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Quantum error-correcting codes can protect multipartite quantum states from errors on some limited

number of their subsystems (usually qubits). We construct a family of Bell inequalities which inherit this

property from the underlying code and exhibit the violation of local realism, without any quantum

information processing (except for the creation of an entangled state). This family shows no reduction in

the size of the violation of local realism for arbitrary errors on a limited number of qubits. Our minimal

construction requires preparing an 11-qubit entangled state.
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In 1964 Bell theoretically demonstrated that quantum
mechanics is inconsistent with a fundamental classical
concept about nature [1]: that particles carry locally within
them all the information necessary for determining detec-
tion outcomes (so-called local realism [2]). Although most
Bell inequality experiments have now verified this incon-
sistency, there remain loopholes due to experimental im-
perfections [3]. Here we construct a family of Bell
inequalities which shows no reduction in the size of their
locally realistic violation for arbitrary errors on a limited
number of qubits. Further, they use only passive detection,
mimicking conventional Bell inequalities.

Recently, interest in quantum information theory has
produced a number of methods for dealing with decoher-
ence and imperfect devices, of which detector loss is but
one example. Without such methods universal quantum
computation would be virtually impossible, since the com-
plex states required would become damaged before useful
computation could take place. One of the most powerful
approaches is based on quantum error correction, where
states are encoded into a larger space in such a way that
errors on a limited number of particles can be eliminated.
Error-correcting codes consist of entangled states. Thus,
one might expect them to exhibit violations of local real-
ism. Indeed, a number of states with error-correcting prop-
erties have been demonstrated to exhibit such violations
[4–6]. However, the idea of using the error correction
properties of the code words to recover violations of local
realism when information is lost, or when errors occur, has
never been explored. Here, we construct Bell inequalities
with just this property.

The most direct method of constructing an error-
correcting Bell inequality would appear to be to take a
standard Bell inequality and encode each of the particles
into its own individual quantum error-correcting code be-
fore it is transmitted. If these states were nowmeasured in a
fault tolerant manner, then the original Bell inequality
should be resistant to errors. Since the smallest qubit
code that protects against arbitrary one-qubit errors is a
five-qubit code, it should be possible to perform such an

experiment using 10 qubits on the simplest two-subsystem
Bell inequality.
However, such an experiment requires active quantum

information processing by receivers at the detection sta-
tions, in order to provide the error correction. This in-
creases the complexity of the experiment, since state
manipulation needs to take place at a number of different
sites. Also any processing is likely to add a delay, opening
up a potential locality loophole unless the receivers are
separated by sufficient distances. More importantly, this
approach would radically change the manner in which Bell
inequalities were tested—requiring active quantum infor-
mation processing at the receiving stations. A much less
problematic approach would be to seek a Bell inequality
which involves nothing beyond simple measurements for
each particle by the receivers; this mimics all conventional
Bell inequality tests to date.
A typical Bell inequality may be succinctly written as

hBi � Blr; (1)

where B is the (nonlocal) Bell operator [7] and Blr is the
maximum value that the Bell operator can take under any
locally realistic model. The locally realistic value is deter-
mined by decomposing B into a sum of tensor products of
local operators (such as the Pauli operators Xi, Yi, and Zi

and the identity 1 on each particle). Under local realism
each local operator in this expression takes on one of the
spectrum of measurable values for that operator. Thus, for a
decomposition into local Pauli operators, these would be
�1. By looking at all combinations of locally realistic
values, we may determine the range of values that a locally
realistic description of B can take. Here we shall be
interested only in the upper bound to these values, which
we call Blr.
Now the advantage of focusing on this nonlocal Bell

operator B is that its quantum expectation value is the
same whether we compute it directly on the nonlocal
operator as in Eq. (1), or on each term in its sum individu-
ally, as in an experimental implementation of the Bell
inequality test [7]. Theoretically, then, the properties of
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this single operator summarize the size of the expected
violation of local realism that can be attained.

The spectral properties ofB can illuminate the behavior
of the associated Bell inequality under errors. We aim to
design a Bell operator such that, for some specific quantum
state, the spectrum of eigenvalues will form a degenerate
subspace with correctable errors merely mapping between
states within this subspace. Under these circumstances, the
size of the violation of the Bell inequality will not change
for arbitrary errors on a limited number of particles q
(corresponding to the set of correctable errors). Since there
is still a chance of seeing an error on more than q particles
simultaneously, for a simple error model where the error
rate � is independent for each particle, the size of the
violation will decrease as Oð�qþ1Þ, from the noiseless,
loss-free case.

A starting point for our work on error-correcting Bell
inequalities is the construction of a Mermin–Greenberger-
Horne-Zeilinger–like (Mermin-GHZ-like) argument [4,5]
by DiVincenzo and Peres [6] showing the inconsistency
between quantum mechanics and local realism in the ideal
noise-free case. DiVincenzo and Peres considered a spe-
cific five-qubit quantum error-correcting code code word
j0Li stabilized by elements of the Pauli group [8]: four

basis elements Ŝ1, Ŝ2, Ŝ3, and Ŝ4 defining the code sub-

space and in addition Ŝ5 ¼ Ẑ ¼ ZZZZZ specifically sta-
bilizing the logical zero state j0Li within the encoded
subspace. These five operators then form a basis for all
the elements of the Pauli subgroup S that completely
stabilizes j0Li. The DiVincenzo and Peres argument boils
down to the fact that if any basis for the elements that
stabilize j0Li takes on the locally realistic valueþ1 then at
least one other element in the stabilizing groupSmust take
on a locally realistic value of�1—contradicting the quan-
tum mechanical stabilizing property where all 32 elements

Ŝi of the stabilizer group S should actually have the value
þ1.

Let us now consider a very simple Bell inequality based
on the DiVincenzo-Peres argument which may be de-
scribed by the Bell operator

B simple ¼
X
Ŝi2S

Ŝi; (2)

where we sum over all jSj ¼ 32 elements of the stabilizer
group S for j0Li. By the DiVincenzo and Peres argument,
under local realism Bsimple will take a value less than 32,

since at least one term will take on the locally realistic
value of �1 (for any locally realistic assignment of xi, yi,
zi ¼ �1 for the Pauli operators Xi, Yi, and Zi). By ex-
haustively checking all 85 possible local-realistic configu-
rations one can show that for the specific five-qubit code
studied [6] Bsimple;lr ¼ 20. By contrast, h0LjBsimplej0Li ¼
32 (trivially corresponding to the maximum eigenvalue of
Bsimple). So ideally the ‘‘size’’ for the violation in the

absence of errors is hBsimplei �Bsimple;lr ¼ 12> 0. How

does this violation respond to single-qubit errors? This can
be seen by writing the Bell operator as the products of
projectors on to the basis stabilizers as

B simple ¼
X
Ŝi2S

Ŝi ¼
Y

Ŝi2basis

ð1þ ŜiÞ; (3)

for any basis for S, e.g., fŜ1; Ŝ2; Ŝ3; Ŝ4; Ŝ5g. If the error that
has occurred (say X1) commutes with a stabilizer (e.g., Ŝ1)
then the effect is to just multiply the state by a factor of 2

since ð1þ Ŝ1ÞX1j0Li ¼ X1ðj0Li þ Ŝ1j0LiÞ ¼ 2X1j0Li. On
the other hand if the error anticommutes with the stabilizer

(e.g., Ŝ4) then ð1þ Ŝ4ÞX1j0Li ¼ X1j0Li � X1Ŝ4j0Li � 0.

Since the fŜ1; Ŝ2; Ŝ3; Ŝ4; Ŝ5g form a basis for all stabilizers
of this codeword any single-qubit Pauli operator will anti-
commute with at least one of these basis elements and the
measurement of Bsimple will yield zero. Thus, the inequal-

ity formed from this Bell operator (2) is very sensitive to
Pauli errors. Indeed, this behavior is exactly the opposite of
what we desire.
To construct an error-correcting Bell inequality we must

start by constructing a suitable Bell operator that will be
insensitive to errors. Let S denote the Pauli subgroup (of
dimension 2n) that completely stabilizes some n-qubit
codeword denoted j0Li from an ½½n; k; d�� quantum error-
correcting code. The code has a quantum Hamming dis-
tance d, so it can correct arbitrary errors on up to bd�1

2 c
qubits; similarly, it can detect errors on up to d� 1 qubits.
We construct the Bell operator

B ¼ X
Ek2E�

EkBsimpleE
y
k ; (4)

where Bsimple is the simple Bell operator (3) for the new

Pauli subgroup S, E is the set of Pauli errors [8] on up to
q � bd�1

2 c qubits, and E� is a nondegenerate reduction of E,
where degenerate errors are treated as duplicates of each
other and all but one of the duplicates is removed.
Now if an error Ej 2 E occurs the state becomes trans-

formed to Ejj0Li and the Bell operator of Eq. (4) has

expectation value (for this state Ejj0Li)
hBi ¼ X

Ek2E�
h0LjEy

j EkBsimpleE
y
k Ejj0Li ¼ h0LjBsimplej0Li:

(5)

The last step here relies on the fact that the error-correcting
code described by S can detect up to d� 1 � 2q errors so

at least one of the basis stabilizers must flip in Bsimple ¼Q
Ŝi2basisð1þ ŜiÞ yielding exactly zero except for terms in

the sum where Ek ¼ Ej (modulo degeneracy). If an error

were a superposition of Pauli errors then it is easy to see
that the cross terms vanish, so the above result still holds.
Next, we must determine the locally realistic bound Blr

for the expression for B when it is expanded out as a sum
of elements from the Pauli group. A mechanical procedure

PRL 101, 080501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

22 AUGUST 2008

080501-2



for obtaining this bound is to replace each Pauli operator
Xi, Yi, and Zi in the expanded expression with the locally-
realistic c numbers xi, yi, and zi, respectively. By searching
through all 8n configurations xi, yi, zi ¼ �1 we may find
the maximal value Blr. Since this procedure involves
searching through every possible locally realistic configu-
ration, any error that simply maps one configuration into
another will not change the value of Blr. In general, it will
be too difficult to determineBlr exactly, but it is often good
enough to obtain an upper bound to it. For the Bell operator
of Eq. (4), therefore, in the worst case

B lr �
X

Ek2E�
Bsimple;lr ¼ jE�jBsimple;lr � jEjBsimple;lr

¼ Xq
e¼0

3e
�
n
e

�
Bsimple;lr; (6)

where we use the fact that the set of correctable errors E
consists of Pauli errors on up to q qubits at a time.

Finally, it is often found that as the number of qubits
increases the size of any locally realistic violation in
typical multiparticle Bell inequalities increases exponen-
tially. We might then expect the Bell inequality of Eq. (4)
to yield a violation of local realism, which does not dete-
riorate under correctable errors for a sufficiently large
quantum error-correcting code (i.e., for sufficiently many
qubits). Indeed, we show below that precisely this happens
for the many qubit generalization of the Shor code.

Shor’s 9-qubit code [9] can be viewed as a specific
instance of a more general code with code words

j0Li ¼ 1ffiffiffi
2

p
m
ðj00 . . . 0i þ j11 . . . 1iÞ�m;

j1Li ¼ 1ffiffiffi
2

p
m
ðj00 . . . 0i � j11 . . . 1iÞ�m;

(7)

where there arem blocks each consisting ofm qubits—this
describes an ½½n ¼ m2; k ¼ 1; d ¼ m�� quantum error-
correcting code. The j0Li code word consists of m copies,
or blocks, of the m-qubit GHZ-like state 1ffiffi

2
p ðj00 . . . 0i þ

j11 . . . 1iÞ. This m-qubit block is stabilized by a basis
consisting of all pairs of Z operators on adjacent qubits
and one of X operators on all qubits

Z Z 1 1 . . . 1
1 Z Z 1 . . . 1

..

.

1 1 . . . 1 Z Z
X X . . . X X;

(8)

corresponding to a total of m basis operators.
The sum over all stabilizers on each block of m qubits

may then be written as

B block
simple ¼

Ym�1

j¼1

ð1þ ZjZjþ1Þ þ Re

�Ym
j¼1

ðXj þ iYjÞ
�
; (9)

where the second term may be recognized as just the
Mermin Bell operator for a GHZ-like state without its
complex phase factor [5].
Under local realism, each of the Xi, Yi, Zi corresponds to

an element of reality with definite value xi, yi, zi ¼ �1.
Thus, the locally realistic value for this sum will be

Ym�1

j¼1

ð1þ zjzjþ1Þ þ Re

�Ym
j¼1

ðxj þ iyjÞ
�
; (10)

for some particular combination of values xi, yi, zi ¼ �1.
The first product in (10) has value 0 or 2m�1 since if all of
the zj take the same value then each term in the product

will be 2; however, if some of the zj take different values

then at least one of the terms 1þ zjzjþ1 will be zero. The

second product is bounded by

��������Re
�Ym
j¼1

ðxj þ iyjÞ
����������

�
2m=2; m even

2ðm�1Þ=2; m odd;
(11)

since for each term jxj þ iyjj ¼
ffiffiffi
2

p
. Thus the sum of

stabilizers for an individual block Bblock
simple;lr is bounded by

B block
simple;lr �

�
2m�1 þ 2m=2; m even
2m�1 þ 2ðm�1Þ=2; m odd:

(12)

Further, since the individual blocks are separate, the sum
over all m2 stabilizers of the full m2-qubit state j0Li can be
written

B simple ¼
Ym
k¼1

� Ymk�1

j¼mðk�1Þþ1

ð1þ ZjZjþ1Þ

þ Re

� Ymk

j¼mðk�1Þþ1

ðXj þ iYjÞ
��
: (13)

That this operator takes this product form can most readily
be seen by recalling that each Bblock

simple may be written as a

product of projectors over the relevant stabilizer basis.
Under local realism, this simple Bell operator may be
bounded using Eq. (12) by

B simple;lr � 2m
2�mð1þ ffiffiffi

2
p �ðm�1ÞÞm; (14)

where without loss of generality we focus on the case of
oddm. By comparison the expectation ofBsimple for j0Li is
2m

2
; thus their ratio is

hBsimplei
Bsimple;lr

� 2m

½1þ ffiffiffi
2

p �ðm�1Þ�m : (15)

For all (odd) m � 2 the quantity 1þ ffiffiffi
2

p �ðm�1Þ will be less
than 2; thus, the size of the violation grows exponentially in
m which is the square root of the number of qubits used in
the code. For any fixed number of qubits q subject to errors
this quantum expectation will grow faster than jEjBsimple;lr.

Thus, from Eqs. (5) and (6), for sufficiently large m the
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Bell operator

B ¼ X
Ek2E�

EkBsimpleE
y
k ; (16)

where Bsimple is given explicitly by Eq. (13), yields a

violation of local realism whose size is not degraded by
arbitrary errors on up to q qubits. For an error model
consisting of some probability � of independent errors or
loss on each particle, our result shows that a Bell inequality
may be constructed such that the size of the violation of
local realism diminishes from the ideal noiseless and loss-
free value by Oð�qþ1Þ for any q we wish to choose. For the
generalized Shor codes, Eqs. (6), (15), and (16), then give

hBi=Blr � 2ðm�1Þ=½q3qðm2

q Þ� þOð�qþ1Þ.
The above demonstration of the efficacy of our approach

relied on the asymptotic behavior of the quantum expec-
tation of an error-correcting Bell operator hBi ¼ 2n (for an
n-qubit code) and a loose bound on the locally realistic
maximumBlr. For single-qubit errors the results show that
a violation of local realism can be attained using the
generalized Shor code construction for a block size ofm ¼
7 corresponding to n ¼ 49 qubits. We now investigate a
broader set of quantum error correction codes in order to
seek a more compact (smaller total number of qubits)
error-correcting Bell inequality.

Candidate error-correcting Bell inequalities may be con-
structed from any stabilizer ½½n; k; d�� quantum error-
correcting code. Therefore, we performed a systematic
search for the codes listed in Grassl’s public database of
quantum error-correcting codes [10]. In each case, we took
the set of allowable errors E to correspond to single-qubit
errors. Using a brute-force search through all locally real-
istic configurations, the smallest local-realism-violating
error-correcting Bell inequality we found involved 11 qu-
bits and was already at the extreme end of easily accessible
computational power (requiring roughly 6 months equiva-
lent time on a desktop computer; each added qubit in-
creases the CPU time by a factor of 8 or more). The
stabilizers for this ½½11; 0; 5�� code are [10]

X I I I I Z Z Y I Z Z
I X I I I Z Z X Y I Y
I I X I I Z Z Z Z X I
I I I X I Z Z Z I I X
I I I I X Z I Z X Y I
I I Z I I X Z Z Y Y Y
I I I I I I X Z Z Z Z
I I Z Z I I Z X X Z X
Z I I Z I I I I X Y Z
Z I I I Z I I Z I X X
I Z I I Z I Z Z Z I X;

(17)

and a brute-force search showed that Blr ¼ 1760 whereas
the quantum expectation is simply hBi ¼ 211 ¼ 2048,
demonstrating a clear violation of the associated Bell in-
equality, yet with single-error correcting properties.
Now Bell inequalities provide an alternative strategy for

formulating quantum key distribution [11]—they have
several practical advantages despite the added overhead
of entanglement. Our work potentially extends this by
allowing error-correcting capabilities to be built into the
entanglement. This is particularly interesting in a crypto-
graphic scenario where individual parties would have ac-
cess only to passive detection and would be unable to
further share quantum information among different parties
to perform active quantum error correction. In a multiparty
cryptographic network setting conventional quantum error
correction could not obviously be used, but our passive
scheme would be available.
Error-correcting Bell inequalities can provide a robust

violation of local realism; the size of the violation decays
only as a second-order or higher effect from errors or data
loss, such as would arise from finite-efficiency detectors.
Our scheme uses only passive detection; no quantum pro-
cessing is needed at the detection stations. Our minimal
construction requires preparing an 11-qubit entangled
state, whereas using conventional error correction would
require at least 10 qubits and active decoding at the detec-
tion stations. We do not rule out the possibility of an
alternate construction, say based on qudits, yielding more
efficient passive error-correcting Bell inequalities.
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