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Abstract. The Pauli problem is solved for a spin of lengthprepared in an arbitrary
(unnormalized) mixed state which hg&s + 1) free real parameters. The reconstruction of

its density operatop is possible if one knows the probabilities of tt#& + 1) spin components

along each of(2s + 1) directions in space. These probabilties are directly accessible through
measurements performed with a Stern—Gerlach apparatus. A multipole expansion of the density
operator establishes the link between the matrix elementsafd the measured intensities.

Repeated measurements on an ensemble of identically prepared systems allow one to
reconstruct the density operator of a particle [1]. The methods to solveirthégse
problem—originally formulated by Pauli [2] for pure particle states—simplifies considerably
if one performsredundant measurements. Experimentally, reconstruction schemes have
been shown to work for light [3], vibrating molecules [4] and ions in a trap [5] (see [6] for
a review). The state of atoms in motion has been reconstructed recently [7]. It is difficult,
however, to decide on theinimum number of expectation values in order to determine
unambiguously a pure or mixed state since the particle Hilbert-space is of infinite dimension.

The Hilbert space of a spinbeing of finite dimension, one expects the Pauli problem to
be easier to handle. Indeed, various answers to the problem have been obtained for mixed
spins of arbitrary length and for pure states witk: 2, 1, as reviewed in [8]. The density
matrix of a spins has been shown to be fixed througs + 1) measurements performed
with a Stern—Gerlach apparatus [9]. UsiRgynman filtersa phase-sensitive version of a
Stern—Gerlach apparatus [10], one can determine directly moduli and (relative) phases of
the individual matrix elements of the density operator [11] for spinlf normalized, it
depends on2s + 1)2 — 1 = 4s(s + 1) real parameters. Furthermore, as shown in [12],
the expectations ofs4s + 1) linearly independent spin multipoles do fix a unique density
operator; however, no method has indicated how to determine experimentally these values.
Alternatively, the discrete version of a Wigner function associated with finite-dimensional
Hilbert spaces allows for experimental reconstruction of quantum states [13] as exemplified
in the determination of a single quantized cavity mode [14].

In this letter, it will be shown that the mixed state of a spican be reconstructed while
respecting the following two constraints:

(i) the measurements are performed with a standard Stern—Gerlach apparatus only;

(i) no redundant information is acquired.
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These two requirements are natural in the sense that they correspond (i) to an especially
simple experimental procedure and (ii) to the most effective one. In particular, the use
of Feynman filtersinvolving delicate interference experiments is avoided. In addition,
the method isconstructive the measured data are not only shown to single oubigue
guantum state but the matrix elementspofire expressedxplicitly in terms of expectation
values.

The states of a spin of magnituddéelong to a Hilbert spack, of complex dimension
(2s + 1), carrying an irreducible representation of the graifp(2). The components of
the spin operatoS = s with standard commutation relations,[ s,] = is., ... generate
rotations about the corresponding axes. The standard basis of the¢p&cgiven by the
eigenvectors of the component of the spin, denoted hy), —s < p < s. The phases of
the states are fixed by the transformation under the anti-unitary time reierspérator:

T|p) = (=1)**| — u), and the ladder operatoss. = s,=+is, act as usual in this basis:

selp) = /s +1) — (£ +1). 1

The complexified algebrad, of observablesin the spaceH; has complex dimension
(2s + 1) It consists of all polynomials in the operatoss, s, and s, with complex
coefficients and of degrees2at most. A monomial of a degree higher than &n be
expressed as a linear combination of monomials of lower degree.

It is convenient to use a basis consistingmfiltipole operators associated with the
group SU (2) (cf [15]):

K=V 1 Y (-0 mls s —wla)ul  0<I<2s ~I<m<I (2)

H'==$

where (Im|su’, s — ) is the standard Clebsch—Gordan coefficient. The enserpble of all
operatorsK;,, forms anirreducible tensorial set. The(2s 4+ 1)> Hermitian (K, =
(-1)™K,_,,) multipole operators are orthogonal to each other:

25+ 1 Tr(K[/ Klm) = 811/ mm’ (3)

The multiplication table of multipole operatofs,, and their commutators are given in the
appendix.
As tensorial sets, the multipoles transform under an elemeftUqR) according to

]
U@ KmU@) = > KiwDy), (@) @

mm
m'=—I

where rotations about an axés by an anglgo| are represented as follows:
U@ =¢e"" and DV@) ="l )

and the angular momentum operafqr) acts in a subspace of dimensi@2 + 1).
A statistical (mixed) spin state is given by a Hermitian operator, the density matrix
which is an element of the algebrd. Thus, it can be expanded in the basis of multipoles:

2S + 1 Z p[mKlm (6)

with coefficientsp;, given through (3) as expectation values of the operakoys

Im = Tr(pKlm) = (_1)m:0[*_m' (7)
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Explicitly, one has
pim =25+ 1Y (=1 mlsu',s — w){ulpl). (8)
n!

Using the orthogonality of the Clebsch—Gordan coefficients [15], one can express the matrix
elements of the density matrix in terms of the coefficients in the expansion (6):

A o s :
(nlpln') N ;(w , 8 — pllm) o )

and equation (7) implies that the diagonal elements afe real. Clearly, both the collection

of all (|p|x') and of allp;,, each depend of®s +1)? real parameters—if, for convenience,

the density operatop is not normalized to one but T¢& = pgo > 0 only is required.

According to equation (9), the reconstruction of a density matrix has been achieved if one

is able to express the coefficentg, in terms of expectation values.

As indicated earlier, the measurements are to be performed with a Stern—Gerlach
apparatus only. Therefore, the experimentally accessible quantities are given by the
intensitiesp,, (0, ¢), representing the probability to find the system in an eigengtate, ¢)
of the spin operatai- s along directioni = (sind cosgp, sind sing, cosd). The probabilities
are diagonal elements of the density operator

Pu(@,9) = (u; 0, ¢lpln; 6, @) (10)
where

1
11 6. ¢) = expl-ips.]expl-i0s,]l) = Y W) ([UT©.6. 9)lu).  (11)

v=—I

Upon introducing the multipole expansion (6) efinto (10), one obtains
1
0,9) = ——— F(nlU(0,6, 9)K1,,U' (0,0,
pu(0, 9) 2S+1%:pzm<u«| 0,0, 9)KinU'(0,0, ¢)|11)
1
2541

and the second equality follows from the transformation property of the Bggisunder
rotations, equation (4). It is useful to replace the measured intengjiiby (2s + 1) linear
combinations:

> pi (| Kinr|1) D}, (0.6, ) (12)

Imm'

]
M0, ¢) =25+ 1Y (=)' (sp, s — ull0) p, (0, 9). (13)
n=-—I
A linear relation between measurable quantities and the multipole coefficients of the spin
state follows if the probabilitiep,, are expressed as in equation (12):

4 \?
L0, ) = <21—_+_1> Z Yim (O, ©) P}, (14)

m=—l

where the functiond,, (0, ¢) are the spherical harmonics:

2+1

In order to express the density matrix in terms of measurable quantities, now one has to
determine an appropriate set of directions in space such that it becomes possible to invert
the fundamental relation, equation (14). As a matter of fact there are many possibilities to

1
4 2 )
( z ) Yin (0, ) = d) (0)é™ = D§) (0,6, ¢). (15)
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extract the(2s 4+ 1)2 components of the staje from measured data (recall that the density
operatorp is not normalized to one). In the following, four approaches are presented which
require less and less measurements.

(i) If one were able to measure the probabilitigs(0, ¢) for all anglesd € [0, ), ¢ €
[0, 27), one could use the orthogonality of the spherical harmonics to extract the unknowns
by an integration over the surface of the unit sphere:

Pim = % dy dé sir () ) 16
Im <21 1) /0 /(; 1Y | lm( ) ) 1 ( ’ ) ( )

In view of the finite number of unknown parameters, this procedure involves a highly
redundant (and physically unrealistic) set of measurements.

(i) What does a discretized version of this approach look like? Measure the probabilities
for (2s + 1)? pairs of angleg®;, ¢;) distributed ‘homogeneously’ over the sphere in such a
way that the square matrix

Vimyjky = Yim (6;, @x) (17)

is invertible. A possible choice of direction&®;, ¢;) is given byg, = k2r/(2s + 1),
k=1...,25+1 andd; = jn/(2s+2), j =1,...,25 + 1, for example [16]. Note that
this method works for arbitrary states since the malliix,) jx) is independent of the density
operatorp. Altogether, the values of2s + 1)3 real numbers have to be determined, thus
still exceeding considerably the number of independent parameters.

For a further reduction of the number of measurements, the explicit form of the spherical
harmonics is used:

Yim (6, @) = €"P,, (6) (18)

whereP;,(6) = Ny, P/"(cosd) with P/ being a Legendre function of first kind multiplied
by a numerical factow,,,. UsingP,_,, = (—1)"P,, and equation (7), one obtains for any
pair of angles(6;, ¢x)
1
(85, i) = Pro(¥)) pro + Z Pim (6)) (cotmer)Re oy + Sin(mei)IM o). (19)
m=1

(iii) For directionsgg = 0, 91 = 21 /(2s + 1), 0, = jm/(2s +1) with j =0,...,2s on

two half-circles, one obtains a set of22 + 1)? linear equations from equation (19):

!
1,6, 0) = Pio(®)pio + Y _ Pim(6))REp (20)
m=1
I
I1;(6;, 1) = Pio(V)) pro + Z P (6;)(cosmep1)Repy, + sin(me)im py,,). (21)
m=1

When checking the case= 2s, one realizes that indeed a2 + 1)2 equations are needed
to solve for the unknown real and imaginary partsogf, requiring the matrice®;,,(6;) to
be invertible for all6;.

(iv) The most economical scheme is to measure the probabilities at a fixedbargt,,
and anglesy;, = k2r/(2s+ 1),k =0,...,2s, corresponding t@2s + 1) directions located
on a cone about the axis. Knowing the value$l,; (0, ¢x), and using the orthogonality
relation ", expiim — m")gr = (25 + D)Spum (—s < m,m’ < s), one has

1 SN
> e T (0w, i) (22)

P = 25 + D Pun O 2=
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The multipole amplitudeg;,, are just proportional to the Fourier transformsIof(6,,, ¢x)-
This methods works if?;,, (65) # 0 for all ({, m) which can be achieved always. Now using
equation (9), the matrix elementg|p|u’) are given in terms of measurable quantities. As a
matter of fact, exactly2s 4 1)? real numbers have to be determined for a reconstruction of
the operatop. One might suspect that for a generic density operator a natural generalization
of this results holds: one may select other appropridte+ 1) spatial directions to define
the measurements.

The method presented here also applies to pure states with a density gnattix) (y|.
If |4) is not normalized, @s+1) real parameters are unknown. In principle, the knowledge
of pio andp;1, 0 < 1 < 2s, is sufficient to reconstruct the state as follows from equation (9):

(=D

VoV = o Z(SM, s — ull10)po (23)
]
. (=1)y*
VY1 = o Z(SM + 1,5 — ullpn. (24)
7

The first set of equations allows one to extract the moduli of the coefficients, and the second
one can be used subsequently to determine the relative phases. It is not clear, however,
what kind of Stern—Gerlach measurement would determjpeand p;; alone. Thus, even
the most economic procedure for mixed states is necessarily redundant for pure states. The
problem of defining nonredundant measurements for a pure spin state can be solved by a
different method [17].

To sum up, the multipole expansion of the density operator for assjgra useful tool
in order to reconstruct the quantum state by measurements with a Stern—-Gerlach apparatus.
The most efficient approach requires to measure(#e+ 1) intensities along(2s + 1)
directions on a cone about some axis in space determinin@sal 1)2 free parameters of
the density matrixp.

Appendix

The multiplication table of multipole operators i, is given by
Kin Ky =Y p@1s)Um, '/ |"'m") Ky (25)
l//m//

where the numbep (I/'l”s) is essentially a Racahjécoefficient [15]:

p(ll/l”s)=(—1>2*+’”\/<2s+1><2z+1><21/+1>{i P } (26)

The Lie-algebra composition law of basis elements reads
i

Kim, Kyw] = —— W's)yAm, U'm'|I"m" YK 27

[Kim, Kim] s(s+1)%;o< )m, I'm'I'm")K, (27)
where

o(l'l"s) = —iys(s + D[L — (=D pl'l"s). (28)
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