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Contracting the Wigner kernel of a spin to the Wigner kernel of a particle
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A general relation between the Moyal formalisms for a spin and a particle is established. Once the formalism
has been set up for a spin, the phase-space description of a particle is obtained from contracting the group of
rotations to the oscillator group. In this process, turn into a spin Wigner kernel turns into the Wigner kernel of
a particle. In fact, onlyoneout of 22s different possible kernels for a spin shows this behavior.
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I. INTRODUCTION

To represent quantum mechanics in terms ofc-number
valued functions has various appealing properties. It
comes possible to situate the quantum-mechanical des
tion of a system in a familiar frame, namely the phase sp
of its classical analog. Similarities and differences of the t
descriptions can be visualized particularly well in such
approach. Further, from a structural point of view, to calc
late expectation values of operators by means of ‘‘quasipr
abilities’’ in phase space is strongly analogous to the de
mination of mean values in classical statistical mechan
@1#. The basic ingredient to set up such asymbolic calculusis
a one-to-one correspondence between~self-adjoint! operators
Â acting on a Hilbert spaceH and ~real! functionsWA de-
fined on the phase spaceG of the classical system.

The quantum mechanics of spin and particle systems
be represented faithfully in terms of functions defined on
surface of a sphere with radiuss, and on a plane, respec
tively. Intuitively, one expects these phase-space form
tions to approach each other for increasing values of the
quantum number since the surface of a sphere is then
proximated by a plane with increasing accuracy. Therefo
appropriate Wigner functions of a spin, say, should go o
smoothly into particle Wigner functions in the limit of larg
s. It will be shown how this transition can be performed in
rigorous and general way. The derivation is based on
group-theoretical technique ofcontraction. The group U~2!
@containing the subgroup SU~2!# is contracted to the oscilla
tor group having the Heisenberg-Weyl group HW1 associ-
ated with the particle, as a subgroup. In this procedure, r
tions go over into translations. Subsequently, the oper
kernel which defines the spin Wigner formalism in a co
densed manner will be shown, in the limit of infinites, to
contract to the operator kernel for a particle.

II. WIGNER KERNEL FOR A PARTICLE

Consider a particle on the real lineR1, with position and
momentum operators satisfying @ q̂,p̂#5 i\. The
Stratonovich-Weyl correspondence, associating opera
with functions in phase space, can be characterized elega
by means of akernel @2,3#,
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D̂~a!52T̂~a!P̂T̂†~a!, a5
1

A2
~q1 ip !PG[C, ~1!

which has an interpretation as aparity operatordisplaced by
a. The unitary@4#

T̂~a!5exp@aa12a* a# ~2!

effects translations in phase spaceG,

a→T̂~a!aT̂†~a!5a2a, ~3!

wherea2[a5(q̂2 i p̂)/A2 anda15a† are the standard an
nihilation and creation operators (\51). At the origin a
50, the kernel equals~two times! the unitary, involutive

parity operatorP̂,

P̂aP̂†52a, ~4!

corresponding to a reflection at the origin ofG. Using the
number operatorN̂5a1a and its eigenstates,

N̂un&5nun&, n50,1,2, . . . , ~5!

parity can be given a simple form which will be useful late

P̂5exp@ ipN̂#5 (
n50

`

~2 !nun&^nu. ~6!

The kernelD̂(a) can be derived from theStratonovich-Weyl
postulates@6# which are natural conditions on a quantum
mechanical phase-space representation. The correspond
between a~self-adjoint! operatorÂ and a~real! function is
defined by

WA~a!5Tr@D̂~a!Â#, ~7!

while its inverse reads
©2000 The American Physical Society02-1
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Â5E
G
daWA~a!D̂~a!. ~8!

If Â is the density operator of a pure state,r̂5uc&^cu, the
symbol defined in Eq.~7! is theWigner functionof the state
uc&,

Wc~p,q!5
2

hEG
dxc* ~q1x!c~q2x!exp@2ipx/\#. ~9!

It is important to note that the kernelD̂(a) is entirely defined
in terms of the operatorsa6 andN̂, forming a closed algebra
under commutation if the identity is included

@a,a1#51, @N̂,a6#56a6. ~10!

The operatorsa6 and the unity 1 generate theHeisenberg-

Weyl group HW1. The kernelD̂(a) in Eq. ~1! is—apart from
the factor of two— an element of theoscillator group @5#

spanned by the generators ofHW1 plus the operatorN̂.

III. WIGNER KERNEL FOR A SPIN

For a quantum spin, the symbol associated with an op
tor is a continuous function defined on thesphereS 2, being
the phase space of the classical spin. When setting u
phase-space formalism, rotations take over the role of tra
lations. The group SU~2! is generated by the components
the spin operatorŜ. The three operatorsŜ65(Ŝx6 iŜy) and
Ŝz, satisfy the commutation relations

@Ŝ1,Ŝ2#52Ŝz, @Ŝz,Ŝ6#56Ŝ6, ~11!

while the algebrau(2) contains the identity 1s , in addition.
The standard basis

nz•Ŝus,m&5mus,m&, m52s, . . . ,s, ~12!

is given by the eigenstates of thez componentŜz of the spin.
For a quantum spin, it is natural to expect that the e

ments of the Wigner kernel will be labeled by points of t
sphere S 2, corresponding to unit vectors n
5(sinq cosw,sinq sinw,cosq), parametrized here by stan
dard spherical coordinates. Replacing intuitively translatio
in Eq. ~1! by rotations leads to the expression

D̂~n!5Û~n!P̂sÛ
†~n!, ~13!

where

Û~n!5exp@2 iqk•Ŝ# ~14!

with a unit vectork5(2sinw,cosw,0) in thexy plane. Thus,
Û(n) represents a finite rotation which maps the opera
Ŝz5nz•Ŝ into n•Ŝ, i.e., nz→n. What are natural choices fo

the operatorP̂s?
Two possibilities come to one’s mind. First, try to transf

the concept of reflection about some point in phase sp
01210
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Introduce canonical coordinates (q,p)5(w,cosq) on the
sphere. Then, ‘‘parity’’ would correspond to the ma
(w,cosq)→(2w,2cosq), or (w,q)→(2p2w,p2q). This
is just a rotation byp about thex axis. Since all points of the
sphere are equivalent, one could also choose a rotation bp

about thez axis as candidate for parity. Second,P̂s might be
considered to generate reflections about the center of
sphere,n→2n, that is, (w,q)→(w1p,p2q). It can be
shown thatboth possibilities donot give rise to a symbolic
calculus on the sphere@6#, violating bijectivity between op-
erators and phase-space functions, for example.

Nevetheless, acceptable operator kernelsD̂«(n) do exist
as shown by Stratonovich@7#, Agarwal @8#, Várilly and
Gracia-Bondı´a @9#, and by Amiet and Cibils@10#. For ex-
ample, the condition that the kernel should satisfy appro
ate Stratonovich-Weyl postulates implies@9# that

D̂«~n!5 (
m,m852s

s

Zmm8
«

~n!us,m&^s,m8u. ~15!

The coefficients

Zmm8
«

~n!5
A4p

2s11 (
l 50

2s

« lA2l 11K s l

m m82m
U s

m8
L

3Yl ,m82m~n!, ~16!

where«051 and« l561,l 51, . . . ,2s, are linear combina-
tions of Clebsch-Gordan coefficients multiplied by spheri
harmonicsYl ,m(n),l 50,1, . . . ,2s, m52 l , . . . ,l . Note that
Eq. ~16! does not provide a unique kernel but, due to t
factors« l , one can define 22s different Stratonovich-Weyl
correspondence rules.

Unfortunatley, the expression~15! does not admit a
simple interpretation of the operator in analogy to Eq.~1!. It
follows from an independent derivation@11# of D̂(n) that Eq.
~15! can be written in the form~13! where

P̂s5D̂«~nz!5 (
m52s

s

D«~m!us,m&^s,mu, ~17!

with coefficients

D«~m!5(
l 50

2s

« l

2l 11

2s11 K s l

m 0
U s

mL . ~18!

Still, the operatorP̂s does not have an obvious interpretatio
but a new strategy to render plausible its form emerges. C
sider a plane tangent to the sphere at its north pole.
increasing radius, the sphere is approximated locally be
and better by the plane. Therefore, one might expect that
s→` objects defined on the sphere turn into objects defi
on the plane. It has been conjectured in@11# that in this limit
the Wigner kernel of a spin goes over into the kernel fo
particle. It is the purpose of this paper to show that

lim
s→`

Û~n!D̂~nz!Û
†~n!5D̂~a! ~19!
2-2
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is indeed true for the kernelD̂«(nz) with parameters«1

5«25•••5«2s51, denoted byD̂(nz) for short. Thus, while
the rotationsÛ(n) go over into translations, the operat
D̂(nz) corresponds, in one way or another, to parity for
spin. A convenient framework to prove Eq.~19! is thecon-
traction of groups@5# as is explained in the next section.

IV. CONTRACTING U„2…

We introduce three new operatorsÂ6 and Âz defined as
linear combinations of the elements of the algebrau(2) in
polar form,

Â65cŜ7, Âz52Ŝz1
1s

2c2
, ~20!

while leaving the identity 1s unchanged. This transformatio
is invertible for each value of the parameterc.0. The non-
zero commutators of these operators are given by

@Â2,Â1#51s22c2Âz, @Âz,Â6#56Â6, ~21!

and the identity 1s commutes withÂ6 and Âz. These rela-
tions have a well-defined limit ifc→0, nonwithstanding tha
the transformation~20! is not invertible forc50. In fact,
they reproduce the commutation relations of the algebra
~10! after identifying

lim
c→0

Â65a6, lim
c→0

Âz5N̂, lim
c→0

1s51. ~22!

How do rotations behave in this limit? Any finite rotatio
Û(n)PSU(2) in Eq. ~14! can be written in the form

Û~n!5exp@j2Ŝ22j1Ŝ1#, j25
q

2
eiw, j15j2* ,

~23!

or, expressed in terms of the operators~20!,

Û~n!5exp@~j2Â12j1Â2!/c#. ~24!

Let the coefficientsj6 shrink with the parameterc according
to

lim
c→0

j2

c
5 lim

c→0

qeiw

2c
5a, lim

c→0

j1

c
5 lim

c→0

qe2 iw

2c
5a* ,

~25!

which requires ever smaller rotations (q decreasing linearly
with c) on an ever larger sphere (s going to infinity! as
detailed in@5#. Then, a rotationÛ(n) tends to a well-defined
element of the Heisenberg-Weyl group, Eq.~2!:

lim
c→0

Û~n!5T̂~a!. ~26!

For consistency, the limitc→0 must correctly reproduce th
eigenvalues of the operatorN̂, given by the non-negative
01210
in

integers. This is achieved if the limitsc→0 ands→` are
performed simultaneously in such a way that

lim
c→0

@122c2s~c!#50. ~27!

Consequently, the radius of the spheres increases with de-
creasing values ofc. Let us now look at the fate of the
eigenvalue equation~12! which implies

lim
c→0

F S 2Ŝz1
1s

2c2D Us,s2nL G
5 lim

c→0
F ~s2m!1S 1

2c2
2sD G lim

c→0
us,s2n&.

~28!

This gives

N̂un&5nun&, ~29!

using Eq.~22! and a relation from@5#,

lim
c→0

us,m&5 lim
c→0

us,s2n&5un&, n5s2mPN0 . ~30!

Thus, the stateus,s& turns into the ‘‘ground state’’ associate
with the operatorN̂, and it becomes obvious why one nee
to associate thecreation operatorŜ1 with the annihilation
operatora @cf. ~20!#: the eigenstates withmaximal sare
linked to the oscillator ground state withminimal n50. In
@5#, the opposite convention has been used. Nevertheles
remains true that not only spin eigenstates are mapped
number eigenstates but many other expressions related t
group U~2! turn into an equivalent expression for the osc
lator group.

This is good news for the present purpose to establis
relation between the Moyal formalism of a particle and
spin. Consider the limit of the kernel~13! under contraction
using Eq.~26!,

lim
c→0

D̂~n!5T̂~a!~ lim
c→0

P̂s!T̂
†~a!. ~31!

The middle term can be written as@cf. ~30!#

lim
c→0

P̂s5 lim
c→0

(
m52s

s

D«~m!us,m&^s,mu

5 (
n50

`

@ lim
c→0

D«~s2n!#un&^nu. ~32!

Upon comparison with Eq.~6!, the Wigner kernel of a spin is
seen to turn into the Wigner kernel of the particle if

lim
s→`

(
l 50

2s

« l S 2l 11

2s11D 1/2K s s

s2n n2s
U l

0L 52 ~33!
2-3
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holds for all non-negative integersn. In the next section, this
will be shown to be true for the choice« l511, l
51, . . . ,2s.

V. SUMMING THE SERIES

Evaluating the sum~33! in the limit s→` proceeds in two
steps. First, the asymptotic form of the terms

D l ,n
s 5S 2l 11

2s11D 1/2K s s

s2n n2s
U l

0L ~34!

to be summed is determined with the help of a recurre
formula for Clebsch-Gordan coefficients. Then, the sums
transformed into integrals which can be evaluated. All a
proximations drop terms of the order 1/s at least, hence the
result isexactin the limit of infinite s.

Clebsch-Gordan coefficients satisfy the following rec
sion relation@12#:

@ l ~ l 11!22s~s11!12m2#K s s

m 2m
U l

0L
5@s~s11!2m~m11!#K s s

m11 2~m11!
U l

0L
1@s~s11!2m~m21!#K s s

m21 2~m21!
U l

0L ,

~35!

implying that

~n11!S 12
n11

2s11DD l ,n11
s 1S 2n112

2n212n11

2s11 DD l ,n
s

1nS 12
n

2s11DD l ,n21
s 5

l ~ l 11!

2s11
D l ,n

s . ~36!

For any finiten the terms subtracted on the left-hand si
become less and less important ifs→`. Assume now that
one can factorize the terms with large values ofn in the form

D l ,n
s ~xl !5Ln~xl !D l ,0

s , L0~xl !51, xl5
l ~ l 11!

2s11
.

~37!

Due to Eq.~36!, the polynomialLn(xl) of ordern in xl must
satisfy a three-term recursion relation,

~n11!Ln11~xl !1~2n11!Ln~xl !1nLn21~xl !5xlLn~xl !,

~38!

where terms of order 1/s have been dropped in Eq.~38!. Its
solutions@13# are proportional to the Laguerre polynomia
Ln(xl), and the ‘‘normalization’’ conditionL0(xl)51 im-
plies that for alln50,1,2,...,

Ln~xl !5~2 !nLn~xl !5~2 !n(
k50

n S n
kD ~2xl !

k

k!
. ~39!
01210
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The value of the termD l ,0
s in Eq. ~37! can be determined in

the following way. Ifs is large, one has for each finitek

S 12
k

2s11D 2s11

;exp@2k#, ~40!

which leads to the approximation

D l ,0
s 5S 2l 11

2s11
D 1/2K s s

s 2s
U l

0L
5

2l 11

2s11
S ~2s!!

~2s2 l !!

~2s!!

~2s1 l 11!!
D 1/2

5
2l 11

2s11 S )
k50

l

@12k/~2s11!#

)
k50

l

@11k/~2s11!#
D 1/2

;
2l 11

2s11
expF2

1

2

l ~ l 11!

2s11 G . ~41!

Collecting the results, one has

lim
s→`

(
l 50

2s

D l ,n
s ;~2 !n lim

s→`
(
l 50

2s

DxlLn~xl !e
2xl /2, ~42!

where Dxl5(xl 112xl)5(2l 11)/(2s11)1O(1/s). Trans-
forming now the Riemann sum into an integral, one obta
the result announced in Eq.~33!,

lim
s→`

(
l 50

2s

D l ,n
s 5~2 !nE

0

`

dxLn~x!e2x/252, ~43!

using the formula

E
0

`

dxLn~x!e2x/t5t~12t !n ~44!

for t52. This identity is proven easily by means of the e
pansion in Eq.~39!.

VI. DISCUSSION

Starting from a new form of the kernel defining the fam
iar Wigner formalism for a spin, its limit for infinite value
of s has been shown to be the Wigner kernel of a particle.
the kernel defines entirely a phase-space representation
result guarantees that the Moyal formalism for a particle
reproduced automatically andin toto, if the limit s→` of the
spin Moyal formalism is taken. In@14#, a similar idea has
been worked out leading to an equivalent result.

In fact, slightly more has been shown in the present pa
The result removes an ambiguity of the Moyal formalism f
a spin: the Stratonovich-Weyl postulates are compatible w
a discretefamily of 22s distinct kernelsD̂«(n). However,
only oneof these kernels turns into the particle kernel. Th
2-4
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kernel had been singled out before for other reasons@10#. In
summary, the group-theoretical contraction shows that
phase-space representations a` la Wigner for spin and particle
systems are structurally equivalent.
-
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