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In this document, we first review some basic information about Gaussian states. Then, we exhibit
the general expressions for the secret-key rates (in both direct and reverse reconciliation) when the
various protocols are subject to one-mode Gaussian attacks. In the following sections, we explicitly
compute these secret-key rates for all the one-way and two-way protocols. From these quantities
we derive the security thresholds shown in the main paper. Finally, in the last section, we give the
explicit description of a general two-mode attack and we analyze the conditions for its reducibility.
This last analysis shows the security of the hybrid protocols against collective Gaussian attacks.

I. BASICS OF GAUSSIAN STATES

A bosonic system of n modes can be described by a
quadrature row-vector Ŷ := (Q̂1, P̂1, . . . , Q̂n, P̂n) satis-
fying [Ŷl, Ŷm] = 2iΩlm (1 ≤ l,m ≤ 2n), where

Ω :=
n⊕

k=1

(
0 1
−1 0

)
(1)

defines a symplectic form. A bosonic state ρ is called
Gaussian if its statistics is Gaussian [1, 2]. In such a
case, the state ρ is fully characterized by its displacement
〈Ŷ〉 = Tr(Ŷρ) and correlation matrix (CM) V, whose
generic element is defined by Vlm := 〈ŶlŶm + ŶmŶl〉/2−
〈Ŷl〉〈Ŷm〉 with diagonal terms Vll = 〈Ŷ 2

l 〉−〈Ŷl〉2 := V (Ŷl)
express the variances of the quadratures. According to
Williamson’s theorem [3], every CM V can be put in di-
agonal form by means of a symplectic transformation,
i.e., there exists a matrix S, satisfying ST ΩS = Ω, such
that ST VS = ∆(ν1, ν1, · · · , νn, νn), where ∆ denotes a
diagonal matrix. The set of real values ν := {ν1, · · · , νn}
is called symplectic eigenspectrum of the CM and pro-
vides compact ways to express fundamental properties
of the corresponding Gaussian state. In particular, the
Von Neumann entropy S(ρ) := −Tr (ρ log ρ) of a Gaus-
sian state ρ can be expressed in terms of the symplectic
eigenvalues by the formula [4]

S(ρ) =
n∑

k=1

g(νk) , (2)

where

g(ν) := ν+1
2 log ν+1

2 − ν−1
2 log ν−1

2

→ log eν
2 + O(ν−1) for ν À 1 . (3)

Here, the information unit is the bit if log = log2 or the
nat if log = ln.

An example of a Gaussian state is the two-mode
squeezed vacuum state [5] (or EPR source) whose CM

takes the form

VEPR(V ) =
(

V I
√

V 2 − 1Z√
V 2 − 1Z V I

)
, (4)

where Z := ∆(1,−1) and I := ∆(1, 1). In Eq. (4) the
variance V fully characterizes the EPR source [5]. On
the one hand, it quantifies the amount of entanglement
which is distributed between Alice and Bob, providing a
log-negativity [6] equal to

EN = max
{

0,− 1
2 log(2V 2 − 1− 2V

√
V 2 − 1)

}

→ log 2V + O(V −2) for V À 1 . (5)

On the other hand, it quantifies the amount of energy
which is distributed to the parties, since the reduced ther-
mal states ρA := TrB(ρ) and ρB := TrA(ρ) have mean
excitation numbers equal to (V − 1)/2.

II. GENERAL EXPRESSIONS FOR THE
SECRET-KEY RATES

The various protocols differ for the number of paths
(1 or 2) and the decoding method, which can be joint,
disjoint, individual or collective. In particular, when de-
coding is disjoint the relevant secret variable X is Q ∈ R
(or P ∈ R, equivalently). When decoding is joint, the
relevant secret variable X is {Q,P} ∈ R2. Under the
assumption of one-mode Gaussian attacks, the individ-
ual protocols (Hom,Het, Hom2, Het2) have the follow-
ing secret-key rates for DR (I) and RR (J) [7, 8]

RI := I(XA : XB)− I(XA : E) , (6)

RJ := I(XA : XB)− I(XB : E) . (7)

In these formulae, I(XA : XB) := H(XB)−H(XB |XA) is
the classical mutual information between Alice and Bob’s
variables XA and XB , with H(XB) = (1/2) log V (XB)
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and H(XB |XA) = (1/2) log V (XB |XA) being the total
and conditional Shannon entropies [9]. The term

I(XK : E) := H(E)−H(E|XK) (8)

is the Holevo information [10] between Eve (E) and
the honest user K = A,B (i.e., Alice or Bob). Here,
H(E) := S(ρE) is the Von Neumann entropy of Eve’s
state ρE and H(E|XK) is the Von Neumann entropy con-
ditioned to the classical communication of XK . For the
collective protocols (⊗Hom,⊗Het,⊗Hom2,⊗Het2) we
have instead

RI := I(XA : B)− I(XA : E) , (9)

and

RJ := I(XA : B)− I(B : E) , (10)

where I(XA : B), I(XA : E) are Holevo informations,
and

I(B : E) := H(B) + H(E)−H(B, E) (11)

is the quantum mutual information between Bob and
Eve. By setting R = 0 in the above Eqs. (6), (7), (9)
and (10) one finds the security thresholds for the corre-
sponding protocols. Notice that the Holevo information
of Eq. (8) provides an upper bound to Eve’s accessible
information. In the case of collective protocols, Alice
and Bob are able to reach the Holevo bound I(XA : B)
only asymptotically. This is possible if Alice communi-
cates to Bob the optimal collective measurement to be
made compatible with the generated sequence of signal
states and the detected noise in the channel. Such a
measurement will be an asymptotic projection on the
codewords of a random quantum code as foreseen by
the Holevo–Schumacher–Westmoreland (HSW) theorem
[11, 12]. Though such a measurement is highly complex,
it is in principle possible and the study of the collective
DR secret-key rate of Eq. (9) does make sense (it is also
connected to the notion of private classical capacity of
Ref. [13]). On the other hand, the quantum mutual in-
formation of Eq. (11) provides a bound which is too large
in general, preventing a comparison between the collec-
tive protocols in RR.

III. SECRET-KEY RATES OF THE ONE-WAY
PROTOCOLS

In the one-way protocols, Alice encodes two inde-
pendent Gaussian variables QA, PA in the quadratures
Q̂A, P̂A of a signal mode A, i.e., Q̂A = QA + Q̂A|QA and
P̂A = PA + P̂A|PA. Here, the quantum variables Q̂A, P̂A

have a global modulation V , given by the sum of the
classical modulation V (QA) = V (PA) = V − 1 and the
quantum shot-noise V (Q̂A|QA) = V (P̂A|PA) = 1. On
the other hand, Eve has an EPR source VEPR(W ) which

distributes entanglement between modes E and E′′. The
spy mode E is then mixed with the signal mode A via a
beam splitter of transmission T , and the output modes,
B and E′, are received by Eve and Bob, respectively (see
Fig. 1 in the main paper). Let us first consider the case of
collective protocols (⊗Hom,⊗Het), where Bob performs
a coherent detection on all the collected modes B in order
to decode XA = QA (for ⊗Hom) or XA = {QA, PA} (for
⊗Het). For an arbitrary triplet {V,W, T}, the quadra-
tures of the output modes, B and E′, have variances

V (Q̂B) = V (P̂B) = (1− T )W + TV := bV , (12)

V (Q̂E′) = V (P̂E′) = (1− T )V + TW := eV , (13)

and conditional variances

V (Q̂B |QA) = V (P̂B |PA) = (1− T )W + T = b1 , (14)

V (Q̂E′ |QA) = V (P̂E′ |PA) = (1− T ) + TW = e1 . (15)

Globally, the CMs of the output states ρB (of Bob),
ρE′E′′ := ρE (of Eve) and ρE′E′′B := ρEB (of Eve and
Bob) are given by

VB(V, V ) = ∆(bV , bV ) , (16)

VE(V, V ) =
(
∆[eV , eV ] ϕZ

ϕZ W I

)
, (17)

and

VEB =
(

VE F
FT VB

)
, F : =

(
µI
θZ

)
, (18)

where

ϕ := [T (W 2−1)]1/2 , µ := (W −V )[(1−T )T ]1/2 , (19)

and

θ := [(1− T )(W 2 − 1)]1/2 . (20)

The CMs of Bob (B) and Eve (E), conditioned to Alice’s
variable XA, are instead equal to

VK|QA
= VK(1, V ) , VK|QA,PA

= VK(1, 1) , (21)

where K = B, E. For T 6= 0, 1 and V À 1, the symplectic
spectra of all the previous CMs are given by:

νB → {TV } , (22)

νB|QA
→ {

√
b1TV } , (23)

νB|QA,PA
→ {b1} , (24)

νE → {(1− T )V, W} , (25)

νE|QA
→ {

√
e1(1− T )V ,

√
Wb1/e1} , (26)

νE|QA,PA
→ {b1, 1} , (27)

νBE → {V, 1, 1} . (28)

By using Eqs. (2) and (3), we then compute all the Von
Neumann entropies to be used in the quantities I(XA :
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B), I(XA : E) and I(B : E) of Eqs. (9) and (10). After
some algebra we get the following asymptotic rates for
the one-way collective protocols

RI[⊗Het] = log T
1−T − g(W ) , (29)

RI[⊗Hom] = 1
2 log Te1

(1−T )b1
+g

(√
Wb1
e1

)
−g(W ) , (30)

and

RJ[⊗Het] = log 1
1−T − g(W )− g(b1) , (31)

while RJ[⊗Hom] → −∞, because of the too large bound
provided by I(B : E) in this case.

Let us now consider the individual one-way protocols
(Hom,Het). Bob’s output variable is QB = Q̂B for
Hom, and

{QB , PB} = 2−1/2{Q̂B + Q̂0, P̂B − P̂0} (32)

for Het (with Q̂0, P̂0 belonging to the vacuum). From
Eqs. (12) and (14), we can calculate the variances V (XB)
and V (XB |XA) that provide the non-computed term
I(XA : XB) in Eq. (6). Then, we get the following
asymptotic rates in DR

RI[Hom] = RI[⊗Hom] , (33)

and

RI[Het] = log 2T
e(1−T )(1+b1)

+ g(b1)− g(W ) . (34)

In order to derive the RR rates from Eq. (7) we must
evaluate

I(XB : E) = H(E)−H(E|XB) , (35)

where H(E|XB) is computed from the spectrum νE|XB

of the conditional CM VE|XB
. In RR, Eve’s quantum

variables

ŶE := (Q̂E′ , P̂E′ , Q̂E′′ , P̂E′′) (36)

must be conditioned to the Bob’s classical variable XB .
This is equivalent to constructing, from XB , the optimal
linear estimators Ŷ

(XB)
E of ŶE , in such a way that the

residual conditional variables

ŶE |XB := ŶE − Ŷ
(XB)
E (37)

have minimal entropy H(E|XB). For the Hom protocol,
Bob’s variable XB = QB can be used to estimate the Q̂
quadratures only. Then, let Bob estimate ŶE by

Ŷ
(QB)
E = (q′QB , 0, q′′QB , 0) , (38)

so that the conditional variables are given by

ŶE |QB = (Q̂E′ − q′QB , P̂E′ , Q̂E′′ − q′′QB , P̂E′′) . (39)

For T 6= 0, 1 and V À 1, the optimal estimators are given
by

q′ = −
√

(1− T )/T , (40)

and q′′ = 0. The corresponding conditional spectrum

νE|QB
→ {

√
V W (1− T )/T , 1} (41)

minimizes H(E|QB) and leads to the asymptotic rate

RJ[Hom] = 1
2 log W

(1−T )b1
− g(W ) . (42)

For the Het protocol, Bob’s variable XB = {QB , PB}
enables him to estimate both the Q̂ and P̂ quadrature,
by constructing the ŶE-linear estimator

Ŷ
(QB ,PB)
E = (q′QB , p′PB , q′′QB , p′′PB) . (43)

For T 6= 0, 1 and V À 1, the optimal choice corresponds
to

q′ = p′ = −
√

2(1− T )/T , (44)

and q′′ = p′′ = 0, which gives

νE|QB ,PB
→ {(1− T + b1)/T, 1} , (45)

and leads to the asymptotic rate

RJ[Het] = log 2T
e(1−T )(1+b1)

+ g
(

1−T+b1
T

)− g(W ) . (46)

IV. SECRET-KEY RATES OF THE TWO-WAY
PROTOCOLS

In the EPR formulation of the two-way protocols (see
Fig. 5 in the main paper), Bob assists the encoding
via an EPR source VEPR(V ) that distributes entangle-
ment between mode B1, which is kept, and mode C1,
which is sent in the channel and undergoes the action
of an entangling cloner (T, W ) : C1 → A1. On the per-
turbed mode A1, Alice performs a Gaussian modulation
by adding a stochastic amplitude α = (QA + iPA)/2 with
V (QA) = V (PA) = V̄ and 〈QAPA〉 = 0. The modu-
lated mode A2 is then sent back through the channel,
where it undergoes the action of a second entangling
cloner (T, W ) : A2 → B2, where the output mode B2

is finally received by Bob. Let us first consider the col-
lective two-way protocols (⊗Hom2,⊗Het2), where Bob
performs an optimal coherent measurement upon all the
collected modes B1, B2 in order to decode XA = QA (for
⊗Hom2) or XA = {QA, PA} (for ⊗Het2). For an ar-
bitrary quadruplet {V̄ , V, W, T}, the CMs of the output
states ρB1B2 := ρB (of Bob) and ρE′1E′′1 E′2E′′2 := ρE (of
Eve) are given by

VB(V̄ , V̄ ) =
(

V I T
√

V 2 − 1Z
T
√

V 2 − 1Z ΛB(V̄ , V̄ )

)
, (47)
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and

VE(V̄ , V̄ ) =




eV I ϕZ µ′I 0
ϕZ W I θ′Z 0
µ′I θ′Z ΛE(V̄ , V̄ ) ϕZ
0 0 ϕZ W I


 , (48)

where

ΛB(V̄ , V̄ ) := [T 2V + (1− T 2)W ]I + T∆(V̄ , V̄ ) , (49)

and

ΛE(V̄ , V̄ ) := γI+(1−T )∆(V̄ , V̄ ) , (50)

with

µ′ := −
√

1− Tµ , θ′ := −
√

1− Tθ , (51)

and

γ := T (1− T )V + (1− T )2W + TW . (52)

The CMs of Bob (B) and Eve (E), conditioned to Alice’s
variable XA, are instead equal to

VK|QA
= VK(0, V̄ ) , VK|QA,PA

= VK(0, 0) , (53)

for K = B,E. Let us consider identical resources be-
tween Alice and Bob, i.e., V̄ = V − 1. Then, for T 6= 0, 1
and V À 1, all the symplectic spectra are given by:

νB → {f1V, f2V } , (54)

νB|QA
→ {ςV, ς−1

√
T (1− T 2)WV } , (55)

νB|QA,PA
→ {(1− T 2)V, W} , (56)

νE → {h1V, h2V, W,W} , (57)

νE|QA
→ {υ(1− T )V,

√
(1−T 2)WV

υ , W, 1} , (58)

νE|QA,PA
→ {(1− T 2)V, W, 1, 1} , (59)

where f1f2 = T , h1h2 = (1− T )2 and

ς := [1+T 2(T 2+T−2)]1/2 , υ := [1+3T +T 2]1/2 . (60)

By means of Eqs. (2) and (3), we compute all the Von
Neumann entropies to be used in Eq. (9), and we get the
asymptotic rates

RI[⊗Hom2] = 1
2 log T

(1−T )2 − g(W ) , (61)

and

RI[⊗Het2] = 2RI[⊗Hom2] . (62)

Clearly these rates imply the same DR threshold NI =
NI(T ) for ⊗Hom2 and ⊗Het2, as is shown in Fig. 2
in the main paper. The derivation of RJ[⊗Het2] and
RJ[⊗Hom2] is here omitted because of the trivial nega-
tive divergence caused by I(B : E).

Let us now consider the individual two-way protocols
Hom2 and Het2 in DR. For the Hom2 protocol, Bob

decodes QA by constructing the output variable QB :=
QB2−TQB1 from the measurements of Q̂B1 and Q̂B2 . In
fact, since Q̂B1 → Q̂C1 (for V À 1) and

Q̂B2 =
√

TQA +TQ̂C1 +
√

1− T (
√

TQ̂E1 + Q̂E2) , (63)

we asymptotically have

QB →
√

TQA + δQ , (64)

with

δQ :=
√

1− T (
√

TQ̂E1 + Q̂E2) . (65)

From V (QB) and V (QB |QA) we easily compute I(QA :
QB) to be used in Eq. (6). It is then easy to check that
the asymptotic DR rate satisfies

RI[Hom2] = RI[⊗Hom2] . (66)

For the Het2 protocol, Bob measures
{

q̂− = 2−1/2(Q̂B1 − Q̂0) ,

p̂+ = 2−1/2(P̂B1 + P̂0) ,
(67)

from the first heterodyne on B1, and
{

Q̂− = 2−1/2(Q̂B2 − Q̂0′) ,

P̂+ = 2−1/2(P̂B2 + P̂0′) ,
(68)

from the second one upon B2. Then, Bob decodes
{QA, PA} via the variables

{
QB := Q− − Tq− ,
PB := P+ + Tp+ .

(69)

In fact, for T 6= 0, 1 and V À 1, we have

QB →
√

T/2QA + δQ′ , PB →
√

T/2PA + δP , (70)

with

δQ′ := 2−1/2(δQ + TQ̂0 − Q̂0′) , (71)

and

δP := 2−1/2[
√

1− T (
√

T P̂E1 + P̂E2)+T P̂0 + P̂0′ ] . (72)

From V (XB) = V (QB)V (PB) and V (XB |XA) =
V (QB |QA)V (PB |PA) we then compute I(XA : XB) and
the consequent asymptotic DR rate

RI[Het2] = log 2T (1+T )
e(1−T )[1+T 2+(1−T 2)W ] − g(W ) . (73)

Let us now consider Hom2 and Het2 in RR. In or-
der to derive the corresponding rates from Eq. (7), we
must again compute H(E|XB) from the spectrum of the
conditional CM VE|XB

, where Eve’s quantum variables

ŶE := (Q̂E′1 , P̂E′1 , Q̂E′′1 , P̂E′′1 , Q̂E′2 , P̂E′2 , Q̂E′′2 , P̂E′′2 ) (74)
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are conditioned to Bob’s output variable XB . Of course,
this is again equivalent to finding the optimal linear es-
timators Ŷ

(XB)
E of ŶE . For the Hom2 protocol where

XB = QB , the linear estimators of ŶE take the form

Ŷ
(QB)
E := (q′1QB , 0, q′′1QB , 0, q′2QB , 0, q′′2QB , 0) . (75)

For T 6= 0, 1 and V À 1, the optimal ones are given
by q′1 = q′′1 = q′′2 = 0 and q′2 = −

√
(1− T )/T . The

corresponding conditional spectrum is given by

νE|QB
→ {m1V, m2

√
V , W, 1} , (76)

with

m1m2 = [T−1(1− T )3(1 + T 3)W ]1/2 . (77)

This leads to the asymptotic rate

RJ[Hom2] = 1
2 log 1−T+T 2

(1−T )2 − g(W ) . (78)

For the Het2 protocol, where XB = {QB , PB}, we have

Ŷ
(QB ,PB)
E :=

(q′1QB , p′1PB , q′′1QB , p′′1PB , q′2QB , p′2PB , q′′2QB , p′′2PB) .
(79)

For T 6= 0, 1 and V À 1, the optimal estimators are given
by

q′2 = p′2 = −
√

2(1− T )/T , (80)

and

q′1 = p′1 = q′′1 = p′′1 = q′′2 = p′′2 = 0 . (81)

The corresponding conditional spectrum is given by

νE|QB ,PB
→ {n1, n2, n3, (1− T 2)V } ,

where

n1n2n3 =
[1 + T 3 + (1− T )(1 + T 2)W ]W

T (1 + T )
. (82)

This spectrum leads to the final asymptotic rate

RJ[Het2] = log 2T (1+T )
e(1−T )[1+T 2+(1−T 2)W ]

+
3∑

i=1

g(ni)− 2g(W ) . (83)

V. STRUCTURE OF TWO-MODE ATTACKS

Let us describe the effects of a general two-mode attack
when Alice and Bob adopt the hybrid protocol. In the
hybrid protocol, Bob sends a modulated pure state |ϕ〉B ,
which is coherent for Het1,2 and squeezed for Hom1,2.

E++++αααα

(1)

(2)

B
ϕ

E1 E2 F

E1 E2 F

ρρρρ
B

(ON)

E1 E2 F

E1 E2 F

(1)

(2)

ρρρρ
A

ρρρρ
B

A
'ϕ

E

B
ϕ

(OFF)

FIG. 1: General two-mode attack against a hybrid protocol
(displayed in both the ON and OFF configuration). The two
paths of the quantum communication interact with a supply
of ancillas that can always be divided into three blocks E1, E2

and F .

Then, Alice modulates this state by α in the ON config-
uration, while she detects |ϕ〉B and re-sends a new |ϕ′〉A
in the OFF configuration. In general, in a two-mode at-
tack, Eve can use a countable set of ancillas which can
always be partitioned in three blocks E = {E1, F, E2}
(see Fig. 1). However, such an attack can always be
reduced to the cascade form of Fig. 2. This is a triv-
ial consequence of the logical structure of the protocol,
where the backward path (labelled by 2) is always subse-
quent to the forward path (labelled by 1) and, therefore,
a first unitary interaction Û can condition a second one
V̂ , but the contrary is not possible. In the first uni-
tary Û , two blocks of ancillas E1 and F interact with
the forward path (1). One output E1 is sent to the final
coherent detection while the other one F is taken as in-
put for the second unitary V̂ . Such a unitary makes the
backward path (2) interact with F (coming from Û) and
another block of fresh ancillas E2. The corresponding
outputs of F and E2 are then sent to the final coher-
ent detection. Note that such a description contains all
the possible quantum and/or classical correlations that
Eve can create between the forward and backward paths
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++++αααα

U

V

E2

E2

(1)

(2)

ρρρρ
A

ρρρρ
B

(ON) E1 F

E1

F

F

B
ϕ

U

V

(1)

(2)

ρρρρ
A

ρρρρ
B

(OFF) E1 F

E2

E2E1 F

F

B
ϕ

A
'ϕ

FIG. 2: Cascade form of the two-mode attack. In the first
unitary Û , two blocks of ancillas E1 and F interact with the
forward path (labelled by 1). One output E1 is sent to the
final coherent detection while the other one F is taken as input
for the second unitary V̂ . Such a unitary makes the backward
path (labelled by 2) interact with F (coming from Û) and
another block of fresh ancillas E2. The corresponding outputs
of F and E2 are then sent to the final coherent detection.

(both Gaussian and non-Gaussian).

In the OFF configuration, the first channel E1 :
|ϕ〉B 〈ϕ| → ρA is described by the Stinespring dilation
[14]

E1(|ϕ〉B 〈ϕ|) = TrE1F

[
ÛBE1F (|ϕ〉B 〈ϕ|

⊗ |0〉E1
〈0| ⊗ |0〉F 〈0|

)
Û†

BE1F

]
, (84)

while the second channel E2 : |ϕ′〉A 〈ϕ′| → ρB can be
expressed by the physical representation [15]

E2(|ϕ′〉A 〈ϕ′|) = TrE2F

[
V̂AE2F (|ϕ′〉A 〈ϕ′|

⊗ρF ⊗ |0〉E2
〈0|) V̂ †

AE2F

]
, (85)

where

ρF = TrBE1

[
ÛBE1F (|ϕ〉B 〈ϕ|

⊗ |0〉E1
〈0| ⊗ |0〉F 〈0|

)
Û†

BE1F

]
(86)

is the (generally mixed) state coming from the attack of
the first channel. In the ON configuration, the global
map E2 : |ϕ〉B 〈ϕ| → ρB is equal to

E2(|ϕ〉B 〈ϕ|) = TrE
[
V̂BE (|ϕ〉B 〈ϕ| ⊗ |0〉E 〈0|) V̂ †

BE

]
,

(87)
where |0〉E 〈0| := |0〉E1

〈0| ⊗ |0〉E2
〈0| ⊗ |0〉F 〈0| and

V̂BE := V̂BE2F D̂B(α)ÛBE1F . (88)

Notice that the Stinespring dilation of Eq. (87) is unique
up to a local unitary transformation ÛE acting on the
output ancilla modes. In our description of the attack
(see Fig. 2) such a local unitary is included in the opti-
mization of the final coherent detection.

From Eq. (88), it is clear that Eve’s attack is void of
quantum correlations if

V̂BE2F = V̂BE2 ⊗ V̂F , (89)

or

ÛBE1F = ÛBE1 ⊗ ÛF . (90)

In such a case in fact the two unitaries Û and V̂ are no
longer coupled by the F ancillas. Let us assume one of
the incoherence conditions of Eq. (89) and (90). Then,
we can group the ancillas into two disjoint blocks E1 =
{E1, F} and E2 = {E2} if Eq. (89) holds, or E1 = {E1}
and E2 = {E2, F} if Eq. (90) holds. In both cases the
one-mode channels of Eqs. (84) and (85) are expressed
by the Stinespring dilations

E1(|ϕ〉B 〈ϕ|) = TrE1

[
ÛBE1

(|ϕ〉B 〈ϕ| ⊗ |0〉E1
〈0|) Û†

BE1

]
,

(91)
and

E2(|ϕ′〉A 〈ϕ′|) = TrE2

[
V̂AE2 (|ϕ′〉A 〈ϕ′|

⊗ |0〉E2
〈0|) V̂ †

AE2

]
, (92)

while the two-mode channel E2 is expressed by Eq. (87)
with

V̂BE := V̂BE2D̂B(α)ÛBE1 . (93)

Now, one can easily check that Eq. (93) is equivalent to
the decomposability condition

E2 = E2 ◦ Eα ◦ E1 . (94)

This can be easily verified by inserting Eqs. (91) and (92)
into the right hand side of Eq. (94) and resorting to the
uniqueness property of the Stinespring dilation.
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Once the presence of quantum correlations between the
paths has been excluded, every residual classical correla-
tion can be excluded by symmetrizing the forward and
backward channels, i.e., by setting E1 = E2, which is
equivalent to relating the two unitaries Û and V̂ by a par-
tial isometry. In conclusion, the verification of the condi-
tion E2 = E ◦ Eα ◦ E by Alice and Bob explicitly excludes

every sort of quantum/classical correlation between the
two paths of the quantum communication. Moreover,
such a verification is relatively easy in case of Gaussian
attacks, since the corresponding Gaussian channels can
be completely reconstructed from the analysis of the first
two statistical moments.
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