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ABSTRACT
Given a polynomial u(x) = x" + a,_x""' + - +a,, a, € R, v=
0,1,...,n — 1, having only real zeros, we construct a real symmetric tridiagonal

matrix whose characteristic polynomial is equal to (—1)"u(x). This is a complete
solution to a problem raised and partly solved by M. Fiedler.

1. INTRODUCTION AND STATEMENT OF RESULTS

A standard result in matrix theory states that the characteristic polynomial
of a real symmetric matrix has all its roots real. At the International Collo-
quium on Applications of Mathematics in Hamburg (July 1990) Professor M.
Fiedler presented a paper on a converse problem he has been thinking about
for many years (see also [1]):

Construct a real symmetric matrix for which a given normed polynomial
with only real roots will be the characteristic polynomial.

Of course, the construction should require only a finite number of numerical
operations. He presented the following nice and simple solution [1].

THEOREM A. Let u(x) be a monic polynomial of degree n > 1; let
b,....,b, be distinct numbers such that u(b,) # 0 for k =1,.... n. Set
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v(x) = I} (x = by), and define the n-by-n matrix A = (a;,) by
a. = _O.didk 1][ l#k,

1

akk=bk—0'd,%, l,k=1
where o is a fixed nonzero number and d; is a root of
ov'(b)d} —u(b,) = 0.

Then (—1)"u(x) is the characteristic polynomial of the symmetric matrix A.
If A is an eigenvalue of A, then (d,/(A — b,)) is a corresponding eigenvector.

If u(x) is a polynomial with n real distinct roots, then choosing b; as any
real numbers interlacing the roots of u, one can choose o as +1 or —1 in
such a way that d, are all real and A thus real symmetric.

Fiedler also showed that by a modification of the construction the matrix
A takes the form

where nonzero off-diagonal entries may appear only in the last row and
column.

An interesting aspect of these results is that they allow a lot of flexibility
concerning the choice of the numbers b, which determine the elements of
the matrix A. On the other hand, to guarantee that the elements of A are all
real, the choice of appropriate b,’s may require some preliminary calculations
like construction of a Sturm sequence and performing bisections. Further-
more, the case of a polynomial with real but multiple zeros seems not to be
settled.

The purpose of this note is to present an alternative solution to the above
problem of Fiedler which provides a real symmetric tridiagonal matrix for
every polynomial with only real zeros (not necessarily distinct). It is based on
a modification of the Euclidean algorithm. There may be still other interest-
ing solutions, and the reader is encouraged to look for them.

Let us start with a

NotaTioN.  For a polynomial

f(x) =ax* +a,_\x* 1+ +a,
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of degree k > 0 we write ¢(f) = a; so that f/c(f) is a monic polynomial
having the same zeros as f.

MODIFIED EUCLIDEAN ALGORITHM. For

u(x) =x"+a,_ x" "4 +a,, a,€R, v=0,1,..., n—1, (1)

14

define

f=u(x). f(x)=—u(x)

and proceed recurrently as follows: If f,, (x) # 1, then dividing f, by f,,,

with remainder —r,,, we obtain

fu(x) =g, () foar(x) = 1,(x) (2)

and define

r(x)

¢y

(1) e, =o(n), firax)= if r,(x)#0,

fora(x)
c(foi1)

(ii) ¢, =0, fruo(x)= if r,(x)=0.

If f,.(x) = 1, we terminate the algorithm, defining ¢,(x) = f,(x).

THEOREM 1. The polynomial (1) has only real zeros if and only if the
modified Euclidean algorithm yields n — 1 nonnegative numbers c,, .. ., Cn—1s
and in this case

u(x) = (—1)"det(T — xI),
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where I is the n-by-n identity matrix and T is the tridiagonal matrix

—q,(0) \/a
\/071 —q5(0) \/;

n—2 _qnfl(o) Vcn—l

Cnfl —qn(o)

(3)

THEOREM 2. The polynomial (1) has n real distinct zeros if and only if
the modified Euclidean algorithm yields n — 1 positive numbers ¢, ..., c

>Yn—1"

REMARK.  Suppose u has only real zeros. Let ¢ be the greatest common
divisor of u and u'/n, so that ¢, = u /¢ is a polynomial of degree k, say.
The proofs will show that the modified Euclidean algorithm may as well be
started with f(x) == u(x) and f,(x) = ¢(x)¢,(x), where ¢, is any monic
polynomial of degree k — 1 whose zeros separate those of ¢,. An analogous
modification is possible in the steps of type (ii). This way we can introduce
n — 1 parameters into the construction of T, as in the result of Fiedler.

2. LEMMAS

We need the following auxiliary results, which are more or less known
from discussions of Sturm sequences (see [2, Chapter 3, Section 4.2] or [3,
§38]). To avoid vagueness and to make the paper self-contained we present
proofs.

LEMMA 1. Let f and g be monic polynomials of degrees k + 1 and k,
respectively, whose zeros are all real and distinct and separate each other.
Then the division transformation

f(x) = q(x)g(x) - r(x) (4)

yields a polynomial r of degree k — 1 with c(r) > 0 whose zeros are all real
and distinct and separate those of g. Furthermore, g is of the form x —a
where a € R.
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Proof. The form of g needs no explanation. Clearly, r is of degree at
most k — 1. If

E,> &> - > & (3)

are the zeros of g, then by (4) and the separation property of the zeros of the
monic polynomials f and g we have

()" =sgn f(&) = —sgnr(§), p=19" k.

Hence r must be of the degree k — 1, and have precisely one simple zero in
each of the intervals 1¢,, |, £ [, where v = 1,2,--, k — 1. Furthermore,

v

sgnr(x) =sgnr(€) =1 for x> ¢,

which shows that ¢(r) > 0. ]

As a converse statement we shall need

LeMMA 2. Let g and h be monic polynomials of degrees k and k — 1,
respectively, whose zeros are all real, and distinct and separate each other.
Forc > 0 and a € R define

f(x) = (x —a)g(x) — ch(x). (6)

Then f is a monic polynomial of degree k + 1 with distinct real zeros which
are separated by those of g.

Proof. Obviously f is a monic polynomial of degree k + 1, and f(x) is
positive for large x. Denoting and ordering the zeros of g as in (5), we must
have h(£,) > 0, since h is monic and has no zero to the right of £,. By (6)
and the separation property of the zeros of g and h,

(-1 =sgnh(&) = —sgn (&), v=12.. k.

Hence f has an odd number of zeros in £, 499 and in each of the intervals
16,1, &L, where v =1,2,..., k — 1. But this is possible only if f has
precisely one simple zero in each of these intervals and an additional zero in
] = o, §k[ |
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3. PROOFS OF THE THEOREMS

We start with the

Proof of Theorem 2. If the polynomial (1) has n distinct zeros, they are
separated by those of u’. Now repeated application of Lemma 1 shows that
the modified Euclidean algorithm runs through n — 1 steps of type (D,

yielding n — 1 positive numbers ¢,, ..., c,_;.
Conversely, if the modified Euclidean algorithm yields n — 1 positive
numbers ¢,,...,c,_,, it can only run through steps of type (i), providing

n — 1 monic polynomials ¢,(x) of degree 1 such that

f(x) =g () foer(x) —efria(x), v=1.2,....n =1 (7)

where f,(x) = ¢,(x)is of degree 1 and f,, (x) = 1.

Fixing ¢,(x) and ¢, (v = 1,2,..., n — 1) and starting with f, , (x) and
f.{x), we may successively calculate f, _(x), f, ,(x),... from (7). Applying
Lemma 2 in each step, we find that f\(x) = u(x) has n distinct zeros. |

Proof of Theorem 1. Suppose u has only real zeros, and let ¢ be the
greatest common divisor of u and u’/n. Clearly, ¢ is a monic polynomial,
which we may assume to be of positive degree n — k, say, since otherwise we
are in the situation of Theorem 2. Consequently,

1
u(x) =filx) = d(x)e(x) and —u'(x) = fo(x) = $(x) ¢s(x),

where ¢, and ¢, are monic polynomials of degrees k and k — 1, respec-
tively, whose zeros are real and distinct and separate each other. Further-
more, the modified Euclidean algorithm shows that for v =1,2,...,k — 1
the polynomial ¢ factors out in the recurrence relation (7) so that

f(0) = $(Da(x), v=12 0k fo(x) =6(x), @ (x)i=1
and
0(x) = ()@ r(x) = 6yaa(x),  v= L2 k=1 (8)

Since (8) is equivalent to the division of ¢, by ¢, ; with remainder
—c, 9,5, we may apply Lemma 1 successively for v =1,..., k — 1 and find
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that the numbers ¢, are all positive and the degree of f,, | decreases by 1 if
v increases by 1. The calculation of f;,, leads to a step of type (i) which
yields

1
¢ =0, fk+2(x) = m‘b'(’f)-

Continuing with f,,, and f;,,, we are in the same situation as at the
beginning and may therefore repeat the above argumentation. This way we
obtain precisely n — 1 numbers ¢, , which are all nonnegative.

If the modified Euclidean algorithm yields n — 1 nonnegative numbers
c,, the relations (7) must hold with monic polynomials ¢, of degree 1. Since

v

g, :=f,, the matrix T in (3) exists and has real elements. Now define
T, =T, and let T, for k > 1 be the submatrix obtained from T by canceling
the first k — 1 rows and columms. For v=1,..., n denote by g, the

characteristic polynomial of T,. Obviously,

gu(x) = =q,(0) —x = —q,(x) = ~fu(x),
gu1(x) = g 1(x)g.(x)e, (9)

= g () f(2) = e funi(x) = fii(x).

Expanding det(T, — xI), where I is the identity matrix of the same size as
T, , with respect to the first row, we find

g,(x) [_qu(o) _x]gu+l(x) — ¢, gya(X)

—q,(x) g, (x) —c, g, (%) (10)

Comparing (9) and (10) with (7), we conclude that f,(x) = (=1)""""'g (x)

and hence

u(x) =fi(x) = (=1 "det(T — «I).

Since T is real and symmetric, the zeros of u are all real. [ |
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4. EXAMPLES

For the polynomial u(x) = x° — 5x® + 4x whose zeros are 0, +1, and
+ 2 the matrix T becomes

o

0
/z

o
ooﬁoh
o

vt -1

WL
Rl fexl

=
ﬁlo%ﬂ%oo

oﬁc )

0
0
0

For the polynomial u(x) = — x® the modified Euclidean algorithm
runs through two steps of type (ii) and we obtain

0

0
\/g
0
0
0

oo o o O
oo o <o O

ooomo
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