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It is shown that a necessary and sufficient condition for the Wigner quasi-probabi- 
lity density t@ be a true density is that the correspbnding Schriidinger state function be the 
exponential of a quadratic polynomial. 

Introduction 

The Wigner quasi-probability density W [7], for quantum mechanical momentum and 

position observables P, Q satisfying a rigorous form of the Heisenberg commutation rela- 

tion 

PQ-QP=-i, 

is well known ([I], [6]) not to be everywhere non-negative in general. The occurrence of 

“negative probabilities” is related to the incompatibility of the observables P, Q; since 

they cannot be measured simultaneously there is no experimental procedure for esti- 

mating a joint probability distribution and no obligation on quantum theory to postulate 

one. Nevertheless it has been observed [6] that, for certain quantum mechanical states, the 

Wigner function is non-negative and thus represents a true joint probability distribution, 

albeit without direct physical significance. The purpose of this paper is to show that for 

this to be the case it is necessary and sufficient that the Schrodinger state vector w. be of 

the form 

where CI, b are arbitrary complex numbers with Re a > 0 and the complex number c is chosen 

so as to ensure correct normalization. The corresponding Wigner densities are bivariate 

normal distributions whose covariance matrices r satisfy 

detr=$. 

P@l 
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2. Properties of Wiguer densities 

The Wigner density W may be characterised by the equation 

_Le- 
~&‘+Y@w(~, 4)dpdq =(ei(xP+yQ)) 

where the integral on the left is understood in the sense of a Fourier-Plancherel transform, 

and the expression on the right is the quantum mechanical expectation of the function 

;l+e” of the observable xP+yQ. In the SchrGdinger (position) representation, in which 

P, Q are the essentially self-adjoint operators 

Py= -iDy/, Qv/(-~)=.v(.Y) 

acting in the space LZ(R) of square-integrable functions on the real line, the state of the 

system is characterised by a vector I,V E Lz(R), normalized by the condition 

llw11’= i ~~(#dx=l~ 

In terms of y/ the Wigner function is given by Wigner’s original formula ([7]) 

W,(p, @=(2n)-‘s e’““w(q-+x)p(q+jx)dx. (1) 

For well behaved vvl, w2, for instance for infinitely differentiable, rapidly decreasing 

functions, it can be verified by formal manipulation of this formula that 

; w,,(P~ 4) W,,(P, dWq=(W-‘I j &(x)u/z(x)dx[2 

=(w1j<44%)~2~ 
It can be shown ([4]) that (2) holds without restriction on the states ‘y, , t,uz. 

(2) 

3. The states ty.,b 

Consider now the state determined by the SchrBdinger state vector 

I//,,~(x)=~-*(“~*~~~~~~’ (Rea>O). 

Using the well-known integral 

(3) 

we have 

(v,,b(x)(2d_u = e-Ret $;a e(Reb)Z@ 0) 

R 
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hence correct normalization is ensured by taking c real, with 

/Re a > 
t 

e -c= ~ 7[: e-(Re bJ’/(Re 0) , 

The corresponding Wigner density M’,+ can be found using (I) and (3); it is 

M’,,btp a 4) =$ e 
-(Re~~)-~(p~+2(lmo)pq+(a~‘q’+2Reelmhp+2(ReaReb+Imalmh~y+~b~zJ 

(4) 

This can be seen to be a bivariate Gaussian density with covariance matrix 

satisfying 

conversely, it is easily seen that every such density can be expressed in the form (4) by sui- 

table choice of a and b. 

4. The main theorem 

THEOREM. A necessary and sufficient condition for the Wigner density W corresponding 

to the Schriidinger state vector y to be a true probability density i.y that y be the exponential 

of a quadratic po(womiaI. 

Proof: The sufficiency was established in $3. To establish the necessity, let I,U EL*(R) 

be a unit vector for which the corresponding Wigner function W is a true density. From 

(2), we have for all complex numbers z 

5 @(P, 9) ~V,,Z(P, 4)dpdq=(2x)-‘I(~/IW,,:)12 * (5) 

Since W is a true probability density, it is non-negative. But since WI,= is Gaussian, it is 

everywhere strictly positive. It follows that the left-hand side of (5) must be strictly posi- 

tive, and hence that the right-hand side is, in particular, non-zero for all z E C. From this 

it follows that the entire analytic function 

F(z)= J tjY(x)e- ~XZ-ZXdx=etc(ylyl,z) (6) 

has no zeros. Moreover, by Schwarz’s inequality and (3) we have 

- (Re.-)l 
IF(z)12GIjWI12t/Xe . 

It follows that F is an entire function of order not exceeding two, with no zeros. The well- 

known theorem of Hadamard [5] implies that F is of the form 

F(z) =ea=2+p:+y_ 
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Substituting this form into (6) and setting z=iy shows that 

is the Fourier transform of the integrable function 

x-+(x) e-++ . (7) 

Since the only functions whose Fourier transforms are exponentials of quadratic polyno- 

mials are themselves of this type, it follows that the function (7) and hence in turn I// itself 

is such an exponential. This completes the proof of the theorem. 

5. Conclusion 

Modulo a linear canonical transformation, the states v/.,~ with true Wigner densities 

are the so-called coherent stares (131) which have proved of great interest and diverse appli- 

cation in several areas of quantum mechanics. 

This paper has not considered the question of which mixed (statistical) states give rise 

to true Wigner densities. Using the multiplicative properties of quasi-characteristic func- 

tions ([2]) an extensive class of such states can be constructed. But an effective characterisa- 

tion of the totality of such states has not yet been found. 
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