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Abstract

The impact of an anti-unitary symmetry on the spectrum of non-Hermitian
operators is studied. Wigner’s normal form of an anti-unitary operator
accounts for the spectral properties of non-Hermitian, P7 -symmetric
Hamiltonians. The occurrence of either single real or complex conjugate
pairs of eigenvalues follows from this theory. The corresponding energy
eigenstates span either one- or two-dimensional irreducible representations
of the symmetry P7. In this framework, the concept of a spontaneously
broken P7 -symmetry is not needed.
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Deep in their hearts, many quantum physicists will renounce
hermiticity of operators only reluctantly. However, non-
Hermitian Hamiltonians are applied successfully in nuclear
physics, biology, and condensed matter, often modelling
the interaction of a quantum system with its environment
in a phenomenological way. Since 1998, non-Hermitian

and 7 anti-commutes with the imaginary unit:
Ti=1"T = —iT. 3)

Whenever a P7-symmetric Hamiltonian has a real
eigenvalue FE, the associated eigenstate |E) is found to be an
eigenstate of the symmetry P7:

Hamiltonians. have .continued tq .attract int.erest from a E = E* ﬁ|E) — E|E), PTIE) = +|E). (4)
conceptual point of view [1]: surprisingly, the eigenvalues of a _ o _
one-dimensional harmonic oscillator Hamiltonian remain real ~ Occasionally, PT|E) = —|E) occurs [3] which is equivalent

to (4) upon redefining the phase of the state: P7(i|E)) =
+(i|E)). There is no difference between symmetry and anti-
symmetry under P7 .

However, if the eigenvalue E is complex, the operator P7T
does not map the corresponding eigenstate of H to itself:

E # E*: H|E) = E|E), PTIE) # A|E), (5)

when the complex potential V = i3 is added to it. Numerical,
semiclassical, and analytic evidence [2] has been accumulated
confirming that bound states with real eigenvalues exist for the
vast class of complex potentials satisfying V() = V(=3).
In addition, pairs of complex conjugate eigenvalues occur
systematically.

PT-symmetry has been put forward to explain the
observed energy spectra. The Hamiltonian operators H under
scrutiny are invariant under the combined action of parity P
and time reversal 7:

where A is any real or complex number. This situation is
described as a ‘spontaneous breakdown’ of P7-symmetry.
No mechanism has been identified which would explain this
breaking of the symmetry.

The P7-symmetric square-well model provides a simple
example for this behaviour [4]. It describes a particle moving
between reflecting boundaries at x = =1, in the presence of a

[H,PT]=0. 1)

They act on the fundamental observables according to

piecewise constant complex potential,

X — —X, X — X, iZ, x <0,
P: . . T: . . 2) Vi(x) = . Z e R. (6)

p— —D, p—> —Pp, —1iZ, x >0,
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Acceptable solutions of Schrodinger’s equation must satisfy
both the boundary conditions, ¥ (+1) = 0, and continuity
conditions at the origin. As long as the value of the parameter
Z is below a critical value, Z < Z, the eigenvalues E, of the
non-Hermitian Hamiltonian H = —0yx + Vz(x) are real, and
each eigenstate |1, ) satisfies the relations (4), with eigenvalues
E, and +1, respectively. Above the threshold, Z > Z{, at least
one pair of complex conjugate eigenvalues Ey and £ develops.
One of the corresponding eigenstates has the form [4]

K, sinh k(1 —x),
K, sinh A*(1 + x),

x >0,

Yo(x) = { N

x <0,

the complex parameters «, A, K,, and K, being determined
by the boundary and continuity conditions. The state ¥ (x) is
not invariant under P7; i.e. (5) holds.

The purpose of the present contribution is a group-
theoretical analysis of P7 -symmetry. The properties of P7 -
symmetric systems are explained in a natural way by taking into
account that P7 is not a unitary but an anti-unitary symmetry
of a non-Hermitian operator. The argument proceeds in three
steps. First, Wigner’s normal form of anti-unitary operators
is reviewed; this amounts to identifying their (irreducible)
representations.  Second, the properties of non-Hermitian
operators with anti-unitary symmetry are derived. These
results are then shown to account for the characteristic features
of P7-symmetric systems, including the occurrence of both
single real and pairs of complex conjugate eigenvalues.

Wigner develops a normal form of anti-unitary operators
Ain [5]. Anti-unitarity of A is defined by the relation

(Ax|Ay) = (Y]x). (8)
Anti-unitarity implies anti-linearity:
Ally) +Blx) = a*Aly) + B*Aly), )

which is equivalent to (3). The representation theory of A
relies on the fact that the square of an anti-unitary operator is
unitary: ) ) o

(A2X1A%Y) = (Ay|Ax) = (xI¥). (10)
Let the operator A? have a discrete spectrum (according to
Wigner, operators with a continuous spectrum can be treated
similarly [5]). Then it has a complete, orthonormal set of
eigenvectors |€2) with eigenvalues 2 of modulus one:

A21Q) = Q|IQ), Q] = 1. (11)

It plays the role of a Casimir-type operator labelling different
representations of A. Wigner distinguishes three different
types of representation corresponding to the eigenvalues of
A2 complex Q2 (# Q%), Q@ = +1, or Q = —1, summarized in
table 1.

(1) An eigenstate |Q2) of A2 with eigenvalue (£ £*) is not
invariant under A. Instead, the states |R2) and |2*) =
A|R) constitute a “flipping pair’ with complex ‘flipping
value’ w (and w*), where w?> = Q. They span a two-
dimensional space which is closed under the action of
A. Therefore, it carries a two-dimensional representation
of A, denoted by Iy, which is irreducible: due to the anti-
linearity of A, no (non-zero) linear combination of the
flipping states exist which would be invariant under A.

Table 1. Representations I" of the operator A.

Q=w?> T Action of A DimTI"
ez 1, A= 2
A19%) = 0|Q)
T 2
A7) = +|-)
41 1, AR=tE 2
Al+*) = +|+)
+1 oy Al =+ 1
(2) Similarly, if A? has an eigenvalue Q@ = —1, then the

operator A flips the states |—) and |—*) = Al—). The
flipping value is @ = +/—1 = i, and the associated two-
dimensional representation I'_ is not reducible.

(3) Two different situations arise if there is an eigenstate
1) of A2 with eigenvalue +1. The state A[1) is either
a multiple of itself or not. In the first case, the space
spanned by | 1) is invariant under A and hence carries a one-
dimensional representation y, of A. When redefining the
phase of the state appropriately, one obtains an eigenstate
[1) of A with eigenvalue +1. In the second case, the two
states |[+) = |1) and |+*) = A|1) provide a flipping pair
with flipping value @ = +1, and hence a representation
I'y. This representation, however, is reducible due to
the reality of the flipping value: the linear combinations
[1,) = |+) + [+*) and |1;) = i(J+) — [+")) are both
eigenstates of A with eigenvalue +1.

Consequently, a Hilbert space H naturally decomposes
into a direct product of invariant subspaces, each invariant
under the action of the anti-unitary operator A:

H = F*®N* ® 1—~7®N_ ® F+®N" ® y+®n+; (12)
the non-negative integers N,, Ny, and n, account for the
degeneracies of the eigenvalues Q (# Q) and Q = +1 of
the operator A2, The corresponding decomposition of a vector
|[Y) € H is the closest analogue of an expansion into the
eigenstates of a Hermitian (or unitary) operator. In contrast to
the representation theory of linear operators, two-dimensional
irreducible representations of A exist, although there is only
one generator, A. However, thereisno ¢ good quantum number’
which would label the states spanning these representations.

A (diagonalizable) non-Hermitian Hamiltonian H with a
discrete spectrum [6] and its adjoint H' each have a complete
set of eigenstates:

Hiy) = Edyn).  H'Y") =E"ly").  (13)
with complex conjugate eigenvalues related by E" = E.
They form a bi-orthonormal basis in ‘H, as they provide two
resolutions of unity:

DWWl =) Wt =1, (14)
and satisfy orthogonality relations:
(YmlY") =0, 15)
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Let the non-Hermitian operator H have an anti-unitary
symmetry A:

[H,A] = 0. (16)

Then the unitary operator A? commutes with A, and it has
eigenvalues 2 of modulus one. Consequently, there are
simultaneous eigenstates |n, €2) of H and A2:

Hin, Q) = E,|n, ), A%n, Q) = QIn, Q), (17
with complex energies E,, € C. For simplicity, the eigenvalues
2 are assumed discrete and not degenerate. Wigner’s normal
form of anti-unitary operators suggests considering three cases
separately: complex 2 (# Q%) and Q2 = +1.

(1) @2 # Q*. The state

In, Q%) = wAln, Q), 0t =Q, (18)
is a second eigenstate of A2, with eigenvalue Q*. The states
{In, ), |n, Q*)} provide a flipping pair under the action of the
operator A:

Aln, Q) = w*|n, Q%), Aln, Q") = wln, Q),  (19)
carrying the representation I',. No degeneracy of the
eigenvalue E, is implied by the anti-unitary A—symmetry of
H. However, the non-Hermitian Hamiltonian has a second
eigenstate |n, Q*) with eigenvalue E:

H|n, Q%) = E'|n, Q"), (20)
as follows from multiplying the first equation of (17) with A
and w.
(2) @ = —1. Formally, the results for the representation I"_
are obtained from the previous case by setting w = /—1 = i.
Again, a pair of complex conjugate eigenvalues is found,
and the associated flipping pair spans a two-dimensional
representation space.
(3) Q = +1. This case is conceptually different from the
previous ones as two possibilities arise. Consider the state
|n, +), an eigenvector of both H and A? with eigenvalues E
and +1, respectively. It satisfies equations (17) with Q — +.
On the one hand, if applying A to |n, +) results in e‘¢|n +),
then the state |n, 1) = e=/2|n, +) is an eigenstate of A with
eigenvalue +1:

Aln, 1) =

In, 1). Q1)

This occurrence of the one-dimensional representation y,
forces the associated eigenvalue E, of H to be real since
E,ln, 1) = HAln, 1) = AH|n, 1) = E¥[n, 1).  (22)
If, on the other hand, the state |n,+*) = A|n, +) is not a
multiple of |n, +), then these two states combine to form the
representation I'y, the flipping value being +1. Further, the
state |n, +*) is an eigenstate of the Hamiltonian with eigenvalue
Ey. As the flipping number is real, linear combinations
of |n,+) and |n, +*) do exist which are eigenstates of A—
however, they are not eigenstates of H. Consequently, the
anti-unitary symmetry of the Hamiltonian makes itself felt on
a subspace with A? = +] via either a single real eigenvalue or

a pair of two complex conjugate eigenvalues.
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If any of the two-dimensional representations I',, or I'y. oc-
curs and the associated eigenvalue happens to be real, the anti-
unitary symmetry implies a twofold degeneracy of the energy
eigenvalue. However, the symmetry provides no additional
label, and simultaneous eigenstates of H and A can be con-
structed for I'y only. These cases will be denoted by I'¢ or I'{..

It will be shown now that the properties of P7 -symmetric
quantum systems are consistent with the representation theory
of non-Hermitian Hamiltonians possessing an anti-unitary
symmetry. Upon identifying

A=7PT, (23)
one needs to check the value of (P7)> when applied to
eigenstates of the Hamiltonian in order to decide which of
the representations, Iy, I'y, or 4, is realized. Various explicit
examples will be given now.

For parameters Z < Z, the eigenvalues of the P7-
symmetric square well are real throughout, and the operators
H and P7 have common eigenstates. Thus, the relations (4)
correspond to a multiple occurrence of the representation y,.,
compatible with (PT)? = +1.

For Z > Z§, the energy eigenstate Yo(x) = (x|Eo, +)
in (7) satisfies (P7)?|Ey, +) = +|Ey, +). Therefore, the states
|Eo, +) and |Ey, +*) = PT|Ey, +) carry a representation I,
and the presence of two complex energy eigenvalues, Ey and
Ej, is justified. Equations (5) can be completed to read

H|Eqy. +) = Eo|Eo. +),
E #E*: ) (24)
HI|Ey, +") = Ej|Eo, +"),
and, simultaneously,
PTI|Ey, +) = +|Eg, +7),
(25)

PTI|Eo, +*) = +|Eo, +).

Consequently, P7 -symmetry is not broken, but at Z = Z§ the
system switches between the representations I'; and y,, with
a corresponding change of the energy spectrum.
The following examples are taken from a discrete family
of non-Hermitian operators [7]:
Hy = p* — (¢ cosh2x —iM)?,

¢ eR, (26)

M taking positive integer values. Each operator Hy is
invariant under the combined action of P7 where P is the
parity about the point a = iw/2: x — iw/2 — x. Due to the
reflection about a point off the real axis, the operators P and 7
do not commute, as has been pointed out in [8]. However, this
fact is not essential here since only the anti-unitary character
of the symmetry P7 is relevant.

For M = 2, two complex conjugate eigenvalues E, and

E_ = E7 of H, exist, with associated eigenstates
Yy (x) = W(x)coshx = (x|Ey, —), (27)
Y_(x) = ¥(x)sinhx = (x|E,, =), (28)

and a P7 -invariant function W(x) = exp[(i/2)¢ cosh 2x].
These states are a flipping pair with flipping value i:

PT.(x) = —iyy_(x), PTy_(x) =iy (x), (29)
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and the twofold application of P7 gives (—1). Hence, the
representation I'_ is realized. Similarly, for M = 4, four
eigenstates form two flipping pairs, i.e. two representations
["_, each being associated with a pair of complex conjugate
eigenvalues.

For M = 3, three different real eigenvalues of the
Hamiltonian H; have been obtained analytically if ¢2 < 1/4.
The corresponding eigenfunctions are given by

Y (x) = ¥(x) sinh 2x,
Yi(x) = ¥ (x)(Acosh2x +iB),

(30)

with real coefficients A and B. Under the action of P7, the
state v (x) is mapped to itself, while ¥, (x) each acquire an
additional minus sign. Therefore, the states ¥ (x) = (x|E, +)
and iYL (x) = (x|E4) are simultaneous eigenstates of H
and P7 with eigenvalues +1. The part of Hilbert space
spanned by these three states transforms according to three
copies of the representation y,. If { = 1/2, the eigenvalues
E, turn degenerate, and the eigenstates given in (30) merge:
i, (x) = iY_(x) = ¢(x). However, a second, independent
‘PT -invariant solution of Schrodinger’s equation can be found:

e~ iv(y)/2

- 31
©*(y) Gl

¢x) = ‘I/(X)/ dy

The solutions {g, ¢} transform according to y; ® y, = '
So far, the representation I', has apparently not been realized
in P7-symmetric quantum systems—a possible explanation
is the constraint 72 = +1 for time reversal [9].

In summary, the representation theory of anti-unitary
symmetries of non-Hermitian ‘Hamiltonians’ has been
developed on the basis of Wigner’s normal form of anti-
unitary operators. Typically, energy eigenvalues come in
complex conjugate pairs, and the associated eigenstates of the
Hamiltonian span a two-dimensional space carrying one of
the two-dimensional representations, I', or I'x. However, no
simultaneous eigenstates of the Hamiltonian and the symmetry
operator in the two-dimensional A-invariant subspaces can
be identified—only ‘flipping pairs’ of states. Furthermore,
single real eigenvalues may occur, related to the multiple
occurrence of the one-dimensional representation y,. This
is the situation considered in [10] where the reality of a P7 -
invariant Hamiltonian has been shown under the assumption
that A-invariant states exist. Generally, the symmetry does
not imply the existence of degenerate eigenvalues—only if
the Hamiltonian happens to have a real eigenvalue a two-
dimensional degenerate subspace may exist occasionally.

These results naturally explain the properties of eigenstates and
eigenvalues of P7 -symmetric quantum systems. In particular,
it is not necessary to invoke the concept of a spontaneously
broken PT -symmetry.

Contrary to the case for a unitary or Hermitian symmetry,
the presence of an anti-unitary symmetry, [H,A] = 0, does
not imply the existence of a set of simultaneous eigenstates
of H and PT—simply because an anti-linear operator is
not guaranteed to have a complete set of eigenstates. It
will be worthwhile to reflect upon the proposed ‘complex
extension’ of quantum mechanics [11] and its relation to
pseudo-hermiticity [12] in the light of representation theory
of anti-unitary operators. Finally, the present approach
provides a new perspective on the suggested modification of
the scalar product in Hilbert space [13] which will be presented
elsewhere [14] in detail.
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