.e., leading

to a critical intrinsic error probability ε= p̃. On the one
hand, when the channel is noiseless, Bob is able to recover
the codewords and reconstruct the logical bit with a very
low error probability PB = Pn(p̃) (that we call the logical
intrinsic error probability). On the other hand, when
the channel is noisy, Alice’s information is split into two
sub-channels: the Alice-Bob channel, with added noise
σ2B = σ

2, and the Alice-Eve channel, with added noise
σ2E = (4σ

2)−1. The corresponding error probabilities are,
respectively, given by

PB = Pn(p̃+ pB), PE = Pn(p̃+ pE), (9)

where pB = pB(σ
2
B) and pE = pE(σ

2
E) are monotonic

functions of the added noises (and are therefore linked
by the uncertainty principle). Now, if Eve tries to hide
herself by perturbing the Alice-Bob channel with a
relatively small pB , then her dual pE will always be
big enough to perturb p̃ into the non-linear region. As
a consequence, Eve will tend to experience PE � 1/2,
gaining her negligible information.
Let us explicitly show how to use an n-bit repeti-

tion code for encoding/decoding. This is possible by
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simply adding pre-encoding and post-decoding classical
steps to the basic protocol. The message bits (U,U ′) are
pre-encoded into a pair of logical bits

Ū =U1U2 · · ·Un, Ū ′ =U ′1U
′

2 · · ·U ′n, (10)

via the n-bit repetition code. Each pair of physical bits
(Uk, U

′

k) is then subject to the same encoding as before,
i.e., lattice encoding (Uk, U

′

k)→ αuku′k := αk, masking
αk→ αk +αM = ᾱ and quantum preparation ᾱ→ |ᾱ〉.
Then, after n message modes, Bob will have collected
perturbed versions of the n pairs (U1, U

′

1), · · ·, (Un, U ′n).
By applying standard error recovery (majority voting),
he will then perform the post-decoding of (U,U ′). In the
same way as before, these instances of MM (each one
carrying a single physical bit of a codeword) must be
randomly switched with instances of CM, where Alice
skips encoding and simply sends Gaussian signals ᾱ for
testing the channel (exactly as in fig. 3).
Let us choose a repetition code with n= 35. Then,

consider a critical half-step Ω̃ = 1. Such a choice implies
p̃� 32% which leads to ε̃� 1% for the logical bits (U,U ′).
Then, let us also choose c= 1/2, so that we again achieve
an efficiency E = 1/35. Let us then analyze the effect of
a UGQCM attack. On every cloned system (with noise
σ2E), Eve detects the complex amplitude via heterodyne
detection, therefore, estimating Alice’s signal amplitude ᾱ
up to a total noise ∆E = 1+σ

2
E . After Alice’s declaration

of the mask αM , Eve derives the message amplitude
and, therefore, a pair of physical bits (Uk, U

′

k). Each
physical bit will be affected by an error probability p(∆E).
After n eavesdropped message modes, Eve will be able
to decode Alice’s logical bit by majority voting up to an
error probability PE = Pn[p(∆E)]. For each logical bit, the
acquired information is simply equal to 1−H(PE). As
a consequence, for each message mode, Eve acquires on
average

IAE(σ
2) = 2 [1−H(PE)] /n, (11)

bits of information (simply because 2 logical bits are sent
via n physical systems).
Let us then consider the probability of Eve to evade
M control modes. Since the control mode is implemented
exactly as before, we have again ΠM (σ

2) as in eq. (5).
Such a quantity can be again combined with the one of
eq. (11). After N runs of the protocol, we have an average
of cN control modes and (1− c)N message modes, so that
Eve’s survival probability is again ΠcN (σ

2) := P and the
stolen information is equal to (1− c)NIAE(σ2) := I. Then,
for every σ2, we can again evaluate the curve P = P (I).
According to fig. 4, the best choice for Eve is a UGQCM
with σ2 � 0.3, which enables her to steal only 10 bits
of information before being detected (for P = 1%). Such
a result is a strong improvement with respect to the
basic protocol, where 80 bits were left to Eve. Notice
that, for a low value of the noise like σ2 = 0.1, Eve gets
� 1 bit while Alice transmits � 320 bits of information
by using N � 1.1× 104 systems. The maximal length of

QDC is here bounded by 4(1− c)(ncr)−1 � 3500 bits, i.e.,
N � 1.2× 105 quantum systems.

Conclusion and discussion. – We have considered
Alice and Bob confidentially communicating without
resorting to QKD. Such a task is in general risky and
very demanding. However, here we have shown how to
construct a QDC protocol which uses the same quantum
resources as standard QKD, even if they are exploited
with a different logic. Such a protocol is sufficiently
confidential since it combines real-time checks of the
channel and a suitable masking of the secret information.
In particular, the maximum stolen information (i.e.,
the lack of complete secrecy) can always be decreased
by increasing the number of controls at the expense
of efficiency. As an alternative approach we have also
suggested the use of error correcting codes, in such a way
as to amplify the difference of information between the
eavesdropper and the honest user.
As a natural consequence of a demanding task like QDC,

our protocol allows an effective communication only when
a small amount of noise affects the quantum channel, thus
restricting its application to relatively short distances.
Despite this restriction, there are non-trivial situations
where it can be used in a profitable way. One of the possi-
ble applications concerns entity authentication [7], where
one of the users (e.g., Bob) identifies the other (Alice)
by comparing the bits of a pre-distributed and secret
authentication key Kaut. Using the QDC protocol, the
honest users have the chance to perform this task without
wasting too many quantum resources. For instance, let us
consider the case where Eve does not perturb the quan-
tum channel but impersonates Alice. Such a quantum
impersonation attack [8] is promptly revealed by a small
QDC session, where Bob receives directly the bits of Kaut
and, therefore, performs an immediate comparison with
his secret data. By contrast, in actual QKD protocols,
such an attack can be revealed only after the generation
of the encryption key Kenc (to be used in the private
comparison of Kaut). This clearly requires the distribution
and detection of many quantum states (ideally infinite)
and, therefore, the useless manipulation of a huge amount
of quantum resources (especially when entity authen-
tication is mutual). In general, since our QDC scheme
adopts the same quantum hardware as the standard
coherent state QKD, one can also consider random
switching between QDC (for authentication) and QKD
(for key generation).
As a final remark notice that our security analysis

concerns the case of individual attacks (where Eve does
not exploit any quantum memory). In future work it
would be interesting to investigate the performance
of the protocol in the presence of collective attacks,
where Eve exploits a quantum memory to store all
her output probes and performs an optimal coherent
measurement. It would be also interesting to extend the
security analysis to other forms of Gaussian interactions
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(i.e., not referable to a UGQCM) and even to non-
Gaussian interactions, that may play a role against the
usage of repetition codes.
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