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Abstract 

Free quantum electromagnetic radiation is enclosed in a one-dimensional cavity. The contribution of the kth mode of 
the tield to the energy, contained in a region R of the cavity, is minimized. For the resulting squeezed state, the energy 
expectation in R is below its vacuum value. Pressing zero-point energy out of a spatial region can be used to temporarily 

ir~cw~~sr the Casimir force. 
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1. Introduction 

If a harmonic oscillator is prepared in a coherent 

state, the product of the variances of position and mo- 
mentum takes on the smallest possible value while 
their ratio is fixed. By using squeezed states [l] one 
is free to vary the ratio of the variances while keeping 

their product minimal; in other words, one can “dis- 
tribute the uncertainty” over position and momentum 

at will. This possibility turns out to be of interest in 
quantum optics [2] and, especially, in the theory of 

optical communication [ 31. To prepare a mode of the 
electromagnetic field in a squeezed state allows one to 
tune the signal-to-noise ratios of its quadrature com- 
poncnts: one of the quadratures can be used to ab- 
sorb the inevitable quantum-mechanical “noise” [4], 
while the other one serves to transmit an extremely 

well-defined signal. In the context of quantized elec- 
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tromagnetic fields, it seems natural to also investigate 

the spatial properties of the field (cf. Ref. [ 51) if the 
harmonic oscillators associated with the normal modes 

of the system are prepared in squeezed states. 
It is the purpose of this Letter to show that due to 

squeezing, quantum-mechanical fields can exhibit a 
property in configuration space which is unexpected 

from a classical point of view: it is possible to de- 

crease the energy density locally below its value in the 
vacuum state by preparing the field in an appropriate 
state. This feature emerges naturally if one searches for 

those quantum-mechanical states of the field which, 
at a given time, minimize the energy contained in a 
prescribed spatial region, R. Indeed, this requirement 
singles out a family of squeezed states of the field os- 
cillators. As an application a modified version of the 
Casimir effect is proposed. The force acting on a re- 

flecting plate at the boundary of the cavity is sensitve 
to the difference of the energy density across the plate. 
Since appropriately squeezed initial states decrease the 
energy density on one side of the plate below its vac- 
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uum value, a temporary increase of the Casimir force 
is predicted. 

Similar observations have been made in studies of 
systems (mostly cavities) with moving mirrors [ 6- 
91. A typical feature of these time-dependent systems 
is the correlated excitation of modes into squeezed 
states. As a result, the vacuum state develops structure 

in the sense that the energy density is no longer spa- 

tially homogeneous. For an oscillating boundary, the 
emergence of “sub-Casimir” regions has been pointed 

out [ IO]. In the present work, the cavity has jked 
boundaries, and the search is focussed on states of the 
field which minimize the expectation value of the en- 

ergy in a prescribed region. Correlations between dif- 

ferent modes will not be dealt with but individually 
squeezed modes will be seen to maximize the effect. 

2. Quantized field 

Consider a box of length L = A + h. Its boundaries 
at XI = -A and xr = A are assumed to consist of per- 
fectly conducting mirrors. (This model is based on 

Ref. [ II] ; work performed under the auspices of N.G. 
van Kampen.) For simplicity, the box is assumed to be 

one-dimensional and a single polarization of the elec- 
tric (and magnetic) field is taken into account only. 
Effectively, one is dealing now with a scalar theory, 
but the arguments given below are expected to hold in 
the general case, too. Units are chosen such that the 

dielectric constant E of the vacuum, Planck’s constant 

h and the velocity of light, c, are equal to one. Free 
electromagnetic radiation in the cavity is described 

quantum-mechanically in the Heisenberg picture by 
the Hamiltonian operator 

A A 

g= 

J 
dx i?(x, t) = ; J dx[~(x, t) + i1*(x, t)] 

-1 -_l 

k=I 

where (u:(x) = dUp(x 

00 

1 ldx) 

E^(x, t> = ~Uk(X)&( t), 
k=l 

(1) 

(2) 
k=l 

are the operators for the electric and the magnetic field 
(at position x and time t) , respectively. The functions 

&(x) follow from Maxwell’s equations as solutions 
of 

u;(X)+&&(x) =0, k= 1.2 ,..., (3) 

vanishing at the boundaries of the cavity: Uk( -A) = 

Uk (A) = 0. The frequencies are given by Wk = kr/L, 
k = I, 2, . . . The normalized modes uk (x) read 

uk(x) = (4) 

and they constitute a complete and orthonormal set of 

functions on the interval -A < x 6 A, 

A 

J 
dxuk(x)&(x> = Skf, (5) 

-A 

Uk(x)&o’) = stx - ?1). 
k=l 

(6) 

The operator-v&ted amplitudes in Eq. (2) are related 
by zk( t) = -dhk( t) /dt, and one has explicitly 

&(t) = - & ( uke-LwLt + uieiw”). 

The operators al and ak create and annihilate excita- 

tions of the mode with frequency Wk, and they fullill 
the familiar relations 

[ak, a; 1 = akl, 
t t 

[ak,afl = [ak,a[] =o, 

k,e= I,2 )... . (8) 

3. Minimization and squeezed states 

Consider, for a moment, a classical vibrating string 
between -LI and A. The state with lowest energy, i.e., 
the ground state of the string, is given by its straight 
configuration with each point being at rest. Focus now 
on a finite part of the system, the region to the right of 
the origin, R = (xl0 < x < A}, for example. Clearly, 
the energy contained in region R takes on its minimal 
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value, 0, if the state coincides with the ground state which follow from Eq. (8). The integral in (, 13 ) does 
for 0 < .V < A. not contribute if 

The ground state of the quantum-mechanical 
system with Hamiltonian ti is the vacuum IO) = 

101,OZ ,.... Ok ,... ), in which no mode is excited: 
akjOk) = 0. Each oscillator contributes an amount 
wk/2, its zero-point energy, to the total energy which 

therefore diverges. Defining the energy operator ??, 
as integral over the energy density in region R, 

(E^(X)) = (RX,) = 0, n E R, (15) 

representing a condition on the set {(?k), (i;k)}. The 
smallest contribution of the kth mode in ( I3 ) is given 

by 

CR(t) = 
.I 

dx%‘(x,rL (9) 

R 

one tinds as contribution of a mode with frequency tik 

((Ae”,)“) = %pk, 
2 ((‘6)‘) = +---, (16) 

as follows from minimizing the kth term in the sum 

under the constraint ( 14); the positive real number ,Uk 
is given by ,Uk = ( Vk+/VkY)‘12. 

The product of the variances given in Eqs. ( 16) 
fulfills the equality 

clearly indicating the spatially homogeneous distribu- 
tion of the energy in the vacuum. The positive dimen- 
sionless quantities 

are given in terms of the A-dependent asymmetries 
cj, = sin(2wkA)/bkA. 

To determine the state which yields the smallest 
possible expectation value of the energy in region R, 

one requires that at a given moment (t = 0, say) 

with a yet undetermined 

(&) = ; 1 dx @W)* 

i) 

(12) 

state I$) = I&,92,..., 

f @cx,)*l 

where all expectation values are taken with respect 
to I$), and I.?+$ is defined as A& = gk - (jjk). The 

expectation value (?LR) takes on its minimum value 
if each of the positive terms in Eq. ( 13) is as small as 
possible without violating the inequalities 

((i\&)‘)((&,2) > a, k= 1,2,..., (14) 

((h&)2)((A&,2) = ;. (17) 

hence, for j,&k # 1, the kth mode is in a squeezed 
state. In general, a squeezed state is obtained from an 
eigenstate of the annihilation operator, 

akbk) = akbk) (18) 

(i.e., a coherent state I&‘k)), by applying to it the uni- 

tary squeezing (or dilation) operator [ I], ?k( rk 1 = 

exp[rk(ai - ai*)/2], 

irk, Qk) = ikk(rk)b’k). (19) 

In contrast to coherent states, which under harmonic 

time evolution remain states of minimum uncertainty, 
squeezed states only periodically recover the property 
of minimality. To squeeze a coherent state ICYI;) re- 
quires energy, 

Axk = (rk? akj%Fl(rk, ak) - (“kltil”k) 

= ‘f,k sinh’ rk. ( 20) 

The relation between the squeezing parameter rk and 
,Ukin(16)isgivenbyrk=-ilnpk. 

4. Spatial variation of the energy density 

For the sake of simplicity, it will be assumed-from 
now on that the expectation values (E(X)) and (H(X)) 
vanish everywhere, not only in the region R. In this 
case one has ak = 0, and each mode is a squeezed 
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vacuum state which is conveniently denoted by Iu~) 
since its degree of squeezing is completely determined 
by the asymmetry 5k. 

The expectation value of ??, in the state 15) = 

151,52,...,5k,. . .) is found to be 

Since Vk? + Vk- > 2 
J 

Vk+Vke (if Vk? # Vkp), one 

finds by comparison with (10) that the contribution 
of each mode is less than for the vacuum, IO). The 
energy difference is given by 

A?-&(A) = ;y(dq- 1) < 0. (22) 

This inequality represents the main result: just as ohe 

can distribute the uncertainty of a harmonic oscillator 
between position and momentum, it becomes possi- 

ble to decrease the energy density in one spatial re- 

gion compared to the vacuum value while enhancing 
it elsewhere. This result is in striking contrast with 
the impossibility of decreasing locally the energy of 

a classical vibrating string below its ground-state en- 

ergy. 
If an arbitrarily large but finite number (cf. below) 

of the asymmetries 5k is different from zero, one can 
conclude immediately from (22) that 

(51~745) < (q’FInl0). (23) 

A better understanding of this result is obtained if 
one studies the spatial variation of the energy density 
associated with the kth mode, for example. It turns out 
to be distributed inhomogeneously in the cavity (cf. 

(13)), 

(5klW(x)lC,k) = wk 
2L 

,_Qsin2Wk(A+X) 

+ ;cos’tik(il+X) , > (24) 

as shown in Fig. 1. There is a sequence of regions 
within which the energy density either exceeds the ho- 
mogeneous energy distribution of the vacuum of mode 
k, or remains below it. The asymmetry (+p has a value 
such that in the region R the sum of the (hatched) 

-A 0 x 

Fig. 1. Energy density of a squeezed mode 1~) with squeezing 

parameter p) > I (note especially the low values at the bound- 

aries). The energy density of the vacuum state 10,) is equal to 

wk/2L (full line). The energy contained in mode k is given by 

wk(pk + pU;‘)/2 (dashed line). Summing up the hatched areas 

in the region ‘R with appropriate signs yields a value less than 

kiJk/2L (dash-dotted line). 

areas below the full line is lr-ger than of those above 

it. The pronounced dip of the energy density at the 

end of the cavity, xr, suggests that the Casimir force 
on the plate can be increased if the kth mode is in the 
state I5k). 

5. Modified Casimir effect 

According to the Casimir effect (see Ref. [ 121 for 

a review) two parallel, perfectly conducting plates in 

the vacuum at a distance L attract each other with a 
force proportional to L- (d+‘), d being the dimension 
of the space. From a microscopic point of view, this 
force is understood as a residual macroscopic signa- 
ture of the van der Waals force acting between the 
particles in the mirrors. A simple way to derive it is to 
consider the difference of the zero-point energy densi- 
ties in the regions enclosed by the plates and outside, 
respectively; similarly, one can attribute the Casimir 
force to the radiation pressure exerted on the plates 
due to the vacuum field [ 131. 

In three spatial dimensions, the force acting on a 
volume V (with surface A) is proportional to the rate 
of change of the momentum contained in this volume. 
The expectation value of this force, F, when the field 
is in state I$) can be expressed as a surface integral of 
appropriate components of the stress-energy tensor &, 
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where n is a unit vector normal to the surface A, point- 
ing outwards. The components of B are given by 

Choosing the volume to be a thin slice containing (a 
unit area of) one of the plates, one finds from (25) 

(after appropriate regularization) the Casimir force on 

the plate in the vacuum state of the field [ 131. 
For a one-dimensional model with one polarization 

of the field only, the stress energy tensor reduces to 
i?,n = +?/4 n-, and the expression for the force 
simplifies to 

(27) 

In the state igk) the energy density near the plate (that 
is. if.x approaches A from the left) is found from (24) 

to have the value 

(28) 

If the squeezing parameter pk is larger than one, Eq. 
(24) implies that the contribution of this mode to the 

force on the plate is reduced by a factor l/pk. For 

f-Q - X. this contribution can be made vanishingly 
small, at the expense of a high energy, as seen from 

(20). Since the force resulting from Eq. (28) is pro- 
portional to L-* (for d = 1) just as is the Casimir 
force, it is possible to strongly reduce it by moderately 

squeezing many modes. 

6. Initial states 

As long as an arbitrary large but jinite number of 
modes are squeezed the resulting state is a possi- 
ble initial state of the field. If, however, one wishes 

to squeeze infinitely many squeezed modes in order 

to enhance the effect, the situation becomes subtle. 
Suppose for a moment that all asymmetries ck were 
nonzero. In this case, one has for all k 

(29) 

Thus, each term in the sum (21) has been replaced 

by a smaller one, tempting one to conclude that the 
sum should be correspondingly smaller. However, the 
net effect is just the opposite since the summation ex- 
tends to infinity: the density of modes increases by 
“resealing” each frequency according to (29) and, eK- 
fectively, this leads to a higher energy density con- 

tained in R. In other words, more modes contribute 

up to the cutoff frequency [ 151 which is introduced 
in order to regularize the divergent zero-point energy. 
However, choosing all asymmetries (+k # 0 is not a 
sensible state of the electromagnetic field since the en- 
ergy difference between the states IO) and la) is log- 
arithmically divergent as follows from (20). 

k=l !,=I k=, ‘C 

This sum diverges for almost all values of h; conver- 

gence is possible only if A is commensurate with L/2. 

Consequently, the state la) is, in general, not an ele- 
ment of the Hilbert space built upon the vacuum state 
IO). These difficulties are not present if either an ar- 

bitrarily large but finite number of the asymmetries 

gk are different from zero, or if the (infinitely many) 
nonzero ffk are distributed in such a way that 

(~p2=1cT) - (OlG’lO) < Cm. (31) 

This condition guarantees both, the etistence of the 
time evolution of the state 1~) under 7-1, and that IO) 
and Ig) are elements of the same Hilbert space. 

7. Measurement 

The questions arise of how to initially prepare the 

electromagnetic field in an appropriately squeezed 
state, and how to perform a measurement. Various 
(more or less efficient) techniques are known in or- 
der to squeeze states [ 2,3]. For the present purpose it 
seems promising to generate squeezed modes inside 
the cavity by an instant change of the length of the 
cavity, from L’ to L, say. This causes a “frequency 

jump” which is known to imply squeezing [ 161. 
If the squeezed modes have been generated, the 

modification of the Casimir force could be measured 
as follows. After the time 1/4Wk the maxima and min- 
ima shown in Fig. 1 have exchanged their positions. 
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Thus, time intervals during which the force on the 
plate is smaller than the standard Casimir force are fol- 

lowed by other intervals during which it is larger: this 
necessitates time-resolved measurements since, com- 

pared to the Casimir force, the average force on the 
plate is increased due to the radiation pressure of the 
photons enclosed in the cavity. If one were able to 

continuously monitor the force on the plate an oscil- 

latory behaviour about the vacuum value measured in 
Ref. [ 141 would emerge. Perhaps the most realistic 

approach is to perform a resonance measurement in 
the spirit of Ref. [ 171 exploiting the periodic variation 
of the force (cf. also Ref. [ 181) . 
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