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Abstract
The impact of an anti-unitary symmetry on the spectrum of non-Hermitian
operators is studied. Wigner’s normal form of an anti-unitary operator
accounts for the spectral properties of non-Hermitian, PT -symmetric
Hamiltonians. The occurrence of either single real or complex conjugate
pairs of eigenvalues follows from this theory. The corresponding energy
eigenstates span either one- or two-dimensional irreducible representations
of the symmetry PT . In this framework, the concept of a spontaneously
broken PT -symmetry is not needed.
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Deep in their hearts, many quantum physicists will renounce
hermiticity of operators only reluctantly. However, non-
Hermitian Hamiltonians are applied successfully in nuclear
physics, biology, and condensed matter, often modelling
the interaction of a quantum system with its environment
in a phenomenological way. Since 1998, non-Hermitian
Hamiltonians have continued to attract interest from a
conceptual point of view [1]: surprisingly, the eigenvalues of a
one-dimensional harmonic oscillator Hamiltonian remain real
when the complex potential V̂ = ix̂3 is added to it. Numerical,
semiclassical, and analytic evidence [2] has been accumulated
confirming that bound states with real eigenvalues exist for the
vast class of complex potentials satisfying V †(x̂) = V (−x̂).
In addition, pairs of complex conjugate eigenvalues occur
systematically.

PT -symmetry has been put forward to explain the
observed energy spectra. The Hamiltonian operators Ĥ under
scrutiny are invariant under the combined action of parity P
and time reversal T :

[Ĥ ,PT ] = 0. (1)

They act on the fundamental observables according to

P:

{
x̂ → −x̂,

p̂ → − p̂,
T :

{
x̂ → x̂ ,

p̂ → − p̂,
(2)

and T anti-commutes with the imaginary unit:

T i = i∗T ≡ −iT . (3)

Whenever a PT -symmetric Hamiltonian has a real
eigenvalue E , the associated eigenstate |E〉 is found to be an
eigenstate of the symmetry PT :

E = E∗: Ĥ |E〉 = E |E〉, PT |E〉 = +|E〉. (4)

Occasionally, PT |E〉 = −|E〉 occurs [3] which is equivalent
to (4) upon redefining the phase of the state: PT (i|E〉) =
+(i|E〉). There is no difference between symmetry and anti-
symmetry under PT .

However, if the eigenvalue E is complex, the operator PT
does not map the corresponding eigenstate of Ĥ to itself:

E �= E∗: Ĥ |E〉 = E |E〉, PT |E〉 �= λ|E〉, (5)

where λ is any real or complex number. This situation is
described as a ‘spontaneous breakdown’ of PT -symmetry.
No mechanism has been identified which would explain this
breaking of the symmetry.

The PT -symmetric square-well model provides a simple
example for this behaviour [4]. It describes a particle moving
between reflecting boundaries at x = ±1, in the presence of a
piecewise constant complex potential,

VZ (x) =
{

iZ , x < 0,

−iZ , x > 0,
Z ∈ R. (6)
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Acceptable solutions of Schrödinger’s equation must satisfy
both the boundary conditions, ψ(±1) = 0, and continuity
conditions at the origin. As long as the value of the parameter
Z is below a critical value, Z < Zc

0, the eigenvalues En of the
non-Hermitian Hamiltonian Ĥ = −∂xx + VZ (x) are real, and
each eigenstate |ψn〉 satisfies the relations (4), with eigenvalues
En and +1, respectively. Above the threshold, Z > Zc

0, at least
one pair of complex conjugate eigenvalues E0 and E∗

0 develops.
One of the corresponding eigenstates has the form [4]

ψ0(x) =
{

K p sinh κ(1 − x), x > 0,

Kn sinh λ∗(1 + x), x < 0,
(7)

the complex parameters κ , λ, Kn , and K p being determined
by the boundary and continuity conditions. The state ψ0(x) is
not invariant under PT ; i.e. (5) holds.

The purpose of the present contribution is a group-
theoretical analysis of PT -symmetry. The properties of PT -
symmetric systems are explained in a natural way by taking into
account that PT is not a unitary but an anti-unitary symmetry
of a non-Hermitian operator. The argument proceeds in three
steps. First, Wigner’s normal form of anti-unitary operators
is reviewed; this amounts to identifying their (irreducible)
representations. Second, the properties of non-Hermitian
operators with anti-unitary symmetry are derived. These
results are then shown to account for the characteristic features
of PT -symmetric systems, including the occurrence of both
single real and pairs of complex conjugate eigenvalues.

Wigner develops a normal form of anti-unitary operators
Â in [5]. Anti-unitarity of Â is defined by the relation

〈 Âχ | Âψ〉 = 〈ψ |χ〉. (8)

Anti-unitarity implies anti-linearity:

Â(α|ψ〉 + β|χ〉) = α∗ Â|ψ〉 + β∗ Â|χ〉, (9)

which is equivalent to (3). The representation theory of Â
relies on the fact that the square of an anti-unitary operator is
unitary:

〈 Â2χ | Â2ψ〉 = 〈 Âψ | Âχ〉 = 〈χ |ψ〉. (10)

Let the operator Â2 have a discrete spectrum (according to
Wigner, operators with a continuous spectrum can be treated
similarly [5]). Then it has a complete, orthonormal set of
eigenvectors |�〉 with eigenvalues � of modulus one:

Â2|�〉 = �|�〉, |�| = 1. (11)

It plays the role of a Casimir-type operator labelling different
representations of Â. Wigner distinguishes three different
types of representation corresponding to the eigenvalues of
Â2: complex � (�= �∗), � = +1, or � = −1, summarized in
table 1.

(1) An eigenstate |�〉 of Â2 with eigenvalue � (�= �∗) is not
invariant under Â. Instead, the states |�〉 and |�∗〉 ≡
Â|�〉 constitute a ‘flipping pair’ with complex ‘flipping
value’ ω (and ω∗), where ω2 = �. They span a two-
dimensional space which is closed under the action of
Â. Therefore, it carries a two-dimensional representation
of Â, denoted by 
∗, which is irreducible: due to the anti-
linearity of Â, no (non-zero) linear combination of the
flipping states exist which would be invariant under Â.

Table 1. Representations 
 of the operator Â.

� ≡ ω2 
 Action of Â Dim 


� �= �∗ 
∗
Â|�〉 = ω∗|�∗〉
Â|�∗〉 = ω|�〉 2

−1 
−
Â|−〉 = −i|−∗〉
Â|−∗〉 = +i|−〉 2

+1 
+
Â|+〉 = +|+∗〉
Â|+∗〉 = +|+〉 2

+1 γ+ Â|1〉 = +|1〉 1

(2) Similarly, if Â2 has an eigenvalue � = −1, then the
operator Â flips the states |−〉 and |−∗〉 ≡ Â|−〉. The
flipping value is ω = √−1 = i, and the associated two-
dimensional representation 
− is not reducible.

(3) Two different situations arise if there is an eigenstate
|1〉 of Â2 with eigenvalue +1. The state Â|1〉 is either
a multiple of itself or not. In the first case, the space
spanned by |1〉 is invariant under Â and hence carries a one-
dimensional representation γ+ of Â. When redefining the
phase of the state appropriately, one obtains an eigenstate
|1〉 of Â with eigenvalue +1. In the second case, the two
states |+〉 ≡ |1〉 and |+∗〉 ≡ Â|1〉 provide a flipping pair
with flipping value ω = +1, and hence a representation

+. This representation, however, is reducible due to
the reality of the flipping value: the linear combinations
|1r〉 = |+〉 + |+∗〉 and |1i〉 = i(|+〉 − |+∗〉) are both
eigenstates of Â with eigenvalue +1.

Consequently, a Hilbert space H naturally decomposes
into a direct product of invariant subspaces, each invariant
under the action of the anti-unitary operator Â:

H = 
∗⊗N∗ ⊗ 
−⊗N− ⊗ 
+
⊗N+ ⊗ γ+

⊗n+ ; (12)

the non-negative integers N∗, N±, and n+ account for the
degeneracies of the eigenvalues � (�= �∗) and � = ±1 of
the operator Â2. The corresponding decomposition of a vector
|ψ〉 ∈ H is the closest analogue of an expansion into the
eigenstates of a Hermitian (or unitary) operator. In contrast to
the representation theory of linear operators, two-dimensional
irreducible representations of Â exist, although there is only
one generator, Â. However, there is no ‘good quantum number’
which would label the states spanning these representations.

A (diagonalizable) non-Hermitian Hamiltonian Ĥ with a
discrete spectrum [6] and its adjoint Ĥ† each have a complete
set of eigenstates:

Ĥ |ψn〉 = En|ψn〉, Ĥ†|ψn〉 = En|ψn〉, (13)

with complex conjugate eigenvalues related by En = E∗
n .

They form a bi-orthonormal basis in H, as they provide two
resolutions of unity:∑

n

|ψn〉〈ψn| =
∑

n

|ψn〉〈ψn| = Î , (14)

and satisfy orthogonality relations:

〈ψm |ψn〉 = δn
m . (15)
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Let the non-Hermitian operator Ĥ have an anti-unitary
symmetry Â:

[Ĥ , Â] = 0. (16)

Then the unitary operator Â2 commutes with Ĥ , and it has
eigenvalues � of modulus one. Consequently, there are
simultaneous eigenstates |n,�〉 of Ĥ and Â2:

Ĥ |n,�〉 = En|n,�〉, Â2|n,�〉 = �|n,�〉, (17)

with complex energies En ∈ C. For simplicity, the eigenvalues
� are assumed discrete and not degenerate. Wigner’s normal
form of anti-unitary operators suggests considering three cases
separately: complex � (�= �∗) and � = ±1.
(1) � �= �∗. The state

|n,�∗〉 ≡ ω Â|n,�〉, ω2 = �, (18)

is a second eigenstate of Â2, with eigenvalue �∗. The states
{|n,�〉, |n,�∗〉} provide a flipping pair under the action of the
operator Â:

Â|n,�〉 = ω∗|n,�∗〉, Â|n,�∗〉 = ω|n,�〉, (19)

carrying the representation 
∗. No degeneracy of the
eigenvalue En is implied by the anti-unitary Â-symmetry of
Ĥ . However, the non-Hermitian Hamiltonian has a second
eigenstate |n,�∗〉 with eigenvalue E∗

n :

Ĥ |n,�∗〉 = E∗
n |n,�∗〉, (20)

as follows from multiplying the first equation of (17) with Â
and ω.
(2) � = −1. Formally, the results for the representation 
−
are obtained from the previous case by setting ω = √−1 = i.
Again, a pair of complex conjugate eigenvalues is found,
and the associated flipping pair spans a two-dimensional
representation space.
(3) � = +1. This case is conceptually different from the
previous ones as two possibilities arise. Consider the state
|n, +〉, an eigenvector of both Ĥ and Â2 with eigenvalues En

and +1, respectively. It satisfies equations (17) with � → +.
On the one hand, if applying Â to |n, +〉 results in eiφ |n, +〉,
then the state |n, 1〉 ≡ e−iφ/2|n, +〉 is an eigenstate of Â with
eigenvalue +1:

Â|n, 1〉 = |n, 1〉. (21)

This occurrence of the one-dimensional representation γ+

forces the associated eigenvalue En of Ĥ to be real since

En|n, 1〉 = Ĥ Â|n, 1〉 = ÂĤ |n, 1〉 = E∗
n |n, 1〉. (22)

If, on the other hand, the state |n, +∗〉 ≡ Â|n, +〉 is not a
multiple of |n, +〉, then these two states combine to form the
representation 
+, the flipping value being +1. Further, the
state |n, +∗〉 is an eigenstate of the Hamiltonian with eigenvalue
E∗

n . As the flipping number is real, linear combinations
of |n, +〉 and |n, +∗〉 do exist which are eigenstates of Â—
however, they are not eigenstates of Ĥ . Consequently, the
anti-unitary symmetry of the Hamiltonian makes itself felt on
a subspace with Â2 = + Î via either a single real eigenvalue or
a pair of two complex conjugate eigenvalues.

If any of the two-dimensional representations 
∗ or 
± oc-
curs and the associated eigenvalue happens to be real, the anti-
unitary symmetry implies a twofold degeneracy of the energy
eigenvalue. However, the symmetry provides no additional
label, and simultaneous eigenstates of Ĥ and Â can be con-
structed for 
+ only. These cases will be denoted by 
d∗ or 
d±.

It will be shown now that the properties of PT -symmetric
quantum systems are consistent with the representation theory
of non-Hermitian Hamiltonians possessing an anti-unitary
symmetry. Upon identifying

Â = PT , (23)

one needs to check the value of (PT )2 when applied to
eigenstates of the Hamiltonian in order to decide which of
the representations, 
∗, 
±, or γ+, is realized. Various explicit
examples will be given now.

For parameters Z < Zc
0, the eigenvalues of the PT -

symmetric square well are real throughout, and the operators
Ĥ and PT have common eigenstates. Thus, the relations (4)
correspond to a multiple occurrence of the representation γ+,
compatible with (PT )2 = + Î .

For Z > ZC
0 , the energy eigenstate ψ0(x) ≡ 〈x |E0, +〉

in (7) satisfies (PT )2|E0, +〉 = +|E0, +〉. Therefore, the states
|E0, +〉 and |E0, +∗〉 ≡ PT |E0, +〉 carry a representation 
+,
and the presence of two complex energy eigenvalues, E0 and
E∗

0 , is justified. Equations (5) can be completed to read

E �= E∗:
Ĥ |E0, +〉 = E0|E0, +〉,

Ĥ |E0, +∗〉 = E∗
0 |E0, +∗〉,

(24)

and, simultaneously,

PT |E0, +〉 = +|E0, +∗〉,
PT |E0, +∗〉 = +|E0, +〉. (25)

Consequently, PT -symmetry is not broken, but at Z = Zc
0 the

system switches between the representations 
+ and γ+, with
a corresponding change of the energy spectrum.

The following examples are taken from a discrete family
of non-Hermitian operators [7]:

ĤM = p̂2 − (ζ cosh 2x − iM)2, ζ ∈ R, (26)

M taking positive integer values. Each operator ĤM is
invariant under the combined action of PT where P is the
parity about the point a = iπ/2: x → iπ/2 − x . Due to the
reflection about a point off the real axis, the operators P and T
do not commute, as has been pointed out in [8]. However, this
fact is not essential here since only the anti-unitary character
of the symmetry PT is relevant.

For M = 2, two complex conjugate eigenvalues E+ and
E− = E∗

+ of Ĥ2 exist, with associated eigenstates

ψ+(x) = �(x) cosh x ≡ 〈x |E+,−〉, (27)

ψ−(x) = �(x) sinh x ≡ 〈x |E+,−∗〉, (28)

and a PT -invariant function �(x) = exp[(i/2)ζ cosh 2x].
These states are a flipping pair with flipping value i:

PT ψ+(x) = −iψ−(x), PT ψ−(x) = iψ+(x), (29)
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and the twofold application of PT gives (−1). Hence, the
representation 
− is realized. Similarly, for M = 4, four
eigenstates form two flipping pairs, i.e. two representations

−, each being associated with a pair of complex conjugate
eigenvalues.

For M = 3, three different real eigenvalues of the
Hamiltonian Ĥ3 have been obtained analytically if ζ 2 < 1/4.
The corresponding eigenfunctions are given by

ψ(x) = �(x) sinh 2x,

ψ±(x) = �(x)(A cosh 2x ± iB),
(30)

with real coefficients A and B. Under the action of PT , the
state ψ(x) is mapped to itself, while ψ±(x) each acquire an
additional minus sign. Therefore, the states ψ(x) ≡ 〈x |E, +〉
and iψ±(x) ≡ 〈x |E±〉 are simultaneous eigenstates of Ĥ
and PT with eigenvalues +1. The part of Hilbert space
spanned by these three states transforms according to three
copies of the representation γ+. If ζ = 1/2, the eigenvalues
E± turn degenerate, and the eigenstates given in (30) merge:
iψ+(x) = iψ−(x) ≡ ϕ(x). However, a second, independent
PT -invariant solution of Schrödinger’s equation can be found:

φ(x) = �(x)

∫ x

x0

dy
e−iϕ(y)/2

ϕ2(y)
. (31)

The solutions {ϕ, φ} transform according to γ+ ⊗ γ+ ≡ 
d
+.

So far, the representation 
∗ has apparently not been realized
in PT -symmetric quantum systems—a possible explanation
is the constraint T 2 = ±1 for time reversal [9].

In summary, the representation theory of anti-unitary
symmetries of non-Hermitian ‘Hamiltonians’ has been
developed on the basis of Wigner’s normal form of anti-
unitary operators. Typically, energy eigenvalues come in
complex conjugate pairs, and the associated eigenstates of the
Hamiltonian span a two-dimensional space carrying one of
the two-dimensional representations, 
∗ or 
±. However, no
simultaneous eigenstates of the Hamiltonian and the symmetry
operator in the two-dimensional Â-invariant subspaces can
be identified—only ‘flipping pairs’ of states. Furthermore,
single real eigenvalues may occur, related to the multiple
occurrence of the one-dimensional representation γ+. This
is the situation considered in [10] where the reality of a PT -
invariant Hamiltonian has been shown under the assumption
that Â-invariant states exist. Generally, the symmetry does
not imply the existence of degenerate eigenvalues—only if
the Hamiltonian happens to have a real eigenvalue a two-
dimensional degenerate subspace may exist occasionally.

These results naturally explain the properties of eigenstates and
eigenvalues of PT -symmetric quantum systems. In particular,
it is not necessary to invoke the concept of a spontaneously
broken PT -symmetry.

Contrary to the case for a unitary or Hermitian symmetry,
the presence of an anti-unitary symmetry, [Ĥ , Â] = 0, does
not imply the existence of a set of simultaneous eigenstates
of Ĥ and PT —simply because an anti-linear operator is
not guaranteed to have a complete set of eigenstates. It
will be worthwhile to reflect upon the proposed ‘complex
extension’ of quantum mechanics [11] and its relation to
pseudo-hermiticity [12] in the light of representation theory
of anti-unitary operators. Finally, the present approach
provides a new perspective on the suggested modification of
the scalar product in Hilbert space [13] which will be presented
elsewhere [14] in detail.
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