
Quantum Chaos1

The term Quantum Chaos designates a body of knowledge which has been estab-
lished in an attempt to understand the implications of Classical Chaos for quantum
theory. Classical Mechanics successfully describes many aspects of the macroscopic
world in a phenomenological way. Chaotic behaviour being ubiquitiuos, its pres-
ence begs for an explanation in terms of (non-relativistic) quantum mechanics, the
fundamental theory to describe matter. Only the deterministic part of the quantum
time evolution generated by →Schrödinger’s equation is of interest here while the
probabilistic element introduced by→quantum measurements is ignored.

Classical Hamiltonian systems with N ≥ 2 degrees of freedom are either inte-
grable or non-integrable. The time evolution of integrable systems is quasi-periodic,
hence simple: N global constants of motion exist which force trajectories in phase
space to evolve on tori of dimension N . The distance between initially close trajecto-
ries increases at most linearly with time; the Lyapunov exponent, a measure for the
rate of divergence of nearby trajectories, is equal to zero. In the vast majority of cases,
however, fewer than N constants of motion exist and the system is non-integrable. A
typical trajectory again evolves deterministically but now may explore a larger part
of phase space. Due to their highly complicated – apparently chaotic – time evolu-
tions, trajectories with similar initial conditions tend to diverge at an exponential rate.
This property makes long-term predictions of the system’s dynamics unreliable if not
effectively impossible.

A considerable amount of studies relevant to Quantum Chaos revolve around
three questions: (1) Is it possible to (approximately) quantize classically chaotic sys-
tems by exploiting their phase-space structure? (2) What are quantum mechanical
manifestations–also known as precursors or signatures–of Classical Chaos? (3) Does a
rigorous distinction between regular and chaotic quantum systems exist?

To answer these questions, quantum systems from many branches of physics
and chemistry have been studied afresh from a new perspective. They include nu-
clei, atoms and molecules in the presence of strong electromagnetic fields, and mi-
crowaves in cavities, for example. The approaches to explore the properties of these
systems range from experimental and numerical to rigorously mathematical.

For a long time, complicated dynamical behaviour has been assumed (tacitly) to
require many interacting constituents such as the molecules of a gas. Their large num-
ber justifies the use of powerful statistical methods. Dynamical chaos, however, re-
sults from non-linear interactions between only a few degrees of freedom. This fun-
damental property of Classical Mechanics has been widely recognized only in the
second half of the 20th century, when it became one of the driving forces to study
quantum mechanical counterparts of classical systems with effectively unpredictable
time evolution.

Widely studied models include quantum particles restricted to move in two-di-
mensional regions known as billiards, pairs of coupled spins or a single periodically
driven spin. Reducing the continuous time evolution of a classically chaotic system
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to an iterated map has proved advantageous in many cases. Maps are simple to for-
mulate but capture essential features of the dynamics. A thoroughly studied exam-
ple is the (classical or quantum) standard map describing a kicked rotor. Many other
systems such as an electron in a one-dimensional hydrogen atom in the presence of
a periodically modulated electric field give rise to the same or structurally similar
maps.

(1) If a quantum system has a classically chaotic limit, it is usually hard to extract
useful information from its →Schrödinger’s equation. Often, extensive numerical
calculations are the only means to determine (the spatial structure, say, of) excited
states and the corresponding energy levels. A substantial amount of work has thus
been devoted to generalize the torus quantization, an early method to ‘quantize’ classi-
cal systems which precedes and thus bypasses→Schrödinger’s equation. Its original
formulation relies on the phase space of the system being foliated entirely by tori.
This structure, however, only exists if the system is integrable, i.e., it must possesses
as many global constants of motion as it has degrees of freedom. The foliation is
destroyed if a perturbation is added to the system, and only a skeleton of closed
trajectories known as periodic orbits continues to exist. Einstein realized in 1917 that
the quantization conditions are not generally applicable [1]. The new approach, ini-
tiated in the early 1970ies, relies on the fact that, even in a non-integrable system,
isolated periodic orbits survive and continue to determine the quantum properties
of the system to a large extent. To see this, one uses the→path-integral formulation
of quantum mechanics. The resulting trace formula provides an alternative and often
efficient road to (approximately) quantize a classically chaotic system [2].

(2) The statistics of energy levels exhibit striking differences for different quantum
systems. After appropriate normalization, the spacings between the energy eigenval-
ues of systems with a classically regular limit are described well by a Poisson distribu-
tion: small spacings dominate. The small spacings are suppressed for systems with a
chaotic limit, resulting in a distribution derived by E.P. Wigner in 1951 to statistically
describe observed energy spectra of nuclei [3]. The overall shapes of the distribu-
tions are universal in the sense that they only depend on symmetry properties such
as the presence or absence of time reversal invariance of the system. It turns out that
the spectra of random matrices, with matrix elements drawn from specific distribu-
tions determined by the symmetries, have very similar spectral properties [4]. This
confirms the intuitively appealing picture that a Hamiltonian describing a quantum
system with a classically chaotic limit corresponds to a matrix with ‘random’ entries.

The spatial structure of energy →eigenstates of a quantum system may also an-
ticipate whether it has a classically chaotic counterpart or not [5], as do scattering
amplitudes. It is the classical periodic orbits which, to a large extent, determine
the properties of both bounded and open quantum systems in the →quasi-classical
regime defined by S/~ � 1, where S is the value of the classical action associated
with a typical periodic orbit.

The Anderson model of conduction in a one-dimensional disordered solid pre-
dicts that its energy eigenstates are confined to only small parts of the available space.
Mathematically, the quantum standard map is structurally identical to the Anderson
Hamiltonian if discrete time is thought to label lattice sites [6]. The resulting dynam-
ical localization is used to explain that electron diffusion in a driven hydrogen atom



[7] deviates from classically expected behaviour: the atom is ultimately not ionized
since the diffusion is suppressed quantum mechanically.

(3) Ideally, a concept such as Quantum Chaos should rest upon a definition which
is inherently quantum mechanical: it should not depend on properties of quantum
system which emerge only in the classical limit. The challenge is to put each (non-
relativistic) quantum system with only a few degrees of freedom, say, in one of two
disjoint classes using quantum mechanical concepts only. So far, no such division
entailing sets of systems with provably different properties has been agreed upon.

Another fundamental aspect is the question to what degree→Schrödinger’s equa-
tion, as a linear equation, is capable to generate complicated time evolutions. Is it con-
ceivable that the evolution of a quantum state is as difficult to predict as a trajectory of
a classically chaotic system, typically resulting from coupled non-linear differential
equations? An appropriate Fourier transform of such a trajectory will reveal a con-
tinuous spectrum of frequencies, an unmistakable sign for the trajectory being highly
irregular. If a similar approach is taken within a time-independent quantum system,
the resulting spectrum will be determined by the energy eigenvalues of the system
which are a discrete set if the quantum system has bound states only. This observa-
tion explains why externally driven quantum systems and scattering processes are
promising candidates when searching for chaotic behaviour in quantum quantum
mechanics.

The tendency of quantum mechanics to suppress chaos is supported by a phase
space perspective: quantization can be thought of as introducing a ‘granular’ struc-
ture. Its scale relates to the non-commutativity of position and momentum operators
measured by the value of→Planck’s constant ~. Thus, the evolution of arbitrarily fine
structures in phase space, a hallmark of Classical Chaos, appears forbidden. Never-
theless, the time evolution of a quantum system may be as difficult to predict as a
classical irregular trajectory if commuting observables such as two (or more) position
operators undergo a complicated dynamics in configuration space.
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