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Abstract 

The electric conductivity of a nonionic water-in-oil microemulsion has been measured in the 
presence of small amounts of carrier electrolyte. Two distinct regimes can be distinguished: 
the conductivity increases linearly for small nanodroplet concentration, while it decreases above 
a critical value. The qualitative change occurs close to a concentration where the system is 
known to have formed a system-spanning noneonductin9 cluster of nanodroplets. This behaviour 
of the conductivity is shown to agree well with predictions of percolation theory for aggregating 
charged nanodroplets. 

PACS: 82.70.Kj; 66.30.Hs; 64.60.Ak 
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1. Conductometric measurements in microemulsions 

Measuring the electric conductivity of  ionic [ 1 - 3 ]  water-in-oil (W/O)  microemul- 
sions has become a standard technique. Under appropriate conditions, conductometry 
allows one to extract information about the concentration of  charge carriers, that is, the 
degree o f  dissociation, or about the size of  the carriers via their mobilities. For not too 
small concentrations of  surfactant (S) the conductivity is dominated by Stokes transport 
o f  nanodroplets or monomers,  i.e., individual nanometer-sized water droplets separated 
by surfactants from the surrounding oil. The formation of  a system-spanning (or 'infi- 
ni te ' )  cluster in ionic microemulsions, for example, is marked by a steep increase of  
the conductivity: the Stokes process is superseded by the hopping of  charged surfac- 
tants from one droplet o f  the cluster to another [4]. Even aspects of  the elementary 
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Fig. I. Phase diagram of the W/O microemulsion. The electric conductivity has been measured for param- 
eter values corresponding to a segment of the horizontal line in the L2 phase of the system. The droplet 
concentration 6Cw is given relative to the emulsification failure at c~, close to the boundary between the 
phase 2~ and the microemulsion L2. The open circle shows the critical concentration of nanodroplets, ~c*, 
where the behaviour of the electric conductivity of the sample indicates the formation of a system-spanning 
cluster. Presumably, there is a whole line (dashed) where percolation occurs, dividing the L 2 phase into two 
parts, L f ,  which are distinguished by the (non-) existence of an 'infinite' cluster, 

process of charge formation in micromulsions become accessible experimentally [5]. 
For ionic surfactants, charge formation is driven by fluctuation processes of intrinsic 
electrolytes. 

The purpose of this work is to study the conductivity of a specific W/O microemul- 
sion with nonion ic  surfactant molecules, that is, a 'nonionic microemulsion.' Its phase 
diagram, shown in Fig. 1, is easily determined visually. Three domains can be dis- 
tinguished: the monophasic microemulsion L2, the two-phase domain 24, where water 
and a three-component phase coexist, and the lamellar, lyophilic liquid-crystal phase, 
denoted by L~. Emulsification sets in for concentrations Cw of water and surfactant 
above C~w, that is, close to the boundary between the phase 2cb and the microemul- 
s i o n  L2. Below this value nanodroplets have not yet formed corresponding to an 
'emulsification failure' [6,7]. From now on, droplet concentration and conductivity 

e will be given relative to their values in this state. Thus, one has Cw = c w + 6Cw and 
a = a e +  6a,  where at temperature T = 310 K numerically one has c~ _~ 0.13 and a e ~  

3.5 x 10 - 7  ( ~ m )  -1  . 

In addition, the presence of a system-spanning cluster has been detected for this 
system [8] by measuring the dynamic viscosity as a function of the volume fraction 
of n-octane, (1 -6Cw). The viscosity increases sigmoidally with increasing 6Cw and 
shows an inflection point at about * 6c w --0.15. Up to this point the dependence of 
the viscosity on the concentration follows the Saitf-Bedeaux relation [9,10] which is 
a strong indication that a system-spanning cluster of nanodroplets has formed. 

Nanodroplets are known to exist as individual entities over the whole concentra- 
tion range studied here as has been shown experimentally for similar systems [11,12]. 
However, the surfactants being nonion ic  [13], small amounts of an electrolyte must be 
added to provide the charges necessary for the charge transport. It is important to note 
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Fig. 2. Measured values of the specific electric conductivity 6a against the concentration of nanodroplets, 
6Cw. Inset: Deviation [~cr- yrCwl of the conductivity 6a from a linear dependence on the concentration 6Cw 
with a slope 7=2.3 x 10 -5 (f~m) -1 as a function of the concentration 6Cw. 

that the infinite cluster of  the nonionic microemulsion studied here is nonconductive: 
the surfactants do not provide charges to be transported easily along the cluster. 

The experiments reported here correspond to parameter values on the horizontal line 
in the L2 phase of Fig. 1, with 6Cw varying between 0 and 0.3. The measured values 
of  the isothermal specific electric conductivity 6a are shown in Fig. 2 as a function of 

the concentration of the aqueous nanodroplets, 6Cw. The conductivity increases linearly 
with the weighed-in concentration of the nanodroplets, reaches a maximum at a critical 
value, 6c*, and decreases strongly. The inset shows the deviation of the conductivity 
,Sa from a linear dependence on 6c~ with a slope 7=2.3  x 10 -5 (f~m) - l .  

The presence of a macroscopic cluster will again strongly influence the conductivity 
of  a microemulsion if the charge transport is solely due to the motion of finite ag- 

gregates through the viscous medium. Its formation at the critical concentration 6c~* 
effectively immobilizes a substantial part of  the charge carriers: the monomers being 
attached to the system-spanning cluster can no longer contribute to the Stokes transport. 
This picture being correct, a reasonable description of the measurements should be pos- 
sible in terms of percolation theory. The model presented below attempts to describe 
the conductivity near the critical concentration 6c* in terms of a percolation transition. 

2. Experimental 

Microemulsions were prepared by mixing appropriate weight fractions of surfac- 
tant, brine (1 mol/m 3 NaC1 in water), and oil. C14E5 (pentakis(ethyleneglycol)mono 
(tetradecyt)-ether) (purity 99.8%) and n-octane(oil) were obtained from Fluka; water 
was bidistilled. The weight fractions (W + S ) / (W + S + O)=cw were varied, while 
keeping the droplet radius Rl ~ 4 . 2 n m  (as determined from quasi-elastic light scat- 
tering [14]) constant throughout the measurements, that is, W/S= 1. The experiments 
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were performed slightly above room temperature, T = 310 ± 0.1 K. Conductivity mea- 
surements were carried out with a plate condenser-type glass cell equipped with two 

rectangular Pt-electrodes of 5 mm × 10 mm and a gap width of 2 mm. Conductance 
was determined by an auto-balancing bridge (Radiometer, Copenhagen, type CDM 83) 
between 2 × 10 8 f~-l and 1.3 f~-l at 73Hz and 50kHz, respectively. 

3. Percolation model 

The occurrence of a phase transition in the microemulsion is suggested by the be- 
haviour of the conductivity as shown in the inset of Fig. 2. Qualitatively, it reminds 

one of the magnetization curve of a ferromagnet: below/above some critical value 
a measurable quantity vanishes while above/below this value it starts to increase with 
a nonzero slope. A simple model is set up, based on the percolation of nanodroplets, 

in order to explain the tent-shaped dependence of the conductivity on the droplet con- 
centration. Our knowledge of the structure of the microemulsion is condensed into the 
following assumptions. 

(i) Throughout the concentration range studied here, the monomers, i.e. the individual 
nanodroplets constitute the basic units for the process of  transport. 

(ii) The electrolyte dissolved in the water core of the droplets provides the charges 
on the monomers. There is a f ixed number of neutral, positively and negatively 
charged droplets when the measurement of  the conductivity is performed. In the 
actual experiment, about every other of the droplets is charged as follows from 

thermodynamics [4]. 
(iii) Each nanodroplet carries at most one (positive or negative) charge. 

(iv) Any number of monomers may form an aggregate, including possibly a system- 
spanning cluster. The equilibrium between aggregates of  different size is dynamic: 

for given temperature T and concentration tSCw, the distribution over all possible 
sizes is well-defined only when averaged over some time interval. 

(v) The charge on the droplets does not influence the formation of aggregates. This 

is reasonable since the Debye radius Lo (being a measure for the scale of  polar- 
ization effects) is much smaller than the radius RI of a monomer. 

(vi) The total charge of  an aggregate is solely due to the charges of the monomeric 
droplets which form it. 

(vii) The conductivity of the sample results from the motion of  charged aggregates 

through the dielectric medium with viscosity q, while the ions of  the electrolyte are 
not able to travel as such through the oil. The Stokes transport of  the aggregates 
has a preferred sense of direction which is provided by the weak external electric 
field. 

In a first step, a general expression for the conductivity of  a microemulsion will be 
derived. It depends on the size distribution of the aggregates which, in turn, is a function 
of the concentration 6cw. In a second step, the actual behaviour of  the conductivity 
will be determined under the assumption that the distribution of the aggregates over 
the sizes is governed by percolation theory. 
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When dispersed in a medium with viscosity r/, spherical objects with radius R and 
charge q = z e  (with e the elementary unit of charge and z the valency) give rise to 
a conductivity ~r0 given by 

q2 

~ro - -  6rct lR . ( 1 )  

The various contributions to the total conductivity of the microemulsion stem from 
differently sized aggregates carrying different amounts of charge. Consider first an ag- 
gregate which consists of s monomers. Its valency z~,~ = k is determined by the charges 
of the monomers which form it and, therefore, takes on values between +s. Denote the 
probability for z~,k charges on an s-aggregate by p[; then the s-aggregates contribute 
an amount 

e 2 ~ q2 
2 s __ eff, s 

as - -  6zUlRs  k=o Zs, k p ~ = 67UlRs ,  s = 1,2 . . . . .  (2) 

to the conductivity, where Rs (x s p is the hydrodynamic radius of an s-aggregate, with 
p = ½ for perfect spherical aggregation. The second equality simply says that the con- 
ductivity as associated with s-aggregates can e f f e c t i v e l y  be taken into account by a 

_ e t V , ~  z e ,~sal/2 The distribution p~ of valencies Zs, k on s-meres fol- charge qeff, s -- ~ L - ~ k = 0  s,k ~'k J " 
lows from combinatorics: as shown in Appendix A, one has 

q~ff, s = 2°~se2 , (3) 

if a fraction 2~ of the monomers is charged and the remaining fraction (1 - 2~) 
is neutral. It is important to note that the charge q2 is linear in the number of eff, s 

constituents, s. Thus, the charge associated with s-aggregates grows faster with s than 
the radius Rs. 

The total conductivity 6a of the microemulsion is obtained by summing over all 
contributions as multiplied with the probability P~ which governs the distribution of 
s-aggregates: 

~ q 2  o0 1 ~elr,s p, (4) 
6 a = Z a s P s = 6 n q  Rs s. 

s = l  s = l  

If only one type of the aggregates of size so is present, P~ = 6~s0, all with the same 
charge, qs,,~o = koe, corresponding to p~ = 6~ o, one obtains 6a = e 2 k g / ( 6 n r l R s o  ), agreeing 
with Eq. (1). Using Eq. (3), the total conductivity is found to be given by 

2 oo ~ e  2 

~ = °~3-~ s~l P s s l - P  =-- 37cr] ( s l -P )  ( 5 )  

it is thus proportional to the (1 - p)th moment of the size distribution Ps of the 
aggregates. 

The link to percolation theory [15] is now established by claiming that the concen- 
tration 6Cw of nanodroplets in the microemulsion plays the same role as does the 
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occupation probability p of  a site in three-dimensional percolation: 

6Cw ~ p .  (6) 

Then the distribution ~ of aggregates must be identified with the cluster numbers, 

~ n s ,  (7) 

the dependence of which on the occupation probability p follows from percolation 

theory. Therefore, the conductivity is seen to be proportional to the (1 - p ) t h  moment 
of the cluster numbers: 

6tr( 6Cw ) cx M l - p (  6Cw ) , (8) 

thus being a well-defined function of the concentration. This relation is the central 
result of the approach presented here. 

Since p = 0.4 at the critical concentration, one immediately obtains an upper bound 

for the conductivity: 

60" O( M0. 6 <M1 = 6Cw - 2 ,  (9) 

the last equality in Eq. (9) following from a relation being generally valid in percolation 

theory: ~ s~ l  n~s = p - 2 .  It relates the cluster numbers ns with the probability ~ ( p )  
that a given site is connected to the infinite cluster, also known as cluster strength. It 
is zero below a critical concentration p*, while it strongly increases for concentrations 
p above p*. 

For the microemulsion, it follows from Eq. (9) that the conductivity 60. increases 
(almost) linearly with the concentration if 6Cw < 6c,*, since no system spanning cluster 
has formed yet, ~ = 0. Above ~ * 6c w, the conductivity strongly decreases because there 
is an infinite cluster, ~ > 0: the monomers attached to the infinite cluster can no longer 
contribute to the charge transport. The increase of available carriers due to larger values 

of  the concentration 6Cw does by no means compensate for the resulting decrease of  
the overall conductivity. An important aspect of Eq. (9) is that the conductivity does 
not diverge at 6c~ which would clearly contradict the measured values for 0.(6Cw) 

in Fig. 1; the exponentially fast decrease of the cluster numbers ns as a function of 
s suppresses the linear increase of  as, Eq. (3). If, however, the conductivity were 
given by a moment Mk with k ~> 1.2 instead of k -~ 0.6, a divergence would have been 
encountered. 

Thus, the overall behaviour of 6a(bcw) is compatible with its upper bound, Eq. (9), 
at least in the concentration range studied here, that is, for values of  6Cw not much 
larger than the critical one, 6c*. Nevertheless, it is not reasonable to conclude that 
the first moment M1 (instead of Ml_p) indeed approximates well the conductivity 6a. 

The exponent for the strength of the infinite cluster J '  near the critical concentration 
is known to have the value fl = 0.4, which, however, does not  agree with the almost 
linear increase of  the order parameter as shown in the inset of  Fig. 2. In general, the 
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non-analytic part of the kth moment is given by 

Mk(6Cw)  ~ 16C*w - 6cwl ~ - ~ - k ) / ~  , (10) 

with universal exponents 3=2 .2  and ~r=0.45 [15]. If k = 0 . 6  is used here, better 
agreement with the observed linear dependence of the order parameter ~ on 6Cw near 
6c* results: 

6~(6Cw)(XMo.6(X(6C~ -- 6Cw) 1"3, 6Cw>6C ~ . (ll) 

1 This clearly A strictly linear increase would follow for k = 3, corresponding to p ~ ~. 
i describing the nonfractal growth of large clusters in three does not agree with p = ~  

dimensions. However, it is not obvious whether one can indeed identify the typical 
radius of aggregates above 6c* with the effective hydrodynamic radius Rs as it has 
been done in the present derivation. 

4. Conclusions 

A simple percolation model of aggregating nanodroplets has been shown to qualita- 
tively describe conductometric measurements in the L2 phase of the nonionic 
microemulsion. However, no attempt was made to determine quantitatively the mea- 
sured conductivity. It is worthwhile to point out that there are no freely adjustable 
parameters in this approach. In this way, independent evidence is provided for a system- 
spanning cluster the existence of which had been indicated earlier from viscosity 

measurements. 
This result suggests to modify the phase diagram of the microemulsion as follows. 

The mechanism described here is expected to work also for different temperatures, as 
long as one remains in the L2 phase (cf. Fig. 1). Thus, a system-spanning cluster 
should as well form for temperatures slightly above and below T- -310  K. Conse- 

6cw(T ) will exist, defined by quently, a line (shown dashed) of critical concentrations * 
the maximum values of the conductivity a(fCw). The formation of large aggregates 
is probably hampered for higher temperatures leading to a positive slope of the crit- 
ical line as a function of concentration. Therefore, we suggest a division of the L2 
phase into two distinct regions, L~- and L +, corresponding to the nonexistence and 
existence, respectively, of a system-spanning cluster in the microemulsion. This mod- 
ification of the phase diagram conforms with the experience that microemulsions are 
highly complicated systems depending sensitively on slight variations of parameters 
such as temperature or the concentration of their constituents. 

Appendix A 

Suppose a fraction ~0 of all isolated droplets are neutral and the remaining monomers 
(fraction 1 - ~ 0 )  either carry a single positive charge, c~+, or a single negative charge, 
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~_. One has ~0 + 2~ = 1, since from electro-neutrality it follows that ~+ = ~_(=- ~). It 

will be shown now that by random association of  s monomers the effective (squared) 
charge of  these aggregates is given by 

qZff, s = 2 ~ e  2 (12) 

with 0~<~< 1/2. 
1 first, i.e., there are only charged droplets, For simplicity, consider the case ~ = ~  

s0 = 0. The probability pS to encounter an aggregate with valency Zs,k = k, k = - s ,  - s +  

1 . . . . .  s, follows from combinatorics as 

Rs 
k = s _ 2 m - - Z S ~ m j ,  m = 0 , 1  . . . . .  s .  (13) 

Formally, this is easily seen from the equality 

~ ( x  + 2~ x s-2m , (14) 
m=0 

where x is a continuous variable. Associating a positive (negative) charge with each 

positive (negative) power of  x when multiplying out the left hand side, the coefficient 
of  the term x ~-2m is proportional to the number of  combinations giving a total charge 
s -  2m=-k .  The advantage of  Eq. (14) is that one can use it to calculate arbitrary 

moments of  the distribution defined by p~ The vanishing of  the first moment,  k"  

± ± zs, k l~  = ( 2 s - m ) P ~ _ m = O ,  (15) 
k = - s  m=O 

follows immediately from taking the first derivative of  Eq. (14) with respect to x, 

multiplying by x and evaluating both sides for x = 1: 

£ 1 
(k) = kP;" = ~[XOx(X + x- ' )S lx= l  = 0 ,  (16) 

k=--s 

where Ox = d/dx .  Similarily, the second moment  is found from appropriate differentia- 
tions and evaluation at x = 1: 

± [± 2 = 2 S _ e 2  - m )  l~2s_mX [ (17) qeff.~ qs, kl~, (2s \2ns s 2m] 

k = - - s  [. m=0 -Ix= 1 

e 2 
= ~ [ ( X O x ) Z ( x  -~ -x - l )S ]x=l  = s e  2 , ( 1 8 )  

1 in agreement with Eq. (12) for ~ = ~. 
When neutral droplets are present, ~0 # 0, a similar line of  reasoning can be used 

starting from the relation 

1 1 Z { s "~ ~koC~k++k_xk+_k- 
(~oxO + ~(X + X - ' ) ) s =  3s \ko,  k+,k_ } o (19) 

ko+ko+ +k_ =s 
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where the sum is over all integers k0 and k+ being positive or zero; the binominals 
are replaced by the trinominal coefficients. When collecting all factors multiplying the 

powers x k+-k- with k =k+  - k_  f i xed ,  one obtains the probability p~(c~) to have an 
s-aggregate with total charge qs, k = ek.  It reads explicitly 

1 ' ( ) s   o s-k0 (20) 
~7 z_~ ko, (s  - ko + k ) / 2 , ( s  - ko - k ) / 2  

k0=0 

= ~  ko! ( s - k o + k ) !  ( ( s - k o - k ) ! )  , (21) 
k0 =0( 1 ) 

where k0 is summed over even (odd) values only, if  ( s -  k) is even (odd). The 
moments of  this distribution can be obtained by arguments identical to those given 
above. Electro-neutrality is again fulfilled, and the effective charge of s-aggregates is 
calculated as 

2 
q~lr s = ~7[(XOx)2(~o x°  + ct(x + x - I  ) )s]x= t = 2 a s e  2 ( 2 2 )  

' 3 

as has been claimed above. 
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