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Five-wave-packet linear optics quantum-error-correcting code
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In this article we outline a method for generating linear optics circuits that encode quantum-error-correcting
codes. Using this method we produce a single-error-correcting code encoding one wave packet over five which
can be implemented using linear optics and feed-forward correction. This code improves on the capacity of the
best known code that can be implemented using linear optics and saturates the lower bound for the number
of carriers needed for a single-error-correcting code. Our code can correct arbitrary single errors that occur
randomly on each wave packet corresponding to a non-Gaussian error model, thus circumventing the so-called
no-go theorem for Gaussian quantum-error correction.
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I. INTRODUCTION

Quantum information can be encoded on a variety of sys-
tems. It is common to focus on individual information carriers.
Working with the underlying Hilbert-space formalism, the
only feature of a specific physical implementation that is used
is the Hilbert space dimension of the system (the number of
distinct states of the system). Thus we may characterize the
fundamental information carriers through their dimension.

The simplest (and most common) of quantum information
carriers is the qubit—having dimension two. More generally,
for finite dimensions, the information carrier would be the
qudit—of dimension d. The simplest way to generalize to
infinite dimensions is to use so-called continuous-variable
systems which, for example, can be used to describe the
states of a harmonic oscillator. Although continuous-variable
systems can be implemented in a number of ways [1], we will
henceforth restrict our attention to those formed by the quan-
tum state of the transverse mode structure of electromagnetic
radiation—corresponding to the states typically analyzed in
so-called quantum optics [1,2].

While various types of quantum information can have
implementations differing dramatically, one feature common
to all is susceptibility to noise. As a consequence of this
susceptibility techniques for protecting against noise are
needed. One such technique is quantum-error correction [3,4]
which was first formulated for qubits and later extended to
qudits [5] and continuous variables [6,7]. Naively, it may
appear that quantum-error correction on continuous variables
is more difficult than for their discrete counterparts as there is a
much wider class of errors that can occur. However, quantum-
error-correction techniques can be applied to continuous
variables in much the same way as for discrete variables,
providing protection against arbitrary errors on, say, up to
a single continuous variable—a single subsystem, sometimes
called a single wave packet.

The first continuous-variable quantum-error-correcting
codes relied on operations analogous to the commonly used
exclusive-OR (XOR) operation for qubits [6,7]. While these
generalized XOR operations can be performed in a number
of continuous-variable schemes their optical implementation
can be very challenging as it relies on nonlinear optics (or
so-called active optical components). However, it has been
shown subsequently that it is possible to perform continuous-
variable quantum-error correction using only linear optics and

squeezed auxiliary states [8]. This discovery pushed quantum-
error correction for continuous variables into the realm of
current experimental feasibility. Indeed, the nine-wave-packet
continuous-variable linear optics code has recently been
implemented experimentally [9].

It has been shown that Gaussian operations, such as the
passive linear optics components used in our protocol, cannot
be used to implement the correction of a Gaussian error model
[10]. However, our error model corresponds to stochastic errors
occurring on each wave packet, which can occur in situations
such as atmospheric transmission [11]. Thus, the Gaussian
no-go theorem does not apply to our code.

To date, the only known continuous-variable code that
can be implemented via linear optics requires nine wave
packets, while the smallest known continuous-variable code
based on active components is a five wave-packet code
[6] saturating the lower bound on the number of carriers
for single-error correction [12]. Smaller codes offer many
advantages, such as increased data rates or decreased chance
of further errors occurring. In this article we investigate the
construction of such a compact code based on linear optics.
Previous approaches to building continuous-variable codes
have focused typically on analogies to existing qubit codes.
The original continuous-variable codes [6,7] were constructed
by producing continuous-variable versions of qubit-error-
correcting circuits. The known linear optical variant is based
on the realization that it is possible to construct states similar
to the highly entangled nine wave-packet continuous-variable
codewords produced by active components [7,13] using only
linear optical components [8]. This current article uses a
different approach to achieve a linear optics construction
for a five-wave-packet code: we define the conditions under
which a linear optical circuit will yield a continuous-variable
quantum-error-correcting code. We then search numerically
for circuits satisfying this criterion. This approach is similar
in spirit to that of constructing stabilizer codes [14] since the
codes are constructed to satisfy error-correcting properties.

This article is structured as follows: continuous-variable
error-correcting codes and their linear optics implementations
are briefly reviewed. We then provide the criterion for a linear
optics circuit to encode a continuous-variable quantum-error-
correcting code and discuss how this was used to search for
suitable circuits. Following this we discuss methods used
to improve the codes produced with respect to efficient
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implementation and present the “best” code found together
with its encoding circuit.

A. Linear optics

Linear optics circuits consist of beam-splitters and phase
delays in any combination. Since they act linearly on anni-
hilation or creation operators it is convenient to work in the
Heisenberg picture. For two input modes with annihilation
operators â1 and â2 sent into an arbitrary phase-free beam-
splitter, the output modes will be given by(

â′
1

â′
2

)
=

(
cos θ sin θ

− sin θ cos θ

) (
â1

â2

)
. (1)

Often, the parameter, θ , is specified by an energy or intensity
transmission coefficient cos2 θ . To remove any ambiguity,
cos θ and sin θ are taken to be positive throughout this article
whenever beam-splitters are specified in this manner. Phase
delays multiply the annihilation operator by a phase factor eiφ ,
giving

â′ = eiφâ. (2)

To preserve the canonical commutation relations among the
annihilation and creation operators any linear optics operator
must have the form

â′
i =

∑
j

Uij âj , (3)

where U = ((Uij )) is an n × n unitary matrix. Reck et al. [15]
have shown that any such transformation can be performed
by a fixed configuration of n(n − 1)/2 beam-splitters and
n(n + 1)/2 phase delays with appropriate parameters. The
generic configuration they use is shown in Fig. 1.

II. ERROR MODEL

In order to discuss error correction, we first need to discuss
the error model at which it is targeted. The error model has
a significant impact on the performance of different types of
correction. One of the most common models assumes that each
primitive error simultaneously affects e distinct information
carriers out of a block of n carriers and occurs stochastically
with some probability.

FIG. 1. A linear optics circuit that, depending on the choice of the
n2 parameters for the beam-splitters and phase delays, can perform
any linear optics operation involving n modes [15]. The numbers 1
to n and 1′ to n′ label the input and output modes, respectively.

One method of achieving robustness against this type
of error is via error-correcting codes. The information is
encoded over many carriers within blocks that allow correction
when errors occur on a limited number of the underlying
carriers. This technique was first applied to qubits by Shor [3]
and independently shortly afterward by Steane [4] and then
extended to qudits [5]. Similarly this type of error model, which
is, for example, responsible for stochastic losses of optical
signals traveling through the atmosphere [11], can be corrected
for continuous-variables quantum systems. However, other
error models common in continuous-variable scenarios may
need other strategies, since codes do not allow for correction of
Gaussian-type errors, where each mode has a small Gaussian
error rather than a small probability p of a (possibly) large
error occurring on that mode, using only linear optics [16].
In the following section we briefly outline the extension of
such stochastic-error-model quantum-error-correcting codes
to continuous variables.

A. Error correction over continuous variables

Since continuous variables can take on a range of values
over the whole real line the range of errors that can occur is
likewise infinitely larger than for discrete variables. Given this,
one might expect that quantum-error correction on continuous
variables may be more difficult or impossible. However, it turns
out that such quantum-error correction can be implemented
in much the same way as for discrete variables. This was
first shown independently by Braunstein [6] and Lloyd and
Slotine [7].

As with discrete quantum-error correction, it is enough to
be able to correct for a much more limited class of errors [6].
As with qubits, it is sufficient to consider the most general
error on a wave packet (an individual continuous-variable
information carrier) to be written as a function of the position
and momentum operators Ê(x̂,p̂) transforming an input state
|ψ〉 via

|ψ〉 → Ê(x̂,p̂)|ψ〉. (4)

If E is described in terms of its Fourier transform Ẽ on both
variables, the state with error may be written as

1

π

∫
du dv ei(ux̂+vp̂)Ẽ(u,v)|ψ〉. (5)

The operator ei(ux̂+vp̂) corresponds to a shift in position by v

and a kick in momentum by u. Thus, the state is a superposition
of various phase-space displacements of the original state
|ψ〉. If the values of u and v could be measured, then the
superposition would collapse into one in which the state was
displaced by known values, allowing correction by reversing
the displacement.

Let us consider for simplicity a single-wave-packet position
error that can be written as a function of the momentum
operator Ê(p̂). The effect of such an error on a position
eigenstate would be [6]

Ê(p̂) |x〉 = 1

π

∫
dy dp e2ip(y−x)E(p) |y〉

=
∫

dy Ẽ(y)|x − y〉, (6)

062305-2



FIVE-WAVE-PACKET LINEAR OPTICS QUANTUM-ERROR- . . . PHYSICAL REVIEW A 81, 062305 (2010)

where, Ẽ(y) is the Fourier transform of E(p). So a position
error will produce a superposition of the original state shifted
by various y’s. If this shift can be determined then the
superposition of shifts would collapse into the original state
shifted by a single known value. The following encoding
allows just such a measurement for position errors (using two
zero-position eigenstate auxiliary modes)

|x〉 |0〉 |0〉 → |x〉 |x〉 |x〉, (7)

it is sufficient to see this in action on an encoded basis state
|x〉. If a position error now occurs on the first encoded wave
packet, say, then the overall state with the error will be∫

dy Ẽ(y) |x − y〉 |x〉 |x〉. (8)

Correction is achieved by measuring the results of subtracting
the wave packets’ positions via homodyne detection [17] from
three pairs (1,2), (2,3), (3,1) to form a syndrome vector. In the
case of a correctable error, the difference between the pair not
involving the corrupted wave packet will be zero identifying
the location of the error. In the case of the error in Eq. (8) the
syndrome vector (−y,0,y) is found for some y with probability
density |Ẽ(y)|2 and the state has collapsed to one in which a
single shift of size y has occurred on the first wave packet,
|x − y,x,x〉. Thus we can recover the original encoded state
by applying a shift of −y to the first wave packet.

In a similar manner, this procedure could be applied
to provide correction against momentum errors using the
analogous code in the momentum basis. By applying the
position correction encoding to a single wave packet, and
the momentum correction encoding to each of the outputs of
the position encoding it is possible to provide correction for a
single arbitrary error the type in Eq. (5) [8].

B. Quantum-error correction using linear optics

The original continuous-variable codes [6,7] make use of
nonlinear operations, such as the subtraction of wave packets’
positions used in the syndrome measurement above. In optical
schemes this operation is nonlinear as it does not preserve
the total number of photons. Because nonlinear operations are
typically much more difficult to implement it is worthwhile
understanding to what extent they may be replaced by purely
linear optics operations. Indeed, it turns out that it is possible
to construct quantum-error-correcting codes, to correct against
a stochastic-error model of the type described above that need
only linear optics and a source of squeezed states [8].

The encoding of Eq. (7) is nonlinear, but by scaling the
codeword it may replace it with the encoding

|x〉 →
∣∣∣∣ 1√

3
x

〉 ∣∣∣∣ 1√
3
x

〉 ∣∣∣∣ 1√
3
x

〉
. (9)

This encoding can be performed using linear optics. In
particular, the pair of beam-splitters shown in Fig. 2 combine
to form a so-called tritter arrangement that maps state |x〉 in
mode 1 and two auxiliary zero-position eigenstates |0〉 |0〉 in
modes 2 and 3 into the encoding of Eq. (9).

Readout and correction peformed may be by running the
encoding circuit (in this case the tritter) “backwards” and
making position readouts on the auxiliary modes.

FIG. 2. An arrangement of beam-splitters representing the tritter
circuit, encoding a state to protect against position errors. The
numbers here (2/3 or 1/2) next to each phase-free beam splitter
denote the energy transmission coefficient for that component.

For a single-wave-packet error, after running the tritter
backward the output will be one of∫

dy Ẽ(y)

∣∣∣∣∣x +
√

1

3
y

〉 ∣∣∣∣∣−
√

2

3
y

〉
|0〉 , (10)

∫
dy Ẽ(y)

∣∣∣∣∣x +
√

1

3
y

〉 ∣∣∣∣∣
√

1

6
y

〉 ∣∣∣∣∣−
√

1

2
y

〉
, (11)

∫
dy Ẽ(y)

∣∣∣∣∣x +
√

1

3
y

〉 ∣∣∣∣∣
√

1

6
y

〉 ∣∣∣∣∣
√

1

2
y

〉
, (12)

corresponding to errors on the first, second, and third wave
packets, respectively. Once the two auxiliary modes are
measured in the position basis the error “collapses” to produce
the syndrome pattern. In the above cases these are(√

2

3
y,0

)
, (13)

(
1√
6
y, − 1√

2
y

)
, (14)(

1√
6
y,

1√
2
y

)
, (15)

respectively, for some y. Since these patterns are maximally
distinguishable for y �= 0, the location and size of the error may
be optimally identified from the syndrome. Once the collapsed
error has been identified it may be corrected using a shift of
−y/

√
3 in each case. Note that the y = 0 case reduces to no

error and so no correction is required.
The above three-wave-packet encoding can correct a single

position error. It may be transformed into an analogous single
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momentum error-correcting code by phase delays of π/2—
which effectively interchanges x and p. By concatenating these
codes a nine-wave-packet code analogous to the nine-qubit
Shor code [3] can then be constructed.

So far, the operation of continuous-variable error-
correction-codes have only been discussed under ideal
circumstances—with perfect zero-position eigenstates as aux-
iliaries. Since these ideal auxiliaries are physically unrealiz-
able they must be replaced with some realizable approximation
in any actual implementation, typically position squeezed
vacuum states [18]. This approximation introduces noise into
the measured syndromes. This leads to two potential problems:
The first is that the noise in a measured syndrome may
move it far enough from the correct syndrome that it ends
up being mistaken for the syndrome of a different error. If
this occurs then we would “correct” for the wrong error which
will typically result in a failure of the correction procedure.
In the case of the position code above, this will be avoided
if the width of the auxiliaries are smaller in magnitude than
the collapsed error y, so the distributions of the auxiliary states
must be sufficiently narrow compared to the size of the smallest
error to be corrected.

The second potential problem, is that the accuracy of
correction is limited by the precision with which the syndrome
can be determined. This in turn depends on the width of the
initial auxiliary states. In the ideal case of perfect syndrome
measurement we would end up with the pure state∫

dx dx ′ ψ∗(x)ψ(x ′) |x ′〉 〈x| . (16)

However, when we have imprecise syndrome measurement we
would end up with∫

dx dx ′ dη ψ∗(x)ψ(x ′)p(η) |x ′ − η〉 〈x − η| , (17)

where p(η) is the probability distribution over the linearly com-
bined random variable (s1v1 + s2v2)/[

√
3(s2

1 + s2
2 )], where s1

and s2 are the constant factors multiplying y in Eq. (15) and
v1 and v2 are distributed according to the position noise in the
initial auxiliary states. Thus, in order to avoid failure of the
correction procedure, p(η) must be narrow compared to any
important length scales in the unencoded wave function ψ(x),
i.e., the code cannot protect a state with features smaller than
the initial widths of the auxiliary states.

Linear optics quantum-error-correcting codes allow for any
quantum state to be protected against a given set of stochastic
errors. However, in certain scenarios, where only a limited
set of states need to be protected, then it may be possible to
exceed the bounds imposed by the requirements of general
error correction. For example, quantum erasure correcting
codes for continuous variables allow for the protection of
coherent states against probabilistic losses while needing only
four wave packets [19] rather than the five required for full
quantum-error correction [12].

The discovery of linear optics circuits for continuous-
variable quantum-error correction significantly simplifies its
implementation. Indeed, the above-mentioned nine-wave-
packet linear optics code has already been implemented
experimentally [9]. However, this code needs nine optical
modes, while the best known continuous-variable code using

active (nonlinear) operations requires only five modes [6].
It would be desirable, therefore, to have a linear optics
continuous-variable code using a five-wave-packet encoding.
We construct such a code below.

III. CONSTRUCTION OF A LINEAR OPTICS
CONTINUOUS-VARIABLE

QUANTUM-ERROR-CORRECTING CODE

In this section we explain our methodology for constructing
linear optics continuous-variable quantum-error-correcting
codes. We start by describing the form of the error-correction
circuits—the key point being that they will operate in a
manner similar to the original nine-wave-packet code [8].
We then derive the criterion that needs to be satisfied for a
successful error-correction circuit for both nondegenerate and
degenerate codes. Next we discuss how this criterion may be
effectively evaluated. Finally, we describe how we go about
the numerical search for examples of successful linear optics
continuous-variable quantum-error-correcting codes.

A. Form of the linear optics quantum-error-correcting code

The codes we seek should operate in the same manner as
the linear optics nine-wave-packet code [8]. An n-wave-packet
code would encode m wave packets using n − m auxiliary
states, ideally zero position eigenstates. A linear optics circuit
(an n-mode interferometer) described by an n × n unitary
matrix U then maps the m initial “message” wave packets
and n − m auxiliary modes into an n-wave-packet code. In the
simplest case a single wave packet (m = 1) is encoded into an
n-wave-packet code.

We shall suppose that an arbitrary error may occur on
some limited number of wave packets (only one in the
simplest nontrivial case) after which decoding, syndrome
detection, and appropriate corrective feed-forward steps are
performed. For production of the syndrome the encoding
circuit is run backward (effectively running the “inverted”
interferometer described by the matrix U †). In the absence
of an error the auxiliary modes would be mapped back
to n − m zero position eigenstates. If an error occurred
before decoding these n − m modes it would be mapped to
nonzero values (in the position basis). Therefore measuring
the positions of the n − m auxiliary modes yields a syndrome
for a properly designed code. After syndrome recognition
an arbitrary syndrome error should be reduced to a known
position shift and momentum kick on identified wave packets.
This phase-space displacement may be subsequently reversed
via a feed-forward action based on the classical information
obtained during syndrome measurement and recognition.

It remains to determine suitable linear optics circuits,
described by their unitary matrix U , which can achieve this.
The following section discusses the criterion for the unitary
U that must be satisfied for a successful continuous-variable
quantum-error-correcting circuit.

B. Criterion for a circuit to perform continuous-variable
quantum-error correction

Here we construct in detail the criterion [20] that a linear op-
tics circuit must satisfy in order to represent an error-correcting
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circuit as outlined above. As discussed above, any linear optics
circuit acting on n modes is equivalent to an n × n unitary
matrix U .

We start with a total of n modes. Their annihilation
operators âi , will be transformed by the encoding circuit U

into annihilation operators b̂i satisfying

b̂i =
n∑

j=1

Uij âj . (18)

Now, suppose some error occurs to the encoded state on wave
packets with indices from some set ε. After such an error
occurs the annihilation operators are denoted by ĉi and related
to the encoded modes b̂i by

ĉi =
{

b̂i , i �∈ ε

fi(b̂ε1 , . . . ,b̂εl
), i ∈ ε,

(19)

where the fi are arbitrary (even nonlinear) functions of
the relevant annihilation and creation operators. In order to
examine the effect of the errors, it is useful to introduce
operators ê representing the change in the encoded operator as
a consequence of an error. The ĉi may therefore be rewritten
as

ĉi = b̂i + êi , (20)

with êi = ĉi − b̂i , so the êi are zero for modes not affected by
the error.

Next, the state is decoded by the circuit corresponding to
U †, yielding annihilation operators d̂i satisfying

d̂i =
n∑

j=1

U
†
ij ĉj =

n∑
j=1

U
†
ij (b̂j + êj )

= âi +
n∑

j=1

U
†
ij êj . (21)

Decomposing the error into its effect on position and mo-
mentum operators, i.e., writing êi = (x̂i + ip̂i)/

√
2, allows the

decoded modes d̂i to be expressed as

d̂i = âi +
∑
j∈ε

U
†
ij êj

= âi + 1√
2

∑
j∈ε

(U †
ij x̂j + iU

†
ij p̂j ). (22)

For a code that encodes m wave packets into n, the syndrome
is generated by measuring the position of wave packets m + 1
through n (the last n − m wave packets)

Si−m = d̂i + d̂
†
i√

2

= x̂
input
i +

∑
j∈ε

[Re(U †
ij )x̂j − Im(U †

ij )p̂j ], (23)

for m + 1 � i � n. Ideally, the auxiliary modes are initially
zero position eigenstates, thus x̂

input
i may be replaced by its

eigenvalue 0, leaving the components of the syndrome operator

Ŝi−m =
∑
j∈ε

[Re(U †
ij )x̂j − Im(U †

ij )p̂j ]. (24)

We shall suppose the correctable errors correspond to
arbitrary errors on up to l wave packets—a successful code
encoding m wave packets into n might be labeled as an
[[n,m,2l + 1]] continuous-variable quantum-error-correcting
code. To achieve this we require that every syndrome that can
be generated by such errors leads to a unique correction, i.e.,
that the set does not contain two errors that have the same
syndrome but have a different collapsed error on the output
state.

If any error can be expressed in terms of the x̂i and
p̂i changes on the affected modes then it is sufficient to
consider the errors for each mode by breaking them down
into combinations of these variables. Suppose we have a set of
errors that are not correctable for the code represented by the
matrix U . In this case there must be two errors, say ê and and
ê ′, with the same syndrome but requiring different corrections.
If ê consists of a shift of x̂i + ip̂i on the ith mode with only the
modes i ∈ ε being nonzero, similarly ê ′ consists of shifts of
x̂ ′

j + ip̂ ′
j for j ∈ ε′. The equal components of the syndrome

may then be written as

Ŝi−m =
∑
j∈ε

[Re(U †
ij )x̂j − Im(U †

ij )p̂j ]

=
∑
j∈ε′

[Re(U †
ij )x̂ ′

j − Im(U †
ij )p̂′

j ], (25)

with the output modes not all equal, i.e.,

d̂i = ai + 1√
2

∑
j∈ε

(U †
ij x̂j + iU

†
ij p̂j )

�= (26)

d̂ ′
i = ai + 1√

2

∑
j∈ε′

(U †
ij x̂

′
j + iU

†
ij p̂

′
j ), for some i � m.

Thus, a set of errors is uncorrectable if there exist two errors ê

and ê ′ in the set such that∑
j∈ε

[Re(U †
ij )x̂j − Im(U †

ij )p̂j ] =
∑
j∈ε′

[Re(U †
ij )x̂ ′

j − Im(U †
ij )p̂′

j ],

(27)

for m + 1 � i � n, but∑
j∈ε

(U †
ij x̂j + iU

†
ij p̂j ) �=

∑
j∈ε′

(U †
ij x̂

′
j + iU

†
ij p̂

′
j ), (28)

for some 1 � i � m.
The above conditions are equivalent to the statement that

all errors up to some maximum weight l will be correctable if
all of the solutions of∑

j∈ε

Re(U †
ij )x̂j − Im(U †

ij )p̂j = 0, (29)

for auxiliary modes with m + 1 � i � n, with weight less than
or equal to 2l [the maximum combined weight from ê and ê ′
in Eq. (27)] are also solutions of∑

j∈ε′
U

†
ij x̂j + iU

†
ij p̂j = 0, (30)

for all output modes 1 � i � m. The converse is also true
[i.e., if all errors up to weight l are correctable then solutions
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to Eq. (29) are also solutions to Eq. (30)], since if this were not
the case we could write the solution satisfying Eq. (29) but not
Eq. (30) as the sum of two nonzero vectors with weight less
than or equal to l. Such errors would have the same syndrome,
but with opposite signs, even though the same is not true for
their effect on the message. Thus, on negating one of the pair of
errors, we would have two errors with the same syndrome but
different effects on the output; this would make it impossible
to implement an error-correction strategy based solely on the
syndromes.

C. Evaluating the criterion for successful error correction

Having derived the general criterion we now consider
how it can be applied in specific circumstances, starting with
the nondegenerate case. For nondegenerate codes each error
corresponds to a unique syndrome. Thus, there can be no
nontrivial solutions to Eq. (29), since from such solutions we
could extract two different errors with the same syndrome
contradicting nondegeneracy. When there are no nontrivial
solutions to Eq. (29) its trivial solutions will automatically
satisfy Eq. (30). Therefore we can determine if we have
a nondegenerate error-correcting code by checking that all
correctable errors yield a unique syndrome. This check only
requires the decoding circuit U †.

As discussed above, it is sufficient to consider errors that
can be written as a superposition of phase-space displacements
on each affected wave packet. The syndrome for a unit position
shift on mode i corresponds to a vector consisting of the real
part of the ith column of matrix U † with the top m rows
removed. The syndrome for a unit kick in momentum on the ith
wave packet corresponds to the negative of the imaginary part
of the same column. Thus, the syndrome for any single mode
error will be a member of the subspace of Rn−m spanned by
these two syndrome vectors. Similarly, syndromes for errors on
less than k wave packets are members of the subspace spanned
by the 2k primitive position and momentum syndromes of
the corresponding modes. In the nondegenerate case, the
syndromes for different errors need to be unique. Thus, the
subspaces of possible syndromes for errors on different wave
packets must only intersect at the origin, corresponding to
the requirement that the set of syndromes must be linearly
independent.

Writing the syndrome table for the code as a matrix provides
a convenient method of calculating the syndrome for any error.
Define the 2n × (n − m) matrix

M ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re(U †
(m+1),1) · · · Re(U †

n,1)

−Im(U †
(m+1),1) · · · −Im(U †

n,1)
...

. . .
...

Re(U †
(m+1),n) · · · Re(U †

n,n)

−Im(U †
(m+1),n) · · · −Im(U †

n,n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The syndrome for any combination of primitive position and
momentum errors can be calculated by writing them as a vector
of the following form


v† = (x1,p1,x2,p2, . . . ,xn,pn), (32)

with corresponding syndrome


v†M. (33)

If the code corrects all errors on up to l wave packets, then
there can be no two vectors of weight at most l (here weight
refers to the number of pairs of xj , pj with at least one of x

or p nonzero) sharing no modes in common but that have the
same syndrome. In other words, there is no solution to


v†M = 
v′†M, (34)

with 
v and 
v′ sharing no modes and having weight at most l

unless both are zero. Equivalently, by subtracting one vector
from the other, we may rewrite this criterion as saying that
there is no solution 
v to


v†M = 0, (35)

with weight less than or equal to 2l. It follows that any set of
2l pairs of xi and pi rows from the matrix in Eq. (31) must be
linearly independent. For small l, this criterion may be checked
quickly on a computer.

For degenerate codes, the possibility of nontrivial solutions
to Eqs. (29) and (30) needs to be considered more carefully,
since these joint solutions correspond to degeneracies—
different errors with the same syndrome and collapsed error
on the output and thus the same correction. Returning to
the matrix form of the decoding circuit, U †, a unit position
shift error on the j th wave packet corresponds to a complex
displacement by U

†
ij on the ith output mode. Similarly, for

a unit momentum kick error on the j th mode we will have
a complex displacement of iU

†
ij on the ith mode. Now, we

need to check that when the syndromes of primitive errors on
different modes can be equal that the complex displacements
at the outputs will also be equal. A convenient way to do
this is to augment the matrix of syndromes in Eq. (31). As
discussed above, two sets of rows that are linearly independent
allows equal syndromes for different errors. If the effects of
the primitive errors, U

†
ij for unit position shifts and iU

†
ij for

unit momentum kicks, are appended to the matrix as follows⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re(U †
(m+1),1) · · · Re(U †

n,1) U
†
1,1 · · · U

†
m,1

−Im(U †
(m+1),1) · · · −Im(U †

n,1) iU
†
1,1 · · · iU

†
m,1

...
. . .

...
...

. . .
...

Re(U †
(m+1),n) · · · Re(U †

n,n) U
†
1,n · · · U

†
m,n

−Im(U †
(m+1),n) · · · −Im(U †

n,n) iU
†
1,n · · · iU

†
m,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(36)

then the syndrome and effects of a combination of shift and
kick errors can be calculated in the same manner as the
syndrome in Eq. (33). Only now the first n − m real values
in the resulting vector correspond to the syndrome and the
following m complex values to the effects on the output. We
now require that if the syndromes for primitive errors on
different wave packets can be made equal then their effects
will also be equal. One method of checking this is by the use
of Gaussian elimination. For every set of partitions of 2l modes
out of n we produce a matrix similar to Eq. (36) containing only
the rows corresponding to those modes. Gaussian elimination
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is then applied to the left-hand side of the matrix. If, after
reduction, there is a row of zeros on the left, the same row
must also have zeros on the right, since rows of zeros on the
left correspond to solutions to Eq. (29) while rows of zeros on
the right correspond to solutions to Eq. (30).

D. Numerical search for codes

The above criterion can be used to search for linear opti-
cal circuits that will describe successful continuous-variable
quantum-error-correcting codes. Recall that every linear optics
circuit may be decomposed into the form shown in Fig. 1 [15].
This construction makes use of n(n − 1)/2 beam-splitters and
n(n + 1)/2 phase delays, each of whose parameters can be
taken to range over [0,2π ). To find suitable circuits we search
this space of n2 parameters for those that generate a matrix
that is not a solution to Eq. (29). Since these parameters are
continuous and the search space is large an exhaustive search
is not possible, instead, an optimisation technique was used.

1. Differential evolution

For optimization, differential evolution [21] was chosen
for the first attempt due to the simplicity of the algorithm.
Differential evolution is a technique that attempts to find the
global minimum over continuous-variable multidimensional
spaces, making it suitable for optimizing over the space of n2

parameters used to define a linear optics circuit.
Differential evolution works with a population of Npop

vectors containing random parameters for candidate solutions,
typically these populations are referred to as generations and a
new generation is created from the previous one by an update
procedure. Differential evolution produces a new generation
by looping over the current population. For each member of the
population 
r three other members of the current population 
u1,

u2, and 
u3 are selected at random, from these three members
a vector 
v is formed according to


v = 
u1 + F (
u2 − 
u3). (37)

Where F is a real number that controls the amplification of
the variation. From the initial member 
r and newly created
vector 
v a candidate 
c is constructed based on a crossover rate
Rc with 0 < Rc � 1. For each element of 
c there is a 1 − Rc

probability that it has value equal to the equivalent member of

r and a Rc probability it will be equal to the equivalent member
of 
v. Once 
c has been constructed we calculate its fitness using
some cost function and compare it to the cost of the original
member 
r . If the cost of 
c is less than that of 
r then in the next
generation 
r will be replaced by 
c.

New generations are created until a particular criterion is
satisfied.

2. Original cost function

The initial aim of the search was to produce any circuit
capable of performing quantum-error correction with no regard
for performance. Thus, the cost function was chosen to reflect
the criterion for nondegenerate codes given in Eq. (29).
However, the optimization requires that the cost reflects how
suitable a particular candidate is rather than simply providing
a Boolean criterion. Thus the cost function was designed to

try and take into account how “near” a set of parameters is
to a single-error-correcting code. This was achieved by taking
the cost to be the sum of the number of linearly independent
solutions to Eq. (29) over all possible pairs of modes. Thus,
codes with fewer uncorrectable single-wave-packet errors
would have a lower cost.

3. Progress of optimization

For the first attempt the population Npop was chosen to be
1000, an amplification factor F as 1/2 and the crossover rate Rc

as 1/2. Initially the algorithm was set to finish after a thousand
generations; however, most of the time a successful code was
found in either the first or second generation. Thus, allowing
the problem to be solved by random search. Note, however,
that this cost function only reflects the criterion that the circuit
corresponds to an error-correcting code in the ideal case of
auxiliary modes that are perfect zero position eigenstates. In
order for a code to be of practical value it would need to
still be capable of performing error correction under less than
ideal circumstances. The next section examines a number of
improvements made to the cost function to allow it to produce
codes that may be more effectively experimentally realizable.

IV. FURTHER OPTIMIZING THE CODES PRODUCED

This section looks at improving generated circuits in two
areas. First, improving the code represented by the circuit
under nonideal conditions. Second, optimizing the circuit with
respect to difficulties in implementing it.

A. Optimizing the code

The optimization of the code focuses on two aspects that
are typically ignored in discrete codes. The first involves
the separation of syndromes, in an attempt to improve the
probability of correctly identifying the error under nonideal
conditions. The second attempts to minimize the amount of
noise added to the output as a consequence of performing the
correction under nonideal conditions.

1. Separation of syndromes

Under ideal circumstances, including all auxiliary modes
prepared in perfect zero position eigenstates, the different
syndromes in our linear optics continuous-variable quantum-
error-correcting code would be exactly distinguishable. How-
ever, any imperfection, such as using only finitely squeezed
states for the auxiliary modes, will lead to some uncertainty
or noise in the syndrome readout (an issue typically ignored
in discrete-variable quantum-error-correcting codes). Now,
the requirement of Eq. (29) that any set of syndromes are
linearly independent does not place any constraint on the
angle between those syndromes. For example both of the sets
{(1,0),(cos θ, sin θ )} with θ small but greater than zero, and
{(1,0),(0,1)} are linearly independent but the angle between
the vectors in the first set is very small, while in the second
this angle is maximal.

Clearly, it would be worthwhile, in addition to the ideal
linear independence enshrined in Eq. (29) between the distinct
syndromes, to maximize the angles between all pairs of
syndromes corresponding to different errors (in the case
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of nondegenerate codes). This will minimize the chance of
misidentification of the syndromes and hence minimize the
chance of performing the wrong correction step.

For an n wave-packet code encoding m modes, an error on
a single mode has a syndrome belonging to a two-dimensional
subspace of Rn−m spanned by the syndromes corresponding
to shifts in position and momentum. In order to minimize the
chance of misidentification, the angle between any vector in
this subspace and any vector in a subspace corresponding to an
error on another mode should be as large as possible. In other
words, defining the subspace corresponding to each error as Si

we seek to minimize

cos θij = max

u∈Si , 
v∈Sj

‖
u‖2=‖
v‖2=1


vT 
u, (38)

over all pairs of modes i, j . This can be calculated using the
matrix-2-norm [22], defined by

|A|2 = max
|x|2=1

|Ax|2, (39)

i.e., the square of the maximum eigenvalue of A. Defining Pi

as the projector onto Si then

cos θij = |PiPj |2 = |PjPi |2. (40)

This part of the cost function in the numerical search was
therefore chosen to be the largest value of cos θij over all
distinct errors i, j so that it reflects the worst case of syndrome
overlap.

2. Optimizing the correction procedure for nonideal
auxiliary modes

Once the modes on which the error occurred have been
determined the correction needs to be performed, the effect the
error has on the output is calculated so that it can be reversed.
The effect on the output is calculated by finding a linear
combination of x and p syndromes on the affected modes
that equals the measured syndrome (syndrome recognition).
Once this combination is found the effect of the error is equal
to a linear combination of the effects of the x and p shifts on
each mode with the same coefficients.

In the case where the auxiliary modes are only finitely
squeezed, the measured syndrome will not correspond exactly
to the error since there will be noise as a result of the auxiliary
states not being ideal. The measured syndrome can then be
written as


Sideal + 
N , (41)

where 
Sideal is the ideal syndrome corresponding to the error
and 
N is the vector of noise terms corresponding to the initial
uncertainty in the auxiliary states. Now, since the correcting
displacements are linear, the calculated correction will be the
sum of the corrections corresponding to 
Sideal and the extra
noise 
N . This extra noise should be minimized so that the
damage caused by performing the error-correction procedure
is as small as possible.

We define the cost of correction for an error on a particular
mode to be the sum of the increase in variances of x and p

on the output state. Restricting attention to single mode errors,

for a syndrome 
S caused by an error on an identified mode,
the required correction is

C

( 
S⊥
p


S⊥
p .
Sx

+ i 
S⊥
x


S⊥
x .
Sp

)
· 
S, (42)

where C is the complex displacement of the output if the error
was a unit shift in x, 
Sx/p is syndrome for a unit shift in x/p

and 
S⊥
p is the component of 
Sx orthogonal to 
Sp and vice

versa. The correction for position will be the real component
of Eq. (42) (

Re(C)
S⊥
p


S⊥
p · 
Sx

− Im(C)
S⊥
x


S⊥
x · 
Sp

)
· 
S (43)

and the kick to correct momentum will be the imaginary
component (

Im(C)
S⊥
p


S⊥
p · 
Sx

+ Re(C)
S⊥
x


S⊥
x · 
Sp

)
· 
S. (44)

Now, assuming the inputs to all auxiliary modes are
distributed with the same variance v (so they each correspond
to finitely squeezed vacuum states with the same squeezing
parameter), each component of 
N is randomly distributed
about 0 with variance v, then the increase in variance for x

and p, respectively, will be(
Re(C)
S⊥

p


S⊥
p · 
Sx

− Im(C)
S⊥
x


S⊥
x · 
Sp

)
·
(

Re(C)
S⊥
p


S⊥
p · 
Sx

− Im(C)
S⊥
x


S⊥
x · 
Sp

)
v, (45)

(
Im(C)
S⊥

p


S⊥
p · 
Sx

+ Re(C)
S⊥
x


S⊥
x · 
Sp

)
·
(

Im(C)
S⊥
p


S⊥
p · 
Sx

+ Re(C)
S⊥
x


S⊥
x · 
Sp

)
v. (46)

Adding these together to get the cost for correcting the error,
Eq. (42), yields a net variance

v|C|2 | 
Sx |2 + |
Sp|2
| 
Sx |2| 
Sp|2 − (
Sx · 
Sp)2

. (47)

Since C and the components of the vector 
Sx − i 
Sp come
from a column of the unitary matrix representing the circuit,
and denoting the angle between 
Sx and 
Sp as θ , this cost may
be written as

v
|C|2(1 − |C|2)

| 
Sx |2| 
Sp|2(1 − cos2 θ )
. (48)

Thus, the cost for an individual error is minimized when the
syndrome vectors are orthogonal, reflecting the fact that only
the orthogonal components of the syndromes can be used to
calculate the correction, and | 
Sx | = |
Sp|.

This part of the cost for an encoding matrix U was taken to
be the sum of individual costs over all correctable errors. The
minimum occurs when |Ci |2 = 1/n leading to a target cost
of 4/(n − 1), which for the five-wave-packet-code case would
be one. For circuits encoding m wave packets, the cost for an
individual error was modified to be the sum of the increase
in variance on each of the outputs, in this case the minimum
becomes 4m/(n − m).
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B. Optimizing the circuit for ease of implementation

A number of criteria were chosen to try and make generated
circuits easier to implement. We focused on two aspects:
number of components and component simplicity.

1. Number of components

One important consideration is the number of components
in the circuit. The circuit used for the creation of arbitrary
unitary operators, Fig. 1, contains n(n − 1)/2 beam-splitters
and n(n + 1)/2 phase delays. However, if the beam-splitter
parameters are multiples of π/2 then they represent either the
identity or a swap, with a possible phase flip. In these cases
the beam-splitter can be removed from the circuit reducing the
number of number of beam-splitters and phase delays by one.
Having fewer components not only reduces the cost of imple-
menting the circuit but also reduces potential sources of noise.

2. Simpler settings for components

While it is possible to produce beam-splitters and phase
delays with any arbitrary setting for θ , in practice certain values
are easier to achieve than others. In particular the standard
50:50 beam-splitter is cheaper typically than one with variable
settings, although a variable splitter can always be constructed
using two 50:50 splitters with a suitable phase delay along
one path. The cost function was therefore modified to reflect
these concerns. Since the beam-splitter settings also relate to
the number of components these two costs were combined.
Each beam-splitter parameter was assigned a cost of 0 if it
corresponded to no beam-splitter, a cost of 1 if it corresponded
to a 50:50 beam-splitter and all other settings a cost of 2.
Since the search space for each parameter is continuous, there
would be almost no possibility of these exact values being
obtained using the standard differential search algorithm. To
allow circuits to be generated with parameters corresponding
to lower costs a threshold value ε was introduced. When
calculating the cost of a parameter, if its value differs from
one with a lower cost by less than ε then it is replaced with
the lower cost value for the purposes of evaluating the circuit,
and also in the final output. However, the unaltered value was
used for generating the next generation.

Simple parameters for phase delays are preferred since it
is beneficial for phase locking. For this reason the parameters
were limited to multiples of π/2. This was achieved in the
same manner as for beam splitters but with the threshold set
to π/4 in order to always fix it to a multiple of π/2.

C. Overall cost function

The final cost function was chosen to be a weighted average
of all the above considerations. Since the primary aim of
the optimization is to produce a circuit that performs error
correction, the cost function was chosen so that it always
preferred circuits representing codes. This was achieved by
attaching a much larger weight to the error-correction criterion
so that it always outweighed other factors. We chose a weight
of 104. The final cost function was chosen to be

104 Ccrit + 2 Csep + Ccorr + 1
5 Cbeam, (49)

where Ccrit represents the cost of the criterion for error
correction as used in the original optimization, Csep the cosine

of the minimum angle between any two syndrome spaces, Ccorr

the cost of correction and Cbeam the cost of the beam-splitters.
For the beam-splitter cost the threshold ε was set to π/20.

D. Progress of optimization

The differential evolution parameters were the same as
those used in the original search for a code capable of per-
forming error correction. As before, finding circuits capable of
providing error correction was easy and was achieved typically
within one or two generations when the initial population was
1000. However, optimizing for the additional considerations
was much slower. Within a few thousand generations the values
for the various costs were close to optimal, but it took millions
of generations before they ceased to improve.

V. FIVE-WAVE-PACKET CODE USING LINEAR OPTICS

The encoding circuit for the five-wave-packet code with the
lowest cost is presented in Fig. 3. This code has a cost of cor-
rection of 1, which is its lower bound and thus minimizes the
increase in noise when correction is performed. The minimum
angle between two syndrome subspaces is approximately π/5
so all syndromes are reasonably well separated.

In terms of components, the code uses seven beam-splitters
of which five are non-50:50, this compares favorably to the
nine-wave-packet code [8] which uses 12 50:50 beam-splitters.
If the arbitrary beam-splitters were substituted for two 50:50
beam-splitters then our five-wave-packet code would also use
12. The phase delays of the code are all simple multiples of
π/2 as specified by the cost function, although the other costs
only marginally improved if this restriction were removed.

Finally, the unitary matrix representing the encoding circuit
is

U ≈

⎛
⎜⎜⎜⎜⎜⎝

0.45i −0.51 −0.60i −0.37 0.20i

−0.45i 0.51 −0.60i −0.37 −0.20i

−0.45 0.20i −0.37 −0.60i 0.51

−0.45 0.20i 0.37 0.60i 0.51

−0.45i −0.63 0 0 −0.63i

⎞
⎟⎟⎟⎟⎟⎠
(50)

to two significant figures. A circuit implementing it is given in
Fig. 3.

FIG. 3. The encoding circuit for the constructed five-wave-packet
code. The numbers next to the beam-splitters are the energy
transmission coefficients, and the numbers next to the phase delays
denote the phase delay in radians.

062305-9



THOMAS A. WALKER AND SAMUEL L. BRAUNSTEIN PHYSICAL REVIEW A 81, 062305 (2010)

TABLE I. Table of syndromes and effects on the output for
primitive unit displacements of position and momentum for the
five-wave-packet code generated by the circuit in Fig. 3.

Unit position shift Unit momentum kick

Mode Syndrome Effect Syndrome Effect

1 (−0.51,0,−0.37,0) −0.45i (0,−0.6,0,0.2) 0.45
2 (0.51,0,−0.37,0) 0.45i (0,−0.6,0,−0.2) −0.45
3 (0,−0.37,0,0.51) −0.45 (0.2,0,−0.6,0) −0.45i

4 (0,0.37,0,0.51) −0.45 (0.2,0,0.6,0) −0.45i

5 (−0.63,0,0,0) 0.45i (0,0,0,−0.63i) −0.45

A. Demonstrating the correction criterion

In this section we demonstrate how the five-wave-packet
code in Fig. 3 can be used to perform correction. As discussed
previously, for nondegenerate codes we can perform correction
if primitive displacement errors on different wave packets
correspond to different syndromes. To determine this we use
the decoding matrix which is the Hermitian conjugate of the
encoding matrix. From this we find the syndromes for unit dis-
placements which for position errors are the real components
of the columns of the submatrix of U † with the top row removed
and the negative of the imaginary components for momentum
kicks. The syndromes for the primitive unit displacements in
position and momentum can be found in Table I.

On measurement, the error will collapse into a phase-space
displacement associated with the measured syndrome. The
syndrome will therefore be a linear combination of the
unit position and momentum syndromes which span a two-
dimensional subspace of R4. In order for error identification
to succeed any two of these subspaces can only intersect
at the origin, since otherwise we could find errors on both
modes with the same syndrome and thus would not be able to
determine the mode on which the error occurred. Examination
of Table I shows that an intersection of any two such subspaces
is impossible for our constructed five wave-packet code.

B. Using the code to perform correction

In order to perform the correction, we first identify the mode
on which the error occurred. This can be done by determining
which subspace of syndromes the measured syndrome comes
from. One method of doing this is to calculate the size of
the projection of the measured syndrome onto each of the
syndrome subspaces. The mode on which the error occurred is
then determined to be the one corresponding to the subspace
with the largest projection. Since the syndromes in Table I for
position and momentum errors on the same mode are already
orthogonal the projection can be calculated trivially. For ideal
case of zero noise in syndrome measurement, the size of the
maximal projection will be the same as the size of the syndrome

if the error is correctable since it is a linear combination of
the position and momentum syndromes. However, if there is
noise in the syndrome measurement such as that caused by the
use of finitely squeezed states as auxiliaries then the projection
will typically be smaller than the syndrome. Thus, the error is
chosen to be the maximum, although in some cases it may be
desirable to place a bound on the minimum relative size of the
projection to identify uncorrectable errors.

Having determined the mode on which the error occurred,
we can now calculate the displacement that must be performed
to recover the original state. Since the syndromes for the
unit position and momentum errors on the same mode are
orthogonal, for syndrome 
S, the effect the error has on the
wave packet can be determined to be(

Ex


Sx

| 
Sx |2
+ Ep


Sp

| 
Sp|2

)
· 
S. (51)

This simple form relies on the fact that our code has orthogonal
syndromes. For each mode, the vector corresponding to the
term inside the brackets can be calculated from information
provided in Table I. The correcting phase-space displacement
can then be applied using feed-forward to complete the error-
correction protocol.

VI. DISCUSSION

One potential advantage of continuous-variable quantum
systems is that they allow certain quantum information
protocols to be implemented more simply and determinis-
tically than is possible for discrete variables. For example,
entanglement may be deterministically created by combin-
ing any pair of noncoherent pure states at a beam-splitter
(a purely passive linear optical device). Similarly disentangling
quantum continuous variables can be achieved by running the
entanglement strategy in reverse.

In this article we have developed a criterion to identify when
a linear optics circuit can be used to generate a continuous-
variable quantum-error-correcting code. Using optimization
techniques with a cost function based on this criterion we have
found a five-wave-packet code which could be implemented
using linear optics and a supply of position squeezed vacuum
states. Thus, it can be implemented in the same manner
as the nine-wave-packet code of Refs. [8,9]. This code
could potentially be useful for protecting continuous variables
against certain types of catastrophic errors.

However, error correction only works when the errors it is
applied to correspond to the model for which it is designed. In
many optical applications likely errors are not large changes
in state but rather small “diffusive” errors. There are other
schemes that allow qubits to be encoded over continuous
variables [23] in such a manner that these small errors can
be corrected.
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[10] J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett. 102, 120501
(2009).

[11] A. A. Semenov and W. Vogel, Phys. Rev. A 80, 021802(R)
(2009).

[12] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev.
Lett. 77, 198 (1996).

[13] P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482
(2000).

[14] D. Gottesman, Ph.D. thesis, Caltech (1997), e-print
arXiv:quant-ph/9705052.

[15] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys.
Rev. Lett. 73, 58 (1994).

[16] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89, 137903
(2002).

[17] S. L. Braunstein, Phys. Rev. A 42, 474 (1990).
[18] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto,

Phys. Rev. Lett. 88, 097904 (2002); S. L. Braunstein, Phys. Rev.
A 71, 055801 (2005).

[19] J. Niset, U. L. Andersen, and N. J. Cerf, Phys. Rev. Lett. 101,
130503 (2008).

[20] P. van Loock and S. L. Braunstein, Phys. Rev. A 61, 010302
(1999); S. L. Braunstein, C. A Fuchs, H. J. Kimble, and
P. vanLoock, ibid. 64, 022321 (2001); S. L. Braunstein,
C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267
(2000).

[21] R. Storn, IEEE International Conference on Evolutionary Com-
putation ICEC 96, pp. 268–273, Technical Report TR-95-026,
ICSI, May 1995.

[22] I. C. F. Ipsen and C. D. Meyer, Am. Math. Mon. 102, 904
(1995).

[23] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310
(2001).

062305-11

http://dx.doi.org/10.1103/PhysRevLett.80.4088
http://dx.doi.org/10.1103/PhysRevLett.80.4088
http://dx.doi.org/10.1038/27850
http://dx.doi.org/10.1038/nphys1309
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevA.80.021802
http://dx.doi.org/10.1103/PhysRevA.80.021802
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.84.3482
http://dx.doi.org/10.1103/PhysRevLett.84.3482
http://arXiv.org/abs/arXiv:quant-ph/9705052
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevA.42.474
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevLett.101.130503
http://dx.doi.org/10.1103/PhysRevLett.101.130503
http://dx.doi.org/10.1103/PhysRevA.61.010302
http://dx.doi.org/10.1103/PhysRevA.61.010302
http://dx.doi.org/10.1103/PhysRevA.64.022321
http://dx.doi.org/10.1080/09500340008244041
http://dx.doi.org/10.1080/09500340008244041
http://dx.doi.org/10.2307/2975268
http://dx.doi.org/10.2307/2975268
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310

