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Abstract
A fundamental problem in the theory of PT-invariant quantum systems is to
determine whether a given system ‘respects’ this symmetry or not. If not, the
system usually develops non-real eigenvalues. It is shown in this contribution
how to algorithmically detect the existence of complex eigenvalues for a given
PT-symmetric matrix. The procedure uses classical results from stability theory
which qualitatively locate the zeros of real polynomials in the complex plane.
The interest and value of the present approach lies in the fact that it avoids
diagonalization of the Hamiltonian at hand.

PACS numbers: 03.65.−w, 02.30.−f, 02.70.Hm, 11.30.−j

1. Motivation

When dealing with a non-Hermitian operator such as

H = p2 + ix3, (1)

one needs to address two questions which do not arise for a Hermitian operator:

Q1. Is the operator H diagonalizable?
Q2. Does the operator H have real eigenvalues only?

For a randomly picked non-Hermitian operator the answers to both questions are unlikely to be
positive: it will have neither a complete set of eigenfunctions nor a real spectrum. However,
operators with PT-symmetry [1],

[H, PT] = 0, (2)

invariant under simultaneous application of parity P and time-reversal T, behave somewhat
‘better’. PT-invariant operators tend to be diagonalizable but for the rare occurrence of
exceptional points, and each of their eigenvalues must be either real or have a complex-
conjugate counterpart. Positive answers to Q1 and Q2 are necessary in order to attempt a
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Figure 1. Discretized PT-symmetric well: the wavefunction takes non-zero values at three points
x = 0,±L only (cf text).

consistent quantum mechanical interpretation of the operator H since it can be similar to a
Hermitian operator only then [2].

To answer these questions for a given PT-invariant Hamiltonian is by no means
straightforward. It is known, for example, that the operator H in equation (1) does have only
real eigenvalues [3, 4] while the (likely) completeness of its eigenfunctions has, apparently,
not yet been established rigorously. Perturbative results allow one to confirm that the spectrum
of an initially Hermitian operator such as the Hamiltonian of a particle in an oscillator-type
potential remains real if a sufficiently weak PT-symmetric term is added [5]. As long as no
degeneracies develop, this approach also makes plausible the existence of a complete set of
eigenfunctions; they are, however, not necessarily pairwise orthogonal with respect to the
standard scalar product in Hilbert space. Technically, the difficulties are due to the fact that
the cubic term in equation (1) is unbounded on the real axis, and the unperturbed operator
does not provide a bound for it. When restricted to a finite interval, a perturbation such
as igx3, g ∈ R, is bounded, and one can reach general conclusions when perturbing the
Hermitian boundary value problem with a non-Hermitian PT-symmetric term. Upon treating
the PT-symmetrically perturbed square-well potential [6] in a Krein space setting, one can
show [7] that its eigenvalues remain real if the perturbation does not move the (non-degenerate)
real eigenvalues far enough along the real axis to create a degeneracy, which is necessary for
complex eigenvalues to emerge. A similar result also follows by a non-perturbative approach
when a ‘slightly’ non-self-adjoint term is added to a self-adjoint operator, as is described
in [8].

More is known for PT-symmetric systems with a finite-dimensional state space which
are described by complex symmetric matrices M. Let us consider an example which exhibits
the essential features: the discretized PT-symmetric square well [9]. This model, sketched
in figure 1, is obtained upon discretizing the configuration space of a particle moving freely
between walls at x = ±2L, subjected to a piecewise constant potential ±iZ,Z ∈ R. Defining
a wavefunction which takes values at the points x = 0,±L,±2L, and satisfies ‘hard’ boundary
conditions at x = ±2L, an effective Hamiltonian is obtained,

H =

iξ 1 0

1 0 1
0 1 −iξ


 , ξ = 2mL2Z/h̄2. (3)

This matrix is invariant under the action of parity P, a matrix with ones along the minor diagonal
and zeros elsewhere, followed by complex conjugation, overall equivalent to equation (2). The
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eigenvalues of H are given by the roots of its characteristic polynomial,

pH(λ) = λ(λ2 − (2 − ξ 2)), (4)

reading explicitly,

E0 = 0 and E± = ±
√

2 − ξ 2 ∈
{

R if |ξ | <
√

2,

iR if |ξ | >
√

2.
(5)

The possibility of analytically determining the eigenvalues of H provides immediate and
exhaustive answers to both Q1 and Q2, summarized briefly now. The zero eigenvalue (with
its associated eigenstate) persists for all values of ξ , while the remaining two change their
character with varying strength of the parameter Z. Three regions can be identified: depending
on the magnitude of ξ , there is either a pair of complex conjugate or a pair of real eigenvalues.
However, the matrix H is not diagonalizable for ξ = ±√

2: only a single eigenvector is
associated with E± = 0, while the algebraic multiplicity of this eigenvalue is 2 [9].

For matrices M of larger dimensions no analytic expressions for the eigenvalues exist. To
overcome this shortcoming, an algorithm has been proposed which is capable of detecting
whether a PT-invariant matrix is diagonalizable or not [10]. The relevant information is
coded in the minimal polynomial of the matrix which one can construct without knowing
the eigenvalues of M, just like its characteristic polynomial. This approach answers Q1
systematically, circumventing the need to numerically calculate the eigenvalues of M. This is
important from a conceptual point of view.

In the present contribution, a second, independent algorithm will be presented which
answers Q2 for any PT-symmetric matrix. Both the number of its real eigenvalues and the
number of pairs of complex eigenvalues are obtained by manipulating the coefficients of the
characteristic polynomial of M. This information will be called the qualitative spectrum of M.

The interest of the method proposed is due to the fact that it is possible to extract nothing
but the desired information about the eigenvalues, namely their location relative to the real
axis in the complex plane. Problems of this type arise when the stability of dynamical systems
is addressed where it is crucial to determine whether the eigenvalues of a given matrix have
negative real parts.

In section 2, the notion of inertia is introduced for Hermitian matrices, followed by
Jacobi’s criterion of stability for such matrices. Then, the breaking (or not) of PT-symmetry is
described in terms of a modified inertia. Next, a theorem by Jacobi and Borhard is presented
which locates the zeros of real polynomials in the complex plane. Section 3 combines all this
to formulate an algorithm which, given a PT-invariant (or quasi-Hermitian) matrix, outputs the
number of its real and complex eigenvalues. Finally, the algorithm is illustrated by applying it
to the discretized PT-symmetric square-well potential introduced above, outputting correctly
its qualitative spectrum.

2. Stability and inertia of matrices

Consider a dynamical system which is described exactly or, after some approximation, by the
equation

dx
dt

= M · x, (6)

where M is a fixed Hermitian (or real symmetric) matrix of dimensions (N × N), and the
vector x(t) gives the state of the system at time t. In many applications, one needs to know



10242 S Weigert

�M

δ�

ν�

π�

M

ν πδ

�M

Figure 2. Imaginary and real inertia of a (17 × 17) matrix M with broken PT-symmetry, having
five real eigenvalues and six pairs of complex-conjugate eigenvalues: InM = {5, 2, 10} and
In� M = {6, 5, 6}, see equations (8) and (16), respectively.

whether the solutions of equation (6) are stable: this is the case if all eigenvalues Mn of M
have negative real parts,

Re Mn < 0. (7)

Indeed, no solution of equation (6) will grow without bounds if (7) holds, making it possible
to qualitatively predict the system’s long-term behaviour. Let us characterize a matrix M by a
triple of non-negative integers, its inertia [11] with respect to the imaginary axis,

InM = {ν, δ, π}, (8)

where ν and π are the number of its eigenvalues with negative and positive real parts,
respectively, while δ counts the eigenvalues on the imaginary axis (cf figure 2 for an
illustration). All eigenvalues are counted according to their multiplicities. A stable matrix M
has an inertia of the form

InM = {N, 0, 0}, (9)

while a matrix is called marginally stable if all its eigenvalues have non-positive real parts,
allowing for the presence of purely imaginary eigenvalues,

InM = {N − m,m, 0}, 0 < m � N. (10)

Whenever π > 0, the matrix M is called unstable since there is at least one solution of (6)
which will grow without bound.

2.1. Inertia of Hermitian matrices: Jacobi’s method

Jacobi devised an ingenious method [12] to determine the inertia of a given (non-singular)
Hermitian matrix L of size (N × N). First, calculate the determinants dn of its N leading
principal submatrices L1, L2, . . . , LN ≡ L, all of which must be different from zero,

dn ≡ det Ln, n = 1, . . . , N; (11)

second, write down a ‘+’ followed by the sequence of signs σn of the N determinants dn,

+, σ1, σ2, . . . , σN, σn = dn

|dn| = ±1. (12)
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These (N + 1) signs encode the inertia of the matrix L: the number of sign changes in this
sequence equals the number π of eigenvalues with positive real part, while the number of
constancies in signs equals the number ν of its negative eigenvalues:

Number of constancies in (12) ≡ π

Number of alterations in (12) ≡ ν

}
⇒ In L = (ν, 0, π). (13)

The matrix L cannot have a zero eigenvalue, that is, δ ≡ 0, since all leading subdeterminants
including dN have been assumed to be non-zero.

The following section will show that it is possible to detect the location of the eigenvalues
of a PT-symmetric (hence non-Hermitian) matrix relative to the real axis by similar methods.

2.2. Stability and inertia of PT-invariant matrices

A non-Hermitian matrix H with PT-symmetry satisfies (2), which implies that its characteristic
polynomial

pH(λ) =
N∑

n=0

hnλ
n (14)

has real coefficients hn only,

p∗
H(λ) = pH(λ∗). (15)

As a consequence, the zeros of this polynomial are either real or they come in complex-
conjugate pairs. To distinguish between broken and unbroken PT-symmetry, it is useful to
introduce the inertia of a matrix H with respect to the real axis,

In� H = {ν�, δ�, π�}, (16)

where the triple {ν�, δ�, π�} of integers denotes the number of eigenvalues of H with negative,
vanishing and positive imaginary part (cf figure 2). The inertia of a matrix with real eigenvalues
only, corresponding to unbroken PT-symmetry, reads

In� H = {0, N, 0}, (17)

while broken PT-symmetry is signalled by an inertia of the form

In� H = {m,N − 2m,m}, m > 0, (18)

corresponding to m pairs of complex eigenvalues and (N − 2m) real ones. Thus, for any
PT-invariant matrix the numbers ν� and π� coincide, the symmetry being broken or not. Let
us now turn to the question how to determine the real inertia of a matrix with PT-symmetry.

2.3. Zeros of real polynomials

Given a real polynomial p(λ) of degree N, one can proceed as follows to obtain the number of
its real zeros. To begin, one determines the first (2N − 2) Newton sums associated with the
polynomial p(λ) defined by

s0 = N, sn = λn
1 + · · · + λn

N, n = 1, 2, . . . , 2N − 2. (19)

This is possible without knowing the zeros λ1, . . . , λN , since one can [11] either define the
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numbers sn recursively in terms of the coefficients hn of the polynomial or generate them by
means of the identity

dp(λ)

dλ
= (s0λ

−1 + s1λ
−2 + · · ·)p(λ). (20)

Once the Newton sums have been calculated, one introduces the real symmetric (and
Hermitian) matrix

Hp =




s0 s1 s2 · · · sN−1

s1 s2 · · · sN

s2 sN+1

...
...

sN−1 sN · · · s2N−2


 , (21)

which, having constant entries along its minor diagonals, is of Hankel type. One can thus
apply the method presented in section 2.1 to determine its imaginary inertia1. This is useful
since Borhard [14] and Jacobi [15] have shown2 that the inertia of Hp, in fact, encodes the
structure of the zeros of the polynomial p(λ):

InHp = {ν, 0, π} ⇒ p(λ) has

{
π − ν different real zeros,
ν different pairs of complex-conjugate zeros.

(22)

Let us imagine that the real polynomial p(λ) is the characteristic polynomial pH(λ) associated
with a PT-invariant matrix H. Then, the result (22) says that H has ν pairs of different complex
eigenvalues and (π − ν) different real eigenvalues if the Hankel matrix HH associated with
pH(λ) has ν(π) eigenvalues with negative (positive) real part. Expressed in terms of inertias,
this result reads

InHH = {ν, 0, π} �⇒ In�H = {ν, π − ν, ν}. (23)

The next section will collect the results obtained so far and present them as an algorithm to
determine the number of complex pairs and real eigenvalues of a PT-invariant matrix.

3. Algorithm for detecting complex eigenvalues

Given a matrix H of dimensions (N × N) which is invariant under the combined action of
parity P and time-reversal T, equation (2), here is an algorithm that determines its qualitative
spectrum.

(1) Calculate the characteristic polynomial pH(λ) of the matrix H.
(2) Determine the first (2N − 2) Newton sums sn associated with the polynomial pH(λ).
(3) Write down the Hankel matrix HH (21), defined in terms of the sums sn.
(4) Obtain the number of constancies π and alterations ν in the sequence of signs (12) giving

the inertia of HH as InHH = {ν, 0, π}.
(5) Then, the inertia of the PT-invariant matrix H follows from the inertia InHH using (23)

with N ≡ π + ν,

In� H = {ν,N − 2ν, ν}. (24)

Consequently, PT-symmetry is broken if ν > 0, and H will have ν pairs of complex-conjugate
eigenvalues while the remaining (N − 2ν) ones are real. Thus, the main result of this paper
has been established.
1 To evaluate the leading principal minors of Hp means, in modern terminology [13], to determine the first N terms
of the Hankel transform of the sequence s0, s1, s2, . . . .
2 The content of [14] and [15] is described in [11].
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3.1. Example: the discretized PT-symmetric square well

Let us work through the algorithm to detect the qualitative spectrum of the PT-symmetric
discretized square-well potential described by the matrix H in (3)—this time without solving
for its eigenvalues. The derivative of its characteristic polynomial (4) reads

dpH(λ)

dλ
= 3λ2 − (2 − ξ 2). (25)

Compare the expansion

p′
H(λ)

pH(λ)
= 3λ−1 + 2(2 − ξ 2)λ−3 + 2(2 − ξ 2)2λ−5 + O(λ−7) (26)

with (20), to read off the first five Newton sums. The Hankel matrix associated with H is given
by

HH = 2


 3/2 0 (2 − ξ 2)

0 (2 − ξ 2) 0
(2 − ξ 2) 0 (2 − ξ 2)2


 , (27)

and its leading principal minors have determinants

d1 = 3, d2 = 6(2 − ξ 2), d3 = 4(2 − ξ 2)3. (28)

Depending on the value of the parameter ξ , two different sequences of signs arise; for ξ 2 < 2,
one has all dn positive, resulting in three constancies and no alteration:

+ + + + ⇒ InHH = {0, 0, 3} , (29)

while d2 and d3 turn negative for ξ 2 > 2, implying that

+ + − − ⇒ InHH = {1, 0, 2}. (30)

Using relation (24), the inertia of H with respect to the real axis is finally given by

In� H =
{

{0, 3, 0} if |ξ | <
√

2,

{1, 1, 1} if |ξ | >
√

2.
(31)

Thus, the spectrum of H is real for ξ 2 < 2, while a pair of complex eigenvalues exist whenever
ξ 2 > 2. This agrees with the exact result given in (5).

For ξ = ±√
2, the method cannot be applied since the matrix HH in (27) develops

leading principal minors with vanishing determinant. This is consistent with the fact that
for these values of ξ the properties of the matrix H undergo qualitative changes such as the
‘disappearance’ of an eigenstate. However, this does not put the current approach in jeopardy
since these exceptional points can be identified beforehand by running the algorithm presented
in [10], which checks whether a given PT-invariant matrix is diagonalizable. In the present
example, the points ξ = ±√

2 would be flagged, as shown explicitly in [9].
In fact, modifications of the current approach have been developed by Gundelfinger and

Frobenius (cf [11]) which are able to cope with the presence of at most three consecutive
vanishing determinants dn. The general relation between the vanishing principal sub-
determinants dn of the Hankel matrix HH and the zeros of the polynomial pH(λ) is not
obvious. In view of the example discussed above, it seems reasonable to conjecture that there
is a close link between the non-diagonalizability of the matrix H and the existence of vanishing
leading submatrices dn of HH.
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4. Discussion and outlook

An algorithm has been presented which is capable of determining whether the eigenvalues
of a PT-invariant matrix H (or possibly a family of such matrices depending smoothly on
parameters) are complex or not. It complements an earlier algorithm [10] which detects
whether a PT-invariant matrix does have a complete set of eigenstates. Thus, the fundamental
questions Q1 and Q2 about PT-invariant system as spelled out in the introduction can be
answered in a systematic way if the system is described by a matrix of finite but arbitrarily
large dimension.

From a numerical point of view, the current algorithm does not appear to be particularly
efficient. First, one needs to calculate the characteristic polynomial of the (N × N) matrix
H and, second, all principal minors of Hp in equation (21) must be determined, that is,
N determinants of matrices with dimensions 1, 2, . . . , N . It is likely, however, that these
calculations can be simplified due to the structure of Hp: for example, one can invert Hankel
matrices using ‘superfast’ algorithms [16] requiring only O(N log2N) steps. Furthermore,
one is only interested in the signs of the principal minors of Hp which, under some
circumstances, are accessible using particularly efficient methods [17]. The method proposed
here has the advantage of being exact, contrary to any numerical implementation generating
approximations of the eigenvalues of the matrix H. Furthermore, as the example in section 3.1
has shown, it is possible to carry along free parameters allowing for the subsequent investigation
of continuous ranges of values.

Although desirable, it is not yet obvious how to generalize the algorithm presented here
to operators such as H = p2 + ix3 acting in an infinite-dimensional space. This observation
also applies to the algorithm for diagonalizability mentioned earlier. Finally, it seems worth
while to point out that more efficient algorithms to determine the qualitative spectrum of a
PT-invariant matrix are likely to exist—Sturmian sequences based on the Euclidean algorithm
for polynomials [18] being the most promising candidates.
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