

introduction

aim:

 "to explore general issues in intonational transcription in the specific context of spoken Arabic dialects"

 two case studies: use of transcription to develop/test hypotheses about number/type of phonological categories in a model

"transcription"

- the process of labelling data: using a set of labels which represent candidate phonological categories

 'phonetic', systematic attention to (some selected range of) detail
- a 'model': a set of labels which represent an analysis of the intonational phonology of a particular language

 phonological, an analysis (not necessarily the only one possible)

introduction

scope of the next 90 minutes:

- · demystify the transcription process
 - with a focus on establishing tonal categories
 - how do you build "arguments used in tonal analyses" Gussenhoven (2007:272ff):
 - phonetic considerations, distributional considerations, semantic criteria, analytical coherence

our stance:

- · a mix of transcription-based & experimental evidence
 - quantitative~qualitative evidence interrelated
 > a wishlist of properties needed in a transcription system for
 - comparative work on Arabic

outline

- 1. Key issues in intonational transcription
- Lebanese Arabic transcription
 based on ToBI
- 3. Egyptian Arabic transcription
 - based on IViE
- 4. Conclusion
 - > starting point for discussion

The Lebanese Arabic Model

Developing an analysis using a ToBI based transcription system

The AM Framework

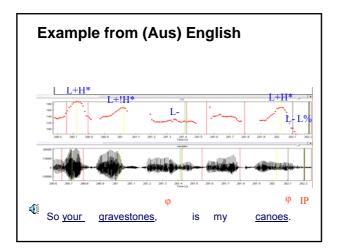
Autosegmental Component

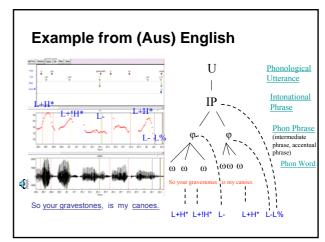
Contour Representation: sequence of H and L tones organised into local tonal events

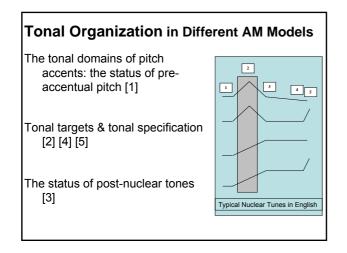
- * prominence-lending events (pitch accents)
- * boundary-marking events (edge tones)

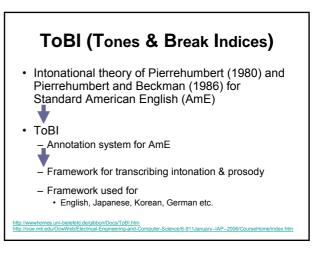
Metrical Component

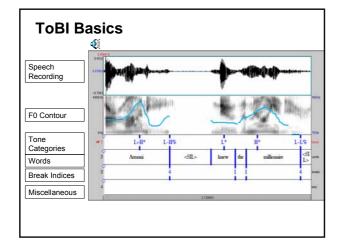
Account of tune-text association via prosodic structure: grouping

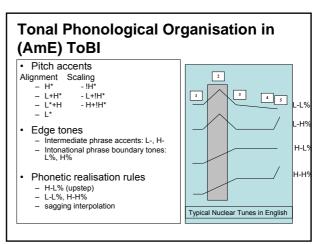

umbert (1980), Beckman and Pierrehumbert (1986), Pierrehumbert and Beckman (1988), Gussenh

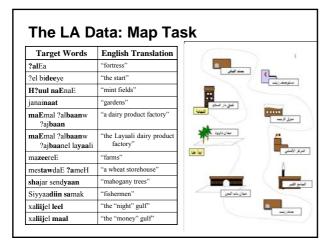

- in a metrical hierarchy of
 - * relative prominence relations
 - * constituency levels

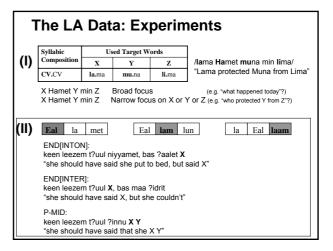

Phonetic Component

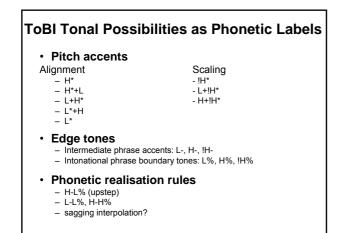

ice (1977), Pierreh

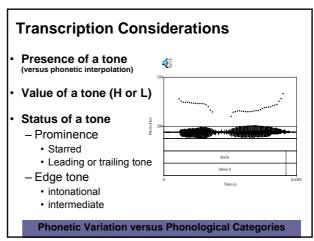

Tonal mapping of phonological categories into F0 values



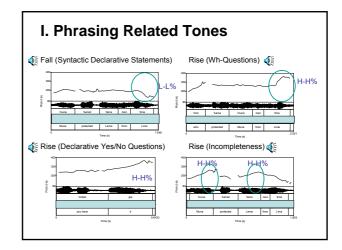

ToBI: Phonological Transcription System

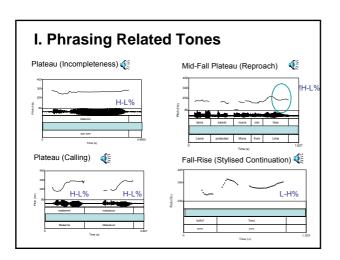

- NOT an International Phonetic Alphabet for prosody
- A PHONOLOGICAL transcription system based on an AM *intonational phonology* analysis of a particular variety/language
 - established phonological categories
 - identified non-distinctive phonetic variation
 - excluded predictable information (e.g. word stress placement)


Application to LA

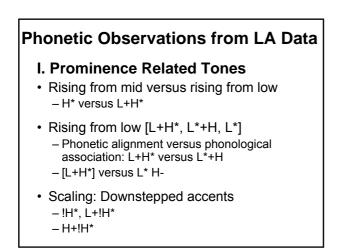

How can a transcription system such as ToBI be adapted to suit an investigation of LA intonational phonology?

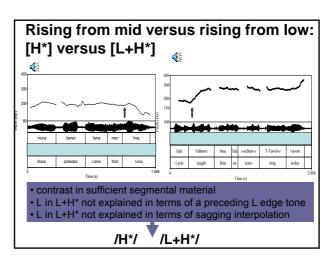
- 1. Possible ToBI labels as *phonetic* labels
- 2. Phonological analysis
 - phonetic criteria
 - distributional criteria
 - semantic criteria
- analytical coherence (Gussenhoven 2007)
- a mix of transcription-based & experimental evidence

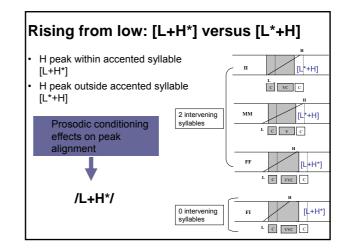


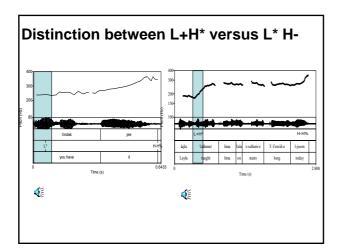

Phonetic Observations from LA Data

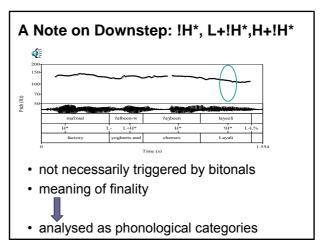

I. Phrasing related tones (boundary configurations) [L-L%]

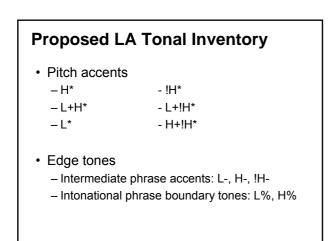

[L-H%]

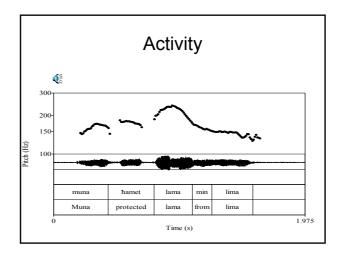

- Fall
- Rise [H-H%]
- Plateau [H-L%]
- Fall-rise
- Mid fall-plateau [!H-L%]

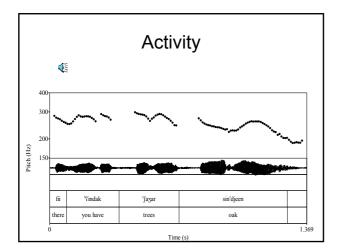


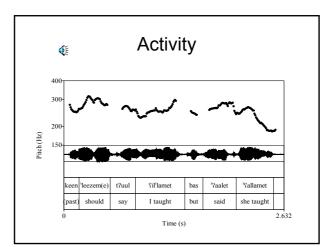



Rising from mid versus rising from low: [H*] versus [L+H*]


Further issues for experimental verification


- Is the lack of L or its presence in these rising accents the consequence of pitch range span effects?
 - e.g. degree of prominence on accented word
 - e.g. large versus compressed pitch range

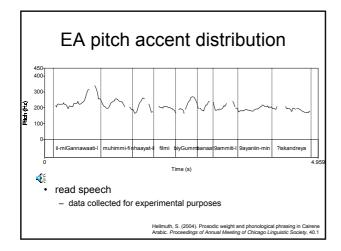


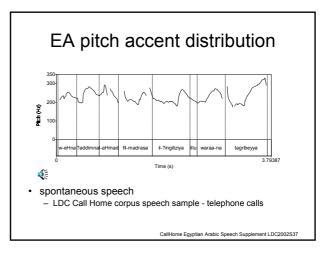


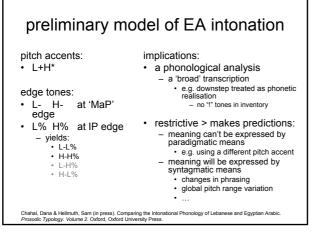
Some Transcription Challenges

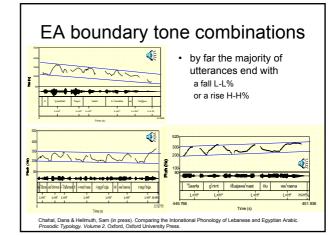
Examples from LA:

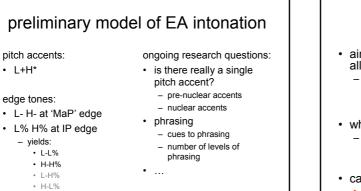
- L+H* and H* in phrase-initial position
- L*, H* and L+H* in phrase-final position preceding high rising or plateau configurations
- Presence and type of accents in compressed pitch ranges
- Degree of juncture versus tonal realisation at boundaries

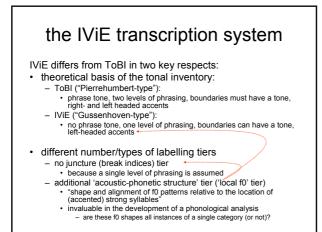

General (Brugos et al 2008):


Regions of ambiguity (with more than one plausible transcription) \rightarrow disproportionate amount of transcription time


Making arbitrary decisions among competing labels → loss of information


Proposal: Alt tier (Brugos et al 2008) Use of Break Indices



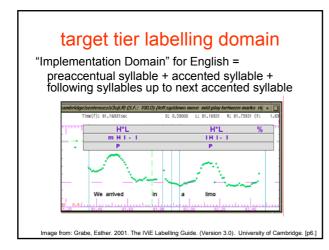


pilot transcription study
aim: to test the claim that non-final pitch accents all have the same local f0 contour shape
already shown for read speech
peak alignment varies with syllable type but not with focus status: >
what happens in spontaneous speech?
quantitative methods not well-suited
variation in segmental materials and prosodic context

though not impossible (Helmuth, Kägler & Singer 2007)

can a qualitative approach work?

transcription



Chahal, Dana & Hellmuth, Sam (in press). Comparing the Intonational Phonology of Lebanese and Egyptian Arabic Prosodic Typology. Volume 2. Oxford, Oxford University Press.

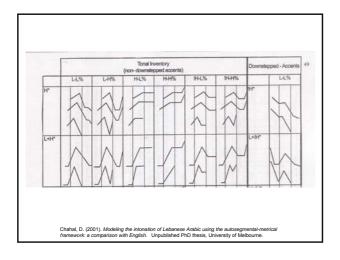
IViE annotation tiers

5	Comment Tier	Alternative transcriptions and notes
4	Phonological Tier	Formal linguistic representations of speakers' intonational choices
3	Target Tier	Phonetic transcriptions; syllable-based; allow transcribers to draw up a first set of hypotheses about accent alignment
2	Prominence Tier	Location of prominent syllables (stressed and accented)
1	Orthographic Tier	Transcriptions of the words spoken

Table from: Grabe, Esther. 2001. The IVIE Labelling Guide. (Version 3.0). University of Cambridge. [p3.]

transcription study: methodology

corpus:


 100 target words from a spontaneous speech telephone conversation (two female speakers, Call Home corpus)
 selection criterion: little or no perturbation of the f0 contour

transcribed on three tiers:

- words (broad phonetic transcription)
- tones (phonological labels: pitch accents, boundary tones)
 - local f0 (phonetic-acoustic structure tier)
- position of pitch peak (or valley) within each target identified automatically using Praat pitch maxima/minima function
 labelled 'H*' or 'L*' on *tones* tier
 - labelled 'H', 'M', or 'L' on local f0 tier

Time (s)

phrase stress → [word stress	phrase -initial	local	time	phrase- medial	local	time	phrase -final	local	foll by:	time
initial CV	rígic	mHim	325.1	giri (name)	miłim	359.1	baqa	mH-	L-L%	325.4
							kutub	mHh	H-H%	344.1
							calaraB	mHm	L-L-%	360.9
							nacam	mHh	H-H%	389.6
				GaayaB	mHim	352.3	baga	1Hh	H-H%	446.8
CVV	naaxud	mHim	343.7	ceeni	-Hm	368.0	ah	mHm	L	328.7
				2amilizaB	mHim	370.1	Daruuri	mHm	L	393.1
				Hatsaafir	mHim	370.9	legtaB	1Him	L-H%	417.3
				iqaamaB	1Hm	3723	waraana	1Hh	H-H%	451.5
CVC	wiHna	mHlm	330.7	laHmad	mHm	331.3	Tabcan	mHI	L-L%	329.7
	Hayuqcud	mHlm	352.0	lissa	mH-	341.4	sanya	mHI	L-L%	364.1
	hisya *	1HIm	369.5	bukra	mHm	360.5	mišyu	mHm	L-	367.5
	aswa	mHim	402.9	aSli	mHm	369.7	tingac	mHm	L-L%	388.8
	-			lissa	mH-	370.3	aywa	mHm	L-L%	393.9
				tigaddid	mitim	372.7	aywa	mHm	L-L%	403.3
							lissa	mHm	H-L%	423.2
							lissa	mHI	L-L%	425.7
penalt CV				madrasaB	mHm	332.0	dafacnalu	mHm	hes.p	336.2
				dafacnalu	mHim	336.2	gambina.	mHh	H-H%	348.3
				madarasB	mHim	347.2				
CVV	bageena	mHim					waraana	tHim	H-	333.2
	?amiiraB	tHim	433.3				foqiina	mHm	L-L%	463.9
	?amiiraB	IHIm	442.5				taalit	mHh	H-H%	475.7
							taalit	mHm	L-L%	478.1
CVC				qaddimna	mH Im	331.0	ingliziyyaB	1Hm	H-	332.7
			_	nidfacha	mHm	342.1	tabarruc	IHh	H- H-H%	340.2
			_	disambir dafacna	mHm	352.9	qurayyib	mHh	H-H%	342.5
fixal CVVC				maSariif	mH-	341.1	inša?allaah	mlHm	L-L%	353.6
			_	HanruuH Hilaal	mHm	_	naymiin	mHh	H-	410.2
				Hitaal calašaan	IHm	_	itneen tureel	-HI mHU	L-L%	412.3
CVV			_	catasalan	19400	_	ahuu	mMm	H-L%	350.5
CVV							ahuu bahaa	mMm mMi	LLS	383.7
CVCC				camr	mHm	346.7	Dabta	msti	D-128	363.7
CTCC .				COUNT	Long (11)					

overall results

- all of the accents were transcribed with an 'H' on the accented syllable (and none with L) that is, no pitch valleys were found, only pitch peaks
- no 'L*' type phonological labels are required for the description of pitch accents in EA
- 1. alignment of H peaks within accented syllable
- 2. shape of the preceding and following f0 contour

results 1: position of the H peak

- 80% of cases: peak observed to occur within the accented syllable
 - consistent alignment of the high peak within the accented syllable supports analysis of the H tone as the 'starred tone'
- · position of H peak within accented syllable varies with: position of the word within the phrase e.g. just two '[H' cases, both were phrase-final words with final-stress: [inja?al'laah], [tu're:l]
 - position of the stressed syllable within the word - e.g. in phrase-medial words, the H peak was at the end of the syllable only in words bearing initial-stress, e.g. $[\![\gamma_{a:ja}]\!]$
- no evidence in this (small) corpus for variation in peak position other than that caused by local prosodic factors

results 2: shape of the f0 contour

preceding pitch:

- mostly observed to be 'm' (82%)
- no instances at all of preceding high pitch ('h')
- three types of context labelled 'l':
 - first accented word in the utterance, preceded only by an unaccented function word e.g. [wi hijja...]
 - large number of unstressed syllables between
 - successive accents ('low platéau') e.g. [ingili'zijja] when the word is followed by high pitch, such as a high phrase tone (H-) e.g. [wa'ra:na]

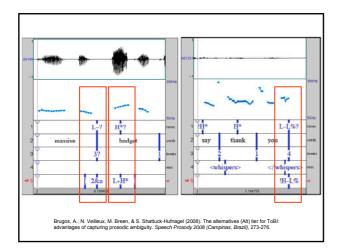
◄ [

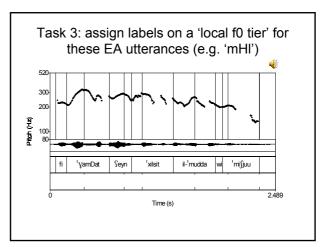
results 2: shape of the f0 contour

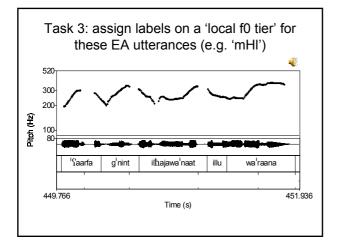
following pitch:

- mostly observed to be 'm' (66%)
- following pitch more variable than preceding pitch (82% vs. 66%) occurrence of following 'h' or 'l' dependent on local
- prosodic factors
 - words followed by H% boundary tone show continuous rise throughout accented syllable ('h' after H peak) e.g. [tagri'bijja] < | words followed by a L- phrase tone or L% boundary tone show either mid 'm' or low 'l following pitch
 - more likely to have a '*mHI* shaped accent (than '*mHm*') if the next stressed syllable was relatively distant
- · observed variation in local pitch contour before and after the accented syllable in EA can be described as a function of the surrounding tonal environs

results: summary

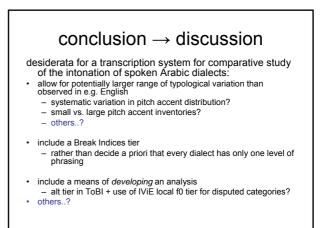

- all variation in local f0 contour shape found to be predictable from the prosodic context no evidence here for additional phonological
 - categories of pre-nuclear pitch accent in EA · small study, requires expansion with multiple transcribers
- · relative height of following contour more variable than preceding contour:
 - matches experimental findings
 - the preceding L tone is very stably aligned at the onset of the stressed syllable (Hellmuth 2007)
 supports analysis of EA single pitch accent as L+H*
 - H peak with leading L target; that is, a rising accent


reflecting on transcription process


issues with IViE:

- my implementation of 'local f0' tier is target-based (not domain based)
- difficulties in deciding a priori what domain to label on phonetic tier in IVIE for Arabic choice of left-hea ded domain is theoretical?
- labelling on the local f0/phonetic tier is time-consuming
- best used for subsets of data, in pursuit of specific hypotheses?
- a middle way:
- use an "Att tier" in a ToBI-style transcription (cf.Brugos et al 2008)
 to identify patterns of intertranscriber disagreement
 use a local F0/target tier for identified subset of data

 - to establish fine-grained detail of contour for disputed categories



$\text{conclusion} \rightarrow \text{discussion}$

- there is a crucial role for intonational transcription

 in the development and testing of a phonological analysis
 in conjunction with experimental investigation
- widespread use and acceptance of AM systems (ToBI, IViE etc) suggests an AM framework will yield most impact

 the choice between Pierrehumbert vs. Gussenhoven type is theoretical (at least in part, and debate is still ongoing)
 important to use a single system for comparative work
 - important to use a single system for comparative work
 clearly distinguish between transcription systems for development of an analysis and final 'models'

