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Completeness and orthonormality inPT-symmetric quantum systems
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SomePT-symmetric non-Hermitian Hamiltonians have only real eigenvalues. There is numerical evidence
that the associatedPT-invariant energy eigenstates satisfy an unconventional completeness relation. Anad hoc
scalar product among the states is positive definite only if a recently introduced ‘‘charge operator’’ is included
in its definition. A simple derivation of the conjectured completeness and orthonormality relations is given. It
exploits the fact thatPT symmetry provides a link between the eigenstates of the Hamiltonian and those of its
adjoint, forming a dual pair of bases. The charge operator emerges naturally upon expressing the properties of
the dual bases in terms ofonebasis only, and it is shown to be a function of the Hamiltonian.
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Hermitian operators have real eigenvalues while n
Hermitian ones may have complex eigenvalues. Numer
and analytical results indicated the possibility to compens
the non-Hermiticity of a Hamiltonian by the presence of
additional symmetry @1#. The spectra of many non
Hermitians HamiltoniansĤ are indeedreal @2# if they are
invariant under the combined action of self-adjoint parityP
and time reversalT,

@Ĥ,PT#50, ~1!

and if the energy eigenstates are invariant under the oper
PT. Pairs ofcomplex-conjugateeigenvalues are compatibl
with PT symmetry as well but the eigenstates ofĤ are no
longer invariant underPT. It is possible to explain thes
observations by the concept ofpseudo-Hermitianoperators
@3# which satisfy

hĤh215Ĥ†, ~2!

following from Eq. ~1! with h5P. Wigner’s representation
theory of antilinear operators@4# provides an alternative ex
planation if applied to the operatorPT @5#. What is more, the
group-theoretical approach explains the fate of energy eig
states if they arenot invariant under the action ofPT, and a
complete classification ofPT-invariant subspaces emerges

PT-symmetric systems possess at least two other intr
ing features. First, the eigenstates ofPT-symmetric non-
Hermitian Hamiltonians~with real eigenvalues only! do not
satisfy the standard completeness relations. Numerical
dence@6# suggests that one has instead

(
n

~21!nfn~x!fn~y!5d~x2y!, ~3!

the functionsfn(x)[^xuEn& being energy eigenstates of
particle on the real line subjected to aPT-symmetric poten-
tial such asV(x)5x2( ix)n,n>0 @7#. Whether the complete
ness relation~3! is valid has been called a ‘‘major ope
mathematical question forPT-symmetric Hamiltonians’’@8#.
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Second, a ‘‘natural inner product’’ of functionsf (x) and
g(x) associated withPT-symmetric systems has been pr
posed@9#,

~ f ,g!5E
C
dx@PT f~x!#g~x!, ~4!

where the integration is along an appropriate pathC, possibly
in the complex-x plane@6#. This scalar product implies tha
energy eigenstates can have a negative norm,

~fm ,fn!5~21!ndmn , ~5!

which makes it difficult to maintain the familiar probabilisti
interpretation of quantum theory@9# and gave rise to discus
sions about the state space ofPT-symmetric systems@10#.

In an attempt to base an extension of quantum mecha
@6# on systems withPT-symmetry a remedy against the in
definite metric in Hilbert space has been proposed in
form of a linear charge operatorC. Its position representa
tion is given by

C~x,y!5(
n

fn~x!fn~y!. ~6!

Then, the redefined inner product

^ f ug&5E
C
dx@CPT f~x!#g~x!, ~7!

is positive definite, and the completeness relation~3! turns
into

(
n

@CPTfn~x!#fn~y!5d~x2y!. ~8!

These relations are also consistent with results obtained
pseudo-Hermitian operators@3,11#.

The purpose of this contribution is, first, to prove th
relations such as Eq.~3! exist for all PT-symmetric system
with real eigenvalues. Second, the origin of the operatoC
will be identified, which directly explains both why Eq.~7!
defines indeed a positive inner product and why Eq.~8! is a
valid completeness relation. To cut a long story short, the
two equations@as well as Eqs.~3! and ~4!# are nothing but
©2003 The American Physical Society11-1
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biorthonormality and completeness for a pair of dual ba
associated withĤ. It is due to the system’sPT symmetry
and the occurrence of real eigenvalues only that these
relations acquire a special form which involves the eleme
$fn(x)% of onebasis only.

Consider a~diagonalizable! non-Hermitian Hamiltonian
Ĥ with a discrete spectrum@12#. The operatorsĤ and its
adjoint Ĥ† have complete sets of eigenstates:

ĤuEn&5EnuEn&, Ĥ†uEn&5EnuEn&, n51,2, . . . ,
~9!

with, in general, complex conjugate eigenvalues,En5En* .
The eigenstates constitutebiorthonormal bases inH with
two resolutions of unity,

(
n

uEn&^Enu5(
n

uEn&^E
nu5 Î , ~10!

and as dual bases, they satisfy orthonormality relations,

^EnuEm&5^EmuEn&5dnm , m,n51,2, . . . . ~11!

A priori, nothing is known about scalar products such
^EnuEm&.

Consider now aPT-invariant Hamiltonian, i.e., Eq.~1!
holds, and assume all its eigenvalues,En to be real and non-
degenerate. Multiply the first equation of Eq.~9! with the
operatorPT so that

Ĥ~PTuEn&)5En~PTuEn&). ~12!

Multiplication by ^Emu from the left and using the adjoint o
the second equation in Eq.~9! with En[En leads to

~Em2En!^Emu~PTuEn&!50. ~13!

Consequently, the statePTuEn& must equaluEn& apart from a
multiplicative factor dn . Since (PT)2uEn&5uEn&
5udnu2uEn&, dn must equal a phase factoreiwn, say. Redefin-
ing uEn&→e2 iwn/2uEn& implies—as is well known—that one
can always write

PTuEn&5uEn& or fn* ~2x!5fn~x!. ~14!

PT symmetry of a non-Hermitian HamiltonianĤ leads to
particular relation between the operator and its adjointĤ†.
As mentioned earlier, the adjoint ofĤ can be obtained from
applying parity to it,

Ĥ†5PĤP. ~15!

It will be shown now that a simple relation between t
statesuEn& and uEn& results,viz.,

uEn&5snPuEn&, sn561. ~16!

This relation is crucial to derive the numerically observ
completeness and orthogonality relations. To see that
~16! holds, an argument similar to the derivation of Eq.~14!
06211
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will be given. WriteĤ†5PĤP in the second equation of~9!,
multiply it with P, useP25 Î and recall thatEn5En* 5En :

Ĥ~PuEn&)5En~PuEn&). ~17!

Comparison with the first equation of~9! shows that the
statesPuEn& and uEn& are both eigenstates ofĤ, with the
same nondegenerate eigenvalueEn . Consequently, they
must be proportional to each other,

uEn&5cnPuEn&, cnPC. ~18!

This also follows from multiplying Eq.~17! by ^Emu from
the left and using the adjoint of the second equation in
~9! with Em[Em :

~Em2En!^Emu~PuEn&!50. ~19!

The numberscn must, in fact, bereal since the statesuEn&
and uEn& are a normalized pair: usingP25 Î and Eq.~18!
implies

15^EnuEn&5^EnuP2uEn&5cn* cn
21^EnuEn&5cn* cn

21 ,
~20!

that is,cn5cn* . Furthermore, the dual bases can always
chosen in such a way that the numberscn will take the values
61. To see this, multiply each side of Eq.~18! with its own
adjoint, giving^EnuEn&5cn

2^EnuEn&, or

cn5snS ^EnuEn&

^EnuEn&
D 1/2

, sn561, ~21!

consistent with Eq.~20! because the scalar products are po
tive. The square root can always be given the value 1
rescaling the eigenstates ofĤ andĤ†. For each dual pair, le

uEn&→lnuEn& and uEn&→ln
21uEn&, 0,ln,`,

~22!

a transformation which does not change orthonormality
the bases sincêEnuEm& remains invariant. Eq.~21!, how-
ever, turns into

cn5snS 1

ln
4

^EnuEn&

^EnuEn&
D 1/2

[sn if ln5S ^EnuEn&

^EnuEn&
D 1/4

.

~23!

Thesignature s5(s1 ,s2 , . . . ) depends on the actual Hami
tonian as a discussion of finite-dimensionalPT-symmetric
systems@13# shows. Here is a simple way to calculate t
numberssn once the eigenfunctionsfn(x)5^xuEn& of a
Hamiltonian withPT symmetry have been determined. Mu
tiply Eq. ~16! with ^Enu and solve forsn[sn

21 , giving

sn5^EnuPuEn&. ~24!

Using Eq.~16!, it is straightforward to derive complete
ness relations which involve the states ofone basis only.
Rewrite Eq.~10! by means of Eq.~16! as
1-2
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(
n

uEn&^E
nu5(

n
snuEn&^EnuP5 Î , ~25!

and take its matrix elements in the position representatio

(
n

snfn~x!fn* ~2y!5(
n

snfn~x!fn~y!5d~x2y!,

~26!

wherePT invariance~14! has been used. The result agre
with the expression~3! if sn5(21)n. In a similar way, one
can derive a completeness relation for the eigenstates ofĤ†,

(
n

snfn~x!fn~y!5d~x2y!. ~27!

The orthonormality condition for dual states turns into a
lation which has been interpreted as the existence of a n
positive scalar product among the eigenstates ofĤ. Simply
write the scalar product~11! in the position representation
using Eq.~16! andPT-invariance,

^EnuEm&5sn^EnuPuEm&

5snE dxfn* ~2x!fm~x!

5snE dxfn~x!fm~x!

5dnm , ~28!

or, using the notation from Eq.~4!,

~fn ,fm!5sndnm , ~29!

which is again consistent withsn5(21)n.
Suppose we wanted to write an operator version of

~16!. Define an operatorCs by

Cs5(
k

skuEk&^E
ku. ~30!

Its eigenstates areuEn& since

CsuEn&5(
k

skuEk&^E
kuEn&5snuEn&, ~31!

and its eigenvaluessn coincide indeed with the signs of th
‘‘ PT norm,’’ a property of the charge operatorC pointed out
in Ref. @6#. Writing

uEn&5snPuEn&5PCsuEn&, ~32!

one can transform the scalar product of dual states, using
~14! twice,
06211
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^EmuEn&5^EmuPCsuEn&

5^EmuPE dxux&^xuCsuEn&

5E dxfm* ~2x!Csfn~x!

5E dxfm~x!@CsPTfn~x!#

5dmn . ~33!

DefiningCs5C if sn5(21)n, this equation justifies Eq.~7!
for energy eigenstates. Furthermore, the first completen
relation in Eq.~10! implies through Eq.~32! that

d~x2y!5(
n

^xuPuEn&^EnuPuy&

5(
n

Csfn~x!fn* ~2y!5(
n

@CsPTfn~x!#fn~y!,

~34!

which reproduces Eq.~8!, identical to Eq.~13! of Ref. @6#.
By taking matrix elements of Eq.~30!, the position represen
tation of the operatorCs(x,y) is found to agree with Eq.~6!.

There is, in fact, a simple way to express the operatorCs ,
which follows from comparing Eq.~30! with the ‘‘diagonal’’
representation of the Hamiltonian,

Ĥ5(
n

EkuEk&^E
ku. ~35!

Introducing a functionf (x) such that

f ~Ek!5sk , n51,2, . . . , ~36!

one finds that the operatorCs is nothing but a function of the
Hamiltonian,

Cs5(
n

skuEk&^E
ku

5(
n

f (Ek)uEk&^E
ku

5 f S (
n

EkuEk&^E
ku D

5 f (Ĥ). ~37!

Therefore,Cs commutes with the Hamiltonian, and it wil
not be Hermitian, consistent with Eq.~30!.

In summary, it has been shown that the dual bases
PT-symmetric quantum systems with non-Hermitian Ham
tonians enjoy a particularly simple relation~16!. As a conse-
quence, it is possible to formulate completeness and or
normality relations which invoke the elements of one ba
1-3
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only. These relations are inherited from the dual pair of ba
providing them thus with a sound mathematical footin
Structurally similar relations can be derived for any pseu
Hermitian Hamiltonian.

It is a different question whether this mathematic
structure—call it ‘‘complex extension’’ of quantum mecha
ics @6#, for example—is realized in nature. To draw a co
06211
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structive conclusion, one would need to find a natural int
pretation of the linear, idempotent charge operatorC. This
appears difficult in the framework of nonrelativistic quantu
mechanics: in spite of having eigenvaluessn561 only, the
operatorC is neither self-adjoint nor unitary while the fami
iar operator of charge conjugation used in field theory
unitary.
ys.
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