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Completeness and orthonormality inP T-symmetric quantum systems
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SomeP T-symmetric non-Hermitian Hamiltonians have only real eigenvalues. There is numerical evidence
that the associateld T-invariant energy eigenstates satisfy an unconventional completeness relatimh han
scalar product among the states is positive definite only if a recently introduced “charge operator” is included
in its definition. A simple derivation of the conjectured completeness and orthonormality relations is given. It
exploits the fact thaP T symmetry provides a link between the eigenstates of the Hamiltonian and those of its
adjoint, forming a dual pair of bases. The charge operator emerges naturally upon expressing the properties of
the dual bases in terms ohebasis only, and it is shown to be a function of the Hamiltonian.
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Hermitian operators have real eigenvalues while nonSecond, a “natural inner product” of function&(x) and
Hermitian ones may have complex eigenvalues. Numericalj(x) associated wittP T-symmetric systems has been pro-
and analytical results indicated the possibility to compensatposed[9],
the non-Hermiticity of a Hamiltonian by the presence of an

addmf).nal symnl"netr)./ [1]; The. spectra of .many non- (f.g)= f dX[PTH(x)]g(x), (4)
Hermitians Hamiltoniandd are indeedeal [2] if they are c
invariant under the combined action of self-adjoint paRty ) o . )
and time reversaf, where the integration is along an appropriate gatpossibly
in the complexx plane[6]. This scalar product implies that
[A,PT]=0 (1)  energy eigenstates can have a negative norm,
(¢mi¢n):(_1)n5mna 5

andif the energy eigenstates are invariant under the operator

PT. Pairs ofcomplex-conjugateigenvalues are compatible which makes it difficult to maintain the familiar probabilistic
with PT symmetry as well but the eigenstatestbfare no  interpretation of quantum theoff] and gave rise to discus-
longer invariant undePT. It is possible to explain these Ssions about the state spaceRT-symmetric systemglO].

observations by the concept pSeudo-Hermitiaroperators In an attempt to base an extension of quantum mechanics
[3] which satisfy [6] on systems witHP T-symmetry a remedy against the in-
definite metric in Hilbert space has been proposed in the
,7|2| n l= HT 2 form of a linear charge operat@. Its position representa-

tion is given by

following from Eq. (1) with »=P. Wigner’'s representation
theory of antilinear operatoifgl] provides an alternative ex- CX,Y)=2, bn(X)bn(y). (6)
planation if applied to the operat®T [5]. What is more, the n
group-theoretical approach explains the fate of energy eige
states if they ar@ot invariant under the action @ T, and a
complete classification d? T-invariant subspaces emerges.

P T-symmetric systems possess at least two other intrigu- (flg)= f dX[CPTf(x)]g(x), (7)
ing features. First, the eigenstates Bf-symmetric non- ¢
HeTm'“a” Hamiltoniangwith real e|genvglues onlydo _not is positive definite, and the completeness relaii®nturns
satisfy the standard completeness relations. Numerical eVlhio
dence[6] suggests that one has instead

I’]l:hen, the redefined inner product

2 CPTo,(X)]pn(y)=6(X—Yy). (8)
> (1) "a(X) baly) = 8(x—Y), 3 >, [CPTn(X)]én(y y

n
These relations are also consistent with results obtained for
the functions¢,(x)=(x|E,) being energy eigenstates of a pseudo-Hermitian operatof8,11].
particle on the real line subjected taPar-symmetric poten- The purpose of this contribution is, first, to prove that
tial such asv(x)=x?(ix)”,»=0 [7]. Whether the complete- relations such as Eq3) exist for all PT-symmetric system
ness relation(3) is valid has been called a “major open with real eigenvalues. Second, the origin of the oper&tor
mathematical question fd® T-symmetric Hamiltonians{8].  will be identified, which directly explains both why E?)
defines indeed a positive inner product and why @fjis a
valid completeness relation. To cut a long story short, the last
*Email address: s.weigert@hull.ac.uk two equationdas well as Eqs(3) and (4)] are nothing but
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biorthonormality and completeness for a pair of dual basegyj|| be given. WriteH "= PHP in the second equation ¢®),

associated with. It is due to the system® T symmetry

multiply it with P, useP?=1 and recall thaE"= E}=E,:

and the occurrence of real eigenvalues only that these two

relations acquire a special form which involves the elements

{¢n(x)} of onebasis only.

Consider a(diagonalizablg non-Hermitian Hamiltonian
H with a discrete spectrurfil2]. The operatordd and its
adjointl3|T have complete sets of eigenstates:

HIE)=EjEy, HIEMD=E"E", n=1.2,...,

©)

with, in general, complex conjugate eigenvaluES=E} .
The eigenstates constitutdorthonormal bases inH with
two resolutions of unity,

; |E”><En|=§ [En)(E" =T, (10)

and as dual bases, they satisfy orthonormality relations,

(E"Em)=(En|EMN=6m, mn=12,.... (11)

A priori, nothing is known about scalar products such as

(En|Em).

Consider now aP T-invariant Hamiltonian, i.e., Eq(l)
holds, and assume all its eigenvalugg,to be real and non-
degenerate. Multiply the first equation of E@) with the
operatorP T so that

H(PT|En>):En(PT| En>)- (12
Multiplication by (E,,| from the left and using the adjoint of
the second equation in E¢Q) with E"=E,, leads to

(Em—En(E™(PT|E))=0. (13
Consequently, the stafT|E,,) must equalE,) apart from a
multiplicative  factor d,. Since @T)?E,)=|E,)
=1|d,|?|Ey), d, must equal a phase facte*r, say. Redefin-
ing |[E,)—e '¥"?|E,) implies—as is well known—that one
can always write

PTIE))=[En) O  ¢n(=X)=n(x). (14
PT symmetry of a non-Hermitian Hamiltonidt leads to

particular relation between the operator and its adjéift

As mentioned earlier, the adjoint 6f can be obtained from

applying parity to it,

HT=PHP. (15

H(P|E™)=E,(P|E™). (17)

Comparison with the first equation @9) shows that the
statesP|E") and |E,) are both eigenstates ¢f, with the
same nondegenerate eigenvalug,. Consequently, they
must be proportional to each other,

|[EM=c,P|E,), cneC. (18
This also follows from multiplying Eq(17) by (E™ from
the left and using the adjoint of the second equation in Eq.

(9) with E™=E,,:

(Em_En)<Em|(P|En>):O- (19

The numbers, must, in fact, bereal since the statefE,)
and |E") are a normalized pair: using?=1 and Eq.(18)
implies
1:<En|En>:<En|P2|En>:C:C;1<En|En>:C:C;1!
(20)

that is,c,=c} . Furthermore, the dual bases can always be
chosen in such a way that the numbetwill take the values
+1. To see this, multiply each side of Ed.8) with its own
adjoint, giving(E"|E") = c%(E,|E,,), or

B[]

=S\ (E,|E) (21

consistent with Eq(20) because the scalar products are posi-
tive. The square root can always be given the value 1 by

rescaling the eigenstatesidfandA . For each dual pair, let

|En)—NnlEn) and [EM—N YET), 0<\,<e,
(22)

a transformation which does not change orthonormality of
the bases sincéE,|E™) remains invariant. Eq(21), how-
ever, turns into

1 <En|En> 1/2_ . B <En|En> 1/4
x_§<En|En>) = A”‘(<EnlEn>) |

Cn_sn

(23

The signature s=(s;,S,, . . . ) depends on the actual Hamil-
tonian as a discussion of finite-dimensiorRaT-symmetric
systemg[13] shows. Here is a simple way to calculate the
numberss, once the eigenfunctiong,(x)=(x|E,) of a

It will be shown now that a simple relation between the Hamiltonian withPT symmetry have been determined. Mul-

statesE,) and|E") results,viz,,

|[EM=s,PIE,), sp=*1. (16)

tiply Eq. (16) with (E,| and solve fors,=s,,*, giving

Sn=<En|P|En>- (24

This relation is crucial to derive the numerically observed Using Eq.(16), it is straightforward to derive complete-
completeness and orthogonality relations. To see that Eaess relations which involve the states afe basis only.

(16) holds, an argument similar to the derivation of Etg)

Rewrite Eg.(10) by means of Eq(16) as
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2 [ENE"| =2 s En)(EnlP=T, (29

and take its matrix elements in the position representation

2 sn¢n(x>¢:<—y>=§ Snbn(X) dn(y) = 8(x—y),
(26)

where PT invariance(14) has been used. The result agrees

with the expression3) if s,=(—1)". In a similar way, one
can derive a completeness relation for the eigenstate of

; S d"(X) B (y) = S(x—Y). 27)
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(Em|E"™)=(Em|PCJEn)

~(EnlP | axoICEy

= f dXp(—X)Cspn(x)

:f AXpm(X)[CsPTehn(X) ]
= Smn- (33
Defining C;=C if s,=(—1)", this equation justifies Eq7)

for energy eigenstates. Furthermore, the first completeness
relation in Eq.(10) implies through Eq(32) that

5<x—y>=§ (X|PIE"™(Eq|Ply)

The orthonormality condition for dual states turns into a re-
lation which has been interpreted as the existence of a non-

positive scalar product among the eigenstatesl oSimply
write the scalar produdtll) in the position representation,
using Eqg.(16) and P T-invariance,

<En| Em>: Sn<En| Pl Em>

:Snf dxf (= X) m(X)

= snf dXpn(X) pm(X)

= Snm» (28
or, using the notation from Ed4),
(én+dm) =SnOnm, (29

which is again consistent witg,=(—1)".

Suppose we wanted to write an operator version of Eq

(16). Define an operato€, by

Co= 2 sdE(EY. (30)
Its eigenstates ané,,) since
ColBn) =2 SdBEN(E En)=si[Er), (3D

and its eigenvalues, coincide indeed with the signs of the
“PT norm,” a property of the charge operatGrpointed out
in Ref.[6]. Writing

|En>:SnP|En>:PCs|En>1 (32

=§ cs¢n<x>¢:<—y>=; [CPThn(X)1bn(y),
(34)

which reproduces Eq8), identical to Eq.(13) of Ref. [6].
By taking matrix elements of E430), the position represen-
tation of the operato€4(x,y) is found to agree with E(6).

There is, in fact, a simple way to express the oper&tgr
which follows from comparing Eq30) with the “diagonal”
representation of the Hamiltonian,

H=2 EdE(EY. (35)
Introducing a functiorf (x) such that
f(Ek):Sk, n=12,..., (36)

one finds that the operat@y is nothing but a function of the
Hamiltonian,

Ce=2, s|E(E
=2, 1(EQ|E(EY

:f(A

f(H).

; Exl Ek><Ek|)

(37)
Therefore,Cg, commutes with the Hamiltonian, and it will
not be Hermitian, consistent with E(B0).

In summary, it has been shown that the dual bases of
P T-symmetric quantum systems with non-Hermitian Hamil-
tonians enjoy a particularly simple relatioh6). As a conse-

one can transform the scalar product of dual states, using Equence, it is possible to formulate completeness and ortho-

(14) twice,

normality relations which invoke the elements of one basis
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only. These relations are inherited from the dual pair of basestructive conclusion, one would need to find a natural inter-
providing them thus with a sound mathematical footing.pretation of the linear, idempotent charge operaorThis
Structurally similar relations can be derived for any pseudoappears difficult in the framework of nonrelativistic quantum
Hermitian Hamiltonian. mechanics: in spite of having eigenvalugs £ 1 only, the

It is a different question whether this mathematical operatorC is neither self-adjoint nor unitary while the famil-
structure—call it “complex extension” of quantum mechan- iar operator of charge conjugation used in field theory is
ics [6], for example—is realized in nature. To draw a con-unitary.
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