$\mathcal{P T}$-symmetry and its spontaneous breakdown explained by anti-linearity

Stefan Weigert
HuMP (Hull Mathematical Physics), Department of Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, UK
E-mail: s.weigert@hull.ac.uk

Received 1 November 2002, in final form 18 December 2002
Published 9 June 2003
Online at stacks.iop.org/JOptB/5/S416

Abstract

The impact of an anti-unitary symmetry on the spectrum of non-Hermitian operators is studied. Wigner's normal form of an anti-unitary operator accounts for the spectral properties of non-Hermitian, $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians. The occurrence of either single real or complex conjugate pairs of eigenvalues follows from this theory. The corresponding energy eigenstates span either one- or two-dimensional irreducible representations of the symmetry $\mathcal{P} \mathcal{T}$. In this framework, the concept of a spontaneously broken $\mathcal{P T}$-symmetry is not needed.

Keywords: $\mathcal{P} \mathcal{T}$-symmetry, anti-linearity, anti-unitarity, invariances, representation theory

Deep in their hearts, many quantum physicists will renounce hermiticity of operators only reluctantly. However, nonHermitian Hamiltonians are applied successfully in nuclear physics, biology, and condensed matter, often modelling the interaction of a quantum system with its environment in a phenomenological way. Since 1998, non-Hermitian Hamiltonians have continued to attract interest from a conceptual point of view [1]: surprisingly, the eigenvalues of a one-dimensional harmonic oscillator Hamiltonian remain real when the complex potential $\hat{V}=\mathrm{i} \hat{x}^{3}$ is added to it. Numerical, semiclassical, and analytic evidence [2] has been accumulated confirming that bound states with real eigenvalues exist for the vast class of complex potentials satisfying $V^{\dagger}(\hat{x})=V(-\hat{x})$. In addition, pairs of complex conjugate eigenvalues occur systematically.
$\mathcal{P T}$-symmetry has been put forward to explain the observed energy spectra. The Hamiltonian operators \hat{H} under scrutiny are invariant under the combined action of parity \mathcal{P} and time reversal \mathcal{T} :

$$
\begin{equation*}
[\hat{H}, \mathcal{P} \mathcal{T}]=0 . \tag{1}
\end{equation*}
$$

They act on the fundamental observables according to

$$
\mathcal{P}:\left\{\begin{array}{l}
\hat{x} \rightarrow-\hat{x}, \tag{2}\\
\hat{p} \rightarrow-\hat{p},
\end{array} \quad \mathcal{T}:\left\{\begin{array}{l}
\hat{x} \rightarrow \hat{x}, \\
\hat{p} \rightarrow-\hat{p},
\end{array}\right.\right.
$$

and \mathcal{T} anti-commutes with the imaginary unit:

$$
\begin{equation*}
\mathcal{T} \mathrm{i}=\mathrm{i}^{*} \mathcal{T} \equiv-\mathrm{i} \mathcal{T} . \tag{3}
\end{equation*}
$$

Whenever a $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian has a real eigenvalue E, the associated eigenstate $|E\rangle$ is found to be an eigenstate of the symmetry $\mathcal{P} \mathcal{T}$:

$$
E=E^{*}: \quad \hat{H}|E\rangle=E|E\rangle, \quad \mathcal{P} \mathcal{T}|E\rangle=+|E\rangle .
$$

Occasionally, $\mathcal{P} \mathcal{T}|E\rangle=-|E\rangle$ occurs [3] which is equivalent to (4) upon redefining the phase of the state: $\mathcal{P} \mathcal{T}(\mathrm{i}|E\rangle)=$ $+(\mathrm{i}|E\rangle)$. There is no difference between symmetry and antisymmetry under $\mathcal{P} \mathcal{T}$.

However, if the eigenvalue E is complex, the operator $\mathcal{P} \mathcal{T}$ does not map the corresponding eigenstate of \hat{H} to itself:

$$
\begin{equation*}
E \neq E^{*}: \quad \hat{H}|E\rangle=E|E\rangle, \quad \mathcal{P} \mathcal{T}|E\rangle \neq \lambda|E\rangle \tag{5}
\end{equation*}
$$

where λ is any real or complex number. This situation is described as a 'spontaneous breakdown' of $\mathcal{P} \mathcal{T}$-symmetry. No mechanism has been identified which would explain this breaking of the symmetry.

The $\mathcal{P} \mathcal{T}$-symmetric square-well model provides a simple example for this behaviour [4]. It describes a particle moving between reflecting boundaries at $x= \pm 1$, in the presence of a piecewise constant complex potential,

$$
V_{Z}(x)=\left\{\begin{array}{rl}
\mathrm{i} Z, & x<0, \tag{6}\\
-\mathrm{i} Z, & x>0,
\end{array} \quad Z \in \mathbb{R} .\right.
$$

Acceptable solutions of Schrödinger's equation must satisfy both the boundary conditions, $\psi(\pm 1)=0$, and continuity conditions at the origin. As long as the value of the parameter Z is below a critical value, $Z<Z_{0}^{c}$, the eigenvalues E_{n} of the non-Hermitian Hamiltonian $\hat{H}=-\partial_{x x}+V_{Z}(x)$ are real, and each eigenstate $\left|\psi_{n}\right\rangle$ satisfies the relations (4), with eigenvalues E_{n} and +1 , respectively. Above the threshold, $Z>Z_{0}^{c}$, at least one pair of complex conjugate eigenvalues E_{0} and E_{0}^{*} develops. One of the corresponding eigenstates has the form [4]

$$
\psi_{0}(x)= \begin{cases}K_{p} \sinh \kappa(1-x), & x>0, \tag{7}\\ K_{n} \sinh \lambda^{*}(1+x), & x<0,\end{cases}
$$

the complex parameters κ, λ, K_{n}, and K_{p} being determined by the boundary and continuity conditions. The state $\psi_{0}(x)$ is not invariant under $\mathcal{P} \mathcal{T}$; i.e. (5) holds.

The purpose of the present contribution is a grouptheoretical analysis of $\mathcal{P} \mathcal{T}$-symmetry. The properties of $\mathcal{P} \mathcal{T}$ symmetric systems are explained in a natural way by taking into account that $\mathcal{P T}$ is not a unitary but an anti-unitary symmetry of a non-Hermitian operator. The argument proceeds in three steps. First, Wigner's normal form of anti-unitary operators is reviewed; this amounts to identifying their (irreducible) representations. Second, the properties of non-Hermitian operators with anti-unitary symmetry are derived. These results are then shown to account for the characteristic features of $\mathcal{P T}$-symmetric systems, including the occurrence of both single real and pairs of complex conjugate eigenvalues.

Wigner develops a normal form of anti-unitary operators \hat{A} in [5]. Anti-unitarity of \hat{A} is defined by the relation

$$
\begin{equation*}
\langle\hat{A} \chi \mid \hat{A} \psi\rangle=\langle\psi \mid \chi\rangle . \tag{8}
\end{equation*}
$$

Anti-unitarity implies anti-linearity:

$$
\begin{equation*}
\hat{A}(\alpha|\psi\rangle+\beta|\chi\rangle)=\alpha^{*} \hat{A}|\psi\rangle+\beta^{*} \hat{A}|\chi\rangle \tag{9}
\end{equation*}
$$

which is equivalent to (3). The representation theory of \hat{A} relies on the fact that the square of an anti-unitary operator is unitary:

$$
\begin{equation*}
\left\langle\hat{A}^{2} \chi \mid \hat{A}^{2} \psi\right\rangle=\langle\hat{A} \psi \mid \hat{A} \chi\rangle=\langle\chi \mid \psi\rangle \tag{10}
\end{equation*}
$$

Let the operator \hat{A}^{2} have a discrete spectrum (according to Wigner, operators with a continuous spectrum can be treated similarly [5]). Then it has a complete, orthonormal set of eigenvectors $|\Omega\rangle$ with eigenvalues Ω of modulus one:

$$
\begin{equation*}
\hat{A}^{2}|\Omega\rangle=\Omega|\Omega\rangle, \quad|\Omega|=1 \tag{11}
\end{equation*}
$$

It plays the role of a Casimir-type operator labelling different representations of \hat{A}. Wigner distinguishes three different types of representation corresponding to the eigenvalues of \hat{A}^{2} : complex $\Omega\left(\neq \Omega^{*}\right), \Omega=+1$, or $\Omega=-1$, summarized in table 1.
(1) An eigenstate $|\Omega\rangle$ of \hat{A}^{2} with eigenvalue $\Omega\left(\neq \Omega^{*}\right)$ is not invariant under \hat{A}. Instead, the states $|\Omega\rangle$ and $\left|\Omega^{*}\right\rangle \equiv$ $\hat{A}|\Omega\rangle$ constitute a 'flipping pair' with complex 'flipping value' ω (and ω^{*}), where $\omega^{2}=\Omega$. They span a twodimensional space which is closed under the action of \hat{A}. Therefore, it carries a two-dimensional representation of \hat{A}, denoted by Γ_{*}, which is irreducible: due to the antilinearity of \hat{A}, no (non-zero) linear combination of the flipping states exist which would be invariant under \hat{A}.

Table 1. Representations Γ of the operator \hat{A}.

$\Omega \equiv \omega^{2}$	Γ	Action of \hat{A}	$\operatorname{Dim} \Gamma$
$\Omega \neq \Omega^{*}$	Γ_{*}	$\hat{A}\|\Omega\rangle=\omega^{*}\left\|\Omega^{*}\right\rangle$	
		$\hat{A}\left\|\Omega^{*}\right\rangle=\omega\|\Omega\rangle$	2
-1	Γ_{-}	$\hat{A}\|-\rangle=-\mathrm{i}\left\|-{ }^{*}\right\rangle$	
		$\hat{A}\left\|-{ }^{*}\right\rangle=+\mathrm{i}\|-\rangle$	2
+1	Γ_{+}	$\hat{A}\|+\rangle=+\left\|+^{*}\right\rangle$	
+1	γ_{+}	$\hat{A}\left\|+^{*}\right\rangle=+\|+\rangle$	2

(2) Similarly, if \hat{A}^{2} has an eigenvalue $\Omega=-1$, then the operator \hat{A} flips the states $|-\rangle$ and $\left|-{ }^{*}\right\rangle \equiv \hat{A}|-\rangle$. The flipping value is $\omega=\sqrt{-1}=\mathrm{i}$, and the associated twodimensional representation Γ_{-}is not reducible.
(3) Two different situations arise if there is an eigenstate $|1\rangle$ of \hat{A}^{2} with eigenvalue +1 . The state $\hat{A}|1\rangle$ is either a multiple of itself or not. In the first case, the space spanned by $|1\rangle$ is invariant under \hat{A} and hence carries a onedimensional representation γ_{+}of \hat{A}. When redefining the phase of the state appropriately, one obtains an eigenstate $|1\rangle$ of \hat{A} with eigenvalue +1 . In the second case, the two states $|+\rangle \equiv|1\rangle$ and $\left|+{ }^{*}\right\rangle \equiv \hat{A}|1\rangle$ provide a flipping pair with flipping value $\omega=+1$, and hence a representation Γ_{+}. This representation, however, is reducible due to the reality of the flipping value: the linear combinations $\left|1_{r}\right\rangle=|+\rangle+\left|+^{*}\right\rangle$ and $\left|1_{i}\right\rangle=\mathrm{i}\left(|+\rangle-\left|+^{*}\right\rangle\right)$ are both eigenstates of \hat{A} with eigenvalue +1 .

Consequently, a Hilbert space \mathcal{H} naturally decomposes into a direct product of invariant subspaces, each invariant under the action of the anti-unitary operator \hat{A} :

$$
\begin{equation*}
\mathcal{H}=\Gamma_{*}{ }^{\otimes N_{*}} \otimes \Gamma_{-}{ }^{\otimes N_{-}} \otimes \Gamma_{+}{ }^{\otimes N_{+}} \otimes \gamma_{+}^{\otimes n_{+}} ; \tag{12}
\end{equation*}
$$

the non-negative integers $N_{*}, N_{ \pm}$, and n_{+}account for the degeneracies of the eigenvalues $\Omega\left(\neq \Omega^{*}\right)$ and $\Omega= \pm 1$ of the operator \hat{A}^{2}. The corresponding decomposition of a vector $|\psi\rangle \in \mathcal{H}$ is the closest analogue of an expansion into the eigenstates of a Hermitian (or unitary) operator. In contrast to the representation theory of linear operators, two-dimensional irreducible representations of \hat{A} exist, although there is only one generator, \hat{A}. However, there is no 'good quantum number' which would label the states spanning these representations.

A (diagonalizable) non-Hermitian Hamiltonian \hat{H} with a discrete spectrum [6] and its adjoint \hat{H}^{\dagger} each have a complete set of eigenstates:

$$
\begin{equation*}
\hat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle, \quad \hat{H}^{\dagger}\left|\psi^{n}\right\rangle=E^{n}\left|\psi^{n}\right\rangle \tag{13}
\end{equation*}
$$

with complex conjugate eigenvalues related by $E^{n}=E_{n}^{*}$. They form a bi-orthonormal basis in \mathcal{H}, as they provide two resolutions of unity:

$$
\begin{equation*}
\sum_{n}\left|\psi^{n}\right\rangle\left\langle\psi_{n}\right|=\sum_{n}\left|\psi_{n}\right\rangle\left\langle\psi^{n}\right|=\hat{I}, \tag{14}
\end{equation*}
$$

and satisfy orthogonality relations:

$$
\begin{equation*}
\left\langle\psi_{m} \mid \psi^{n}\right\rangle=\delta_{m}^{n} . \tag{15}
\end{equation*}
$$

Let the non-Hermitian operator \hat{H} have an anti-unitary symmetry \hat{A} :

$$
\begin{equation*}
[\hat{H}, \hat{A}]=0 . \tag{16}
\end{equation*}
$$

Then the unitary operator \hat{A}^{2} commutes with \hat{H}, and it has eigenvalues Ω of modulus one. Consequently, there are simultaneous eigenstates $|n, \Omega\rangle$ of \hat{H} and \hat{A}^{2} :

$$
\begin{equation*}
\hat{H}|n, \Omega\rangle=E_{n}|n, \Omega\rangle, \quad \hat{A}^{2}|n, \Omega\rangle=\Omega|n, \Omega\rangle, \tag{17}
\end{equation*}
$$

with complex energies $E_{n} \in \mathbb{C}$. For simplicity, the eigenvalues Ω are assumed discrete and not degenerate. Wigner's normal form of anti-unitary operators suggests considering three cases separately: complex $\Omega\left(\neq \Omega^{*}\right)$ and $\Omega= \pm 1$.
(1) $\Omega \neq \Omega^{*}$. The state

$$
\begin{equation*}
\left|n, \Omega^{*}\right\rangle \equiv \omega \hat{A}|n, \Omega\rangle, \quad \omega^{2}=\Omega \tag{18}
\end{equation*}
$$

is a second eigenstate of \hat{A}^{2}, with eigenvalue Ω^{*}. The states $\left\{|n, \Omega\rangle,\left|n, \Omega^{*}\right\rangle\right\}$ provide a flipping pair under the action of the operator \hat{A} :

$$
\begin{equation*}
\hat{A}|n, \Omega\rangle=\omega^{*}\left|n, \Omega^{*}\right\rangle, \quad \hat{A}\left|n, \Omega^{*}\right\rangle=\omega|n, \Omega\rangle \tag{19}
\end{equation*}
$$

carrying the representation Γ_{*}. No degeneracy of the eigenvalue E_{n} is implied by the anti-unitary \hat{A}-symmetry of \hat{H}. However, the non-Hermitian Hamiltonian has a second eigenstate $\left|n, \Omega^{*}\right\rangle$ with eigenvalue E_{n}^{*} :

$$
\begin{equation*}
\hat{H}\left|n, \Omega^{*}\right\rangle=E_{n}^{*}\left|n, \Omega^{*}\right\rangle \tag{20}
\end{equation*}
$$

as follows from multiplying the first equation of (17) with \hat{A} and ω.
(2) $\Omega=-1$. Formally, the results for the representation Γ_{-} are obtained from the previous case by setting $\omega=\sqrt{-1}=\mathrm{i}$. Again, a pair of complex conjugate eigenvalues is found, and the associated flipping pair spans a two-dimensional representation space.
(3) $\Omega=+1$. This case is conceptually different from the previous ones as two possibilities arise. Consider the state $|n,+\rangle$, an eigenvector of both \hat{H} and \hat{A}^{2} with eigenvalues E_{n} and +1 , respectively. It satisfies equations (17) with $\Omega \rightarrow+$. On the one hand, if applying \hat{A} to $|n,+\rangle$ results in $\mathrm{e}^{\mathrm{i} \phi}|n,+\rangle$, then the state $|n, 1\rangle \equiv \mathrm{e}^{-\mathrm{i} \phi / 2}|n,+\rangle$ is an eigenstate of \hat{A} with eigenvalue +1 :

$$
\begin{equation*}
\hat{A}|n, 1\rangle=|n, 1\rangle \tag{21}
\end{equation*}
$$

This occurrence of the one-dimensional representation γ_{+} forces the associated eigenvalue E_{n} of \hat{H} to be real since

$$
\begin{equation*}
E_{n}|n, 1\rangle=\hat{H} \hat{A}|n, 1\rangle=\hat{A} \hat{H}|n, 1\rangle=E_{n}^{*}|n, 1\rangle \tag{22}
\end{equation*}
$$

If, on the other hand, the state $\left|n,+^{*}\right\rangle \equiv \hat{A}|n,+\rangle$ is not a multiple of $|n,+\rangle$, then these two states combine to form the representation Γ_{+}, the flipping value being +1 . Further, the state $\left|n,+{ }^{*}\right\rangle$ is an eigenstate of the Hamiltonian with eigenvalue E_{n}^{*}. As the flipping number is real, linear combinations of $|n,+\rangle$ and $\left|n,+^{*}\right\rangle$ do exist which are eigenstates of $\hat{A}-$ however, they are not eigenstates of \hat{H}. Consequently, the anti-unitary symmetry of the Hamiltonian makes itself felt on a subspace with $\hat{A}^{2}=+\hat{I}$ via either a single real eigenvalue or a pair of two complex conjugate eigenvalues.

If any of the two-dimensional representations Γ_{*} or $\Gamma_{ \pm}$occurs and the associated eigenvalue happens to be real, the antiunitary symmetry implies a twofold degeneracy of the energy eigenvalue. However, the symmetry provides no additional label, and simultaneous eigenstates of \hat{H} and \hat{A} can be constructed for Γ_{+}only. These cases will be denoted by Γ_{*}^{d} or $\Gamma_{ \pm}^{d}$.

It will be shown now that the properties of $\mathcal{P} \mathcal{T}$-symmetric quantum systems are consistent with the representation theory of non-Hermitian Hamiltonians possessing an anti-unitary symmetry. Upon identifying

$$
\begin{equation*}
\hat{A}=\mathcal{P} \mathcal{T} \tag{23}
\end{equation*}
$$

one needs to check the value of $(\mathcal{P} \mathcal{T})^{2}$ when applied to eigenstates of the Hamiltonian in order to decide which of the representations, $\Gamma_{*}, \Gamma_{ \pm}$, or γ_{+}, is realized. Various explicit examples will be given now.

For parameters $Z<Z_{0}^{c}$, the eigenvalues of the $\mathcal{P} \mathcal{T}$ symmetric square well are real throughout, and the operators \hat{H} and $\mathcal{P} \mathcal{T}$ have common eigenstates. Thus, the relations (4) correspond to a multiple occurrence of the representation γ_{+}, compatible with $(\mathcal{P} \mathcal{T})^{2}=+\hat{I}$.

For $Z>Z_{0}^{C}$, the energy eigenstate $\psi_{0}(x) \equiv\left\langle x \mid E_{0},+\right\rangle$ in (7) satisfies $(\mathcal{P} \mathcal{T})^{2}\left|E_{0},+\right\rangle=+\left|E_{0},+\right\rangle$. Therefore, the states $\left|E_{0},+\right\rangle$ and $\left|E_{0},+^{*}\right\rangle \equiv \mathcal{P} \mathcal{T}\left|E_{0},+\right\rangle$ carry a representation Γ_{+}, and the presence of two complex energy eigenvalues, E_{0} and E_{0}^{*}, is justified. Equations (5) can be completed to read

$$
\begin{align*}
\hat{H}\left|E_{0},+\right\rangle & =E_{0}\left|E_{0},+\right\rangle, \\
\hat{H}\left|E_{0},+^{*}\right\rangle & =E_{0}^{*}\left|E_{0},+^{*}\right\rangle \tag{24}
\end{align*}
$$

and, simultaneously,

$$
\begin{align*}
& \mathcal{P} \mathcal{T}\left|E_{0},+\right\rangle=+\left|E_{0},+^{*}\right\rangle, \\
& \mathcal{P} \mathcal{T}\left|E_{0},+^{*}\right\rangle=+\left|E_{0},+\right\rangle . \tag{25}
\end{align*}
$$

Consequently, $\mathcal{P} \mathcal{T}$-symmetry is not broken, but at $Z=Z_{0}^{c}$ the system switches between the representations Γ_{+}and γ_{+}, with a corresponding change of the energy spectrum.

The following examples are taken from a discrete family of non-Hermitian operators [7]:

$$
\begin{equation*}
\hat{H}_{M}=\hat{p}^{2}-(\zeta \cosh 2 x-\mathrm{i} M)^{2}, \quad \zeta \in \mathbb{R} \tag{26}
\end{equation*}
$$

M taking positive integer values. Each operator \hat{H}_{M} is invariant under the combined action of $\mathcal{P} \mathcal{T}$ where \mathcal{P} is the parity about the point $a=\mathrm{i} \pi / 2: x \rightarrow \mathrm{i} \pi / 2-x$. Due to the reflection about a point off the real axis, the operators \mathcal{P} and \mathcal{T} do not commute, as has been pointed out in [8]. However, this fact is not essential here since only the anti-unitary character of the symmetry $\mathcal{P \mathcal { T }}$ is relevant.

For $M=2$, two complex conjugate eigenvalues E_{+}and $E_{-}=E_{+}^{*}$ of \hat{H}_{2} exist, with associated eigenstates

$$
\begin{align*}
& \psi_{+}(x)=\Psi(x) \cosh x \equiv\left\langle x \mid E_{+},-\right\rangle \tag{27}\\
& \psi_{-}(x)=\Psi(x) \sinh x \equiv\left\langle x \mid E_{+},-{ }^{*}\right\rangle \tag{28}
\end{align*}
$$

and a $\mathcal{P} \mathcal{T}$-invariant function $\Psi(x)=\exp [(\mathrm{i} / 2) \zeta \cosh 2 x]$. These states are a flipping pair with flipping value i:

$$
\begin{equation*}
\mathcal{P} \mathcal{T} \psi_{+}(x)=-\mathrm{i} \psi_{-}(x), \quad \mathcal{P} \mathcal{T} \psi_{-}(x)=\mathrm{i} \psi_{+}(x) \tag{29}
\end{equation*}
$$

and the twofold application of $\mathcal{P} \mathcal{T}$ gives (-1). Hence, the representation Γ_{-}is realized. Similarly, for $M=4$, four eigenstates form two flipping pairs, i.e. two representations Γ_{-}, each being associated with a pair of complex conjugate eigenvalues.

For $M=3$, three different real eigenvalues of the Hamiltonian \hat{H}_{3} have been obtained analytically if $\zeta^{2}<1 / 4$. The corresponding eigenfunctions are given by

$$
\begin{gather*}
\psi(x)=\Psi(x) \sinh 2 x \\
\psi_{ \pm}(x)=\Psi(x)(A \cosh 2 x \pm \mathrm{i} B), \tag{30}
\end{gather*}
$$

with real coefficients A and B. Under the action of $\mathcal{P} \mathcal{T}$, the state $\psi(x)$ is mapped to itself, while $\psi_{ \pm}(x)$ each acquire an additional minus sign. Therefore, the states $\psi(x) \equiv\langle x \mid E,+\rangle$ and $\mathrm{i} \psi_{ \pm}(x) \equiv\left\langle x \mid E_{ \pm}\right\rangle$are simultaneous eigenstates of \hat{H} and $\mathcal{P T}$ with eigenvalues +1 . The part of Hilbert space spanned by these three states transforms according to three copies of the representation γ_{+}. If $\zeta=1 / 2$, the eigenvalues $E_{ \pm}$turn degenerate, and the eigenstates given in (30) merge: $\mathrm{i} \psi_{+}(x)=\mathrm{i} \psi_{-}(x) \equiv \varphi(x)$. However, a second, independent $\mathcal{P T}$-invariant solution of Schrödinger's equation can be found:

$$
\begin{equation*}
\phi(x)=\Psi(x) \int_{x_{0}}^{x} \mathrm{~d} y \frac{\mathrm{e}^{-\mathrm{i} \varphi(y) / 2}}{\varphi^{2}(y)} . \tag{31}
\end{equation*}
$$

The solutions $\{\varphi, \phi\}$ transform according to $\gamma_{+} \otimes \gamma_{+} \equiv \Gamma_{+}^{d}$. So far, the representation Γ_{*} has apparently not been realized in $\mathcal{P} \mathcal{T}$-symmetric quantum systems-a possible explanation is the constraint $\mathcal{T}^{2}= \pm 1$ for time reversal [9].

In summary, the representation theory of anti-unitary symmetries of non-Hermitian 'Hamiltonians' has been developed on the basis of Wigner's normal form of antiunitary operators. Typically, energy eigenvalues come in complex conjugate pairs, and the associated eigenstates of the Hamiltonian span a two-dimensional space carrying one of the two-dimensional representations, Γ_{*} or $\Gamma_{ \pm}$. However, no simultaneous eigenstates of the Hamiltonian and the symmetry operator in the two-dimensional \hat{A}-invariant subspaces can be identified-only 'flipping pairs' of states. Furthermore, single real eigenvalues may occur, related to the multiple occurrence of the one-dimensional representation γ_{+}. This is the situation considered in [10] where the reality of a $\mathcal{P} \mathcal{T}$ invariant Hamiltonian has been shown under the assumption that \hat{A}-invariant states exist. Generally, the symmetry does not imply the existence of degenerate eigenvalues-only if the Hamiltonian happens to have a real eigenvalue a twodimensional degenerate subspace may exist occasionally.

These results naturally explain the properties of eigenstates and eigenvalues of $\mathcal{P} \mathcal{T}$-symmetric quantum systems. In particular, it is not necessary to invoke the concept of a spontaneously broken $\mathcal{P} \mathcal{T}$-symmetry.

Contrary to the case for a unitary or Hermitian symmetry, the presence of an anti-unitary symmetry, $[\hat{H}, \hat{A}]=0$, does not imply the existence of a set of simultaneous eigenstates of \hat{H} and $\mathcal{P} \mathcal{T}$-simply because an anti-linear operator is not guaranteed to have a complete set of eigenstates. It will be worthwhile to reflect upon the proposed 'complex extension' of quantum mechanics [11] and its relation to pseudo-hermiticity [12] in the light of representation theory of anti-unitary operators. Finally, the present approach provides a new perspective on the suggested modification of the scalar product in Hilbert space [13] which will be presented elsewhere [14] in detail.

References

[1] Bessis D, unpublished
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 245243
[2] See, for example,
Lévai G, Cannata F and Ventura A 2002 Phys. Lett. A 300271
Lévai G and Znojil M 2000 J. Phys. A: Math. Gen. 33 1973 and references therein
[3] Bagchi B, Cannata F and Quesne C 2000 Phys. Lett. A 26979
Sinha A and Roychoudhury R 2002 Preprint quant-ph/0207132 (for example)
[4] Znojil M and Lévai G 2001 Mod. Phys. Lett. A 162273
[5] Wigner E P 1960 J. Math. Phys. 1409
[6] Wong J 1967 J. Math. Phys. 82039
Mostafazadeh A 2002 J. Math. Phys. 432814
[7] Khare A and Mandal B P 2000 Phys. Lett. A 27253
[8] Bagchi B, Mallik S, Quesne C and Roychoudhury R 2001 Phys. Lett. A 28934
[9] Böhm A 1979 Quantum Mechanics (Berlin: Springer)
[10] Bender C M, Berry M V and Mandilara A 2002 J. Phys. A: Math. Gen. 35 L467
[11] Bender C M, Brody D C and Jones H F 2002 Complex extension of quantum mechanics Preprint quant-ph/0208076
[12] Ahmed Z 2001 Phys. Lett. A 282343
Mostafazadeh A 2002 Pseudo-hermiticity and generalized PT- and CPT-symmetries Preprint math-ph/0209018 and references therein
[13] Znojil M 2001 Conservation of pseudo-norm in PT symmetric quantum mechanics Preprint math-ph/0104012
Bagchi B, Quesne C and Znojil M 2001 Mod. Phys. Lett. A 16 2047
Japaridze G S 2002 J. Phys. A: Math. Gen. 351709
[14] Weigert S, in preparation

