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Asymptotic equivalence in normed spaces

Suppose (an)n∈N and (bn)n∈N are two sequences in a normed
space. Say an ∼ bn as n→∞ if

‖an − bn‖
‖an‖

→ 0

as n→∞.

Suppose T is a bounded operator on a Banach space X. Under
what circumstances is there a sequence (Sn)n∈N of rank 1
operators such that Tn ∼ Sn as n→∞? If such a sequence
exists, how can it be described?
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Some expected rank 1 asymptotics — the power method

Suppose a bounded operator T on a Banach space X has an
algebraically simple eigenvalue λ with |λ| = r(T ) and a radius
ρ < r(T ) such that σ(T ) \ {λ} ⊆ D(0, ρ).

I The complementary spectral projections associated with λ and
σ(T ) \ {λ} are Px = φ(x)u (rank 1) and Qx = x−Px where
Tu = λu, T ∗φ = λφ and φ(u) = 1

I Since T, P,Q commute, P projects onto the eigenspace of λ
and PQ = QP = 0, we have

Tn = (P+Q)Tn(P+Q) = PTnP+QTnQ = λnP+(QTQ)n

I ‖λnP‖ = |λ|n‖u‖‖φ‖ and σ(QTQ) ⊆ D(0, ρ) so
‖(QTQ)n‖ = o(ρn) = o(|λ|n) as n→∞.

I Conclusion: Tn ∼ λnP (rank 1) as n→∞.
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What other operators have this property?

I If T has a more complicated peripheral spectrum then Tn will
typically not be asymptotically of rank 1.

I e.g. a non-nilpotent N ×N complex matrix is asymptotically
of rank 1 iff among the eigenvalues of maximal magnitude
there is exactly one Jordan block of maximal size.

I What about quasinilpotent (spectrum = {0}) operators?
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Volterra Convolution Operators

Suppose k ∈ L1(0, 1) and p ∈ [0,∞]. Then

(Vkf)(t) =

∫ t

0
k(t− s)f(s) ds

defines a bounded map on Lp(0, 1) with ‖Vk‖ ≤ ‖k‖1 =
∫ 1
0 |k|.

This is the Volterra convolution operator with kernel k; Vk is
compact and quasinilpotent. If g, k ∈ L1(0, 1) then

VkVg = VgVk = Vk∗g

where

(k ∗ g)(t) =

∫ t

0
k(t− s)g(s) ds

In particular,
V n
k = Vk∗n

where
k∗n = k ∗ k ∗ · · · ∗ k



Riemann-Liouville fractional integration operators (I)

For α > 0 and µ ∈ R define V α
(µ) ∈ B(Lp(0, 1)) by

(V α
(µ)f)(t) =

1

Γ(α)

∫ t

0
exp(µ(t− s))(t− s)α−1f(s) ds

For fixed µ, these form a semigroup: V α+β
(µ) = V α

(µ)V
β
(µ).

V α := V α
(0) are the Riemann-Liouville fractional integration

operators; V := V 1
(0) is indefinite integration:

(V f)(t) =

∫ t

0
f(s) ds

What happens as α→∞?



Riemann-Liouville fractional integration operators (II)

Outline argument (Eveson 2003, 2005, cf. Thorpe 1998, Kershaw
1999):

I When α is large, tα−1 can be well approximated on [0, 1] by
exp((α− 1)(t− 1)), so V α

(µ) can be well approximated by

(Tµ,αf)(t) =
1

Γ(α)

∫ t

0
exp(µ(t−s)) exp((α−1)(t−s−1))f(s) ds

I When α is large, exp((α− 1)(t− s− 1)) is much smaller for
s > t than it is for s < t, so Tµ,α can be well approximated by
Sµ,α where

(Sµ,αf)(t) =
1

Γ(α)

∫ 1

0
exp(µ(t−s)) exp((α−1)(t−s−1))f(s) ds

I Sµ,α has rank 1.
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Riemann-Liouville fractional integration operators (III)

This leads to various asymptotically equal sequences; e.g. the
Riemann-Liouville operators

1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds

are asymptotically equal to the rank 1 operators given by

tα−1

Γ(α)

∫ 1

0
(1− s)α−1f(s) ds

Can now read off information from the simpler asymptotic form,
e.g. on Lp(0, 1)

‖V α
(µ)‖ ∼

Cpe
µ

Γ(α+ 1)

where Cp = p−1/pq−1/q (p−1 + q−1 = 1), C1 = C∞ = 1.



Riemann-Liouville fractional integration operators (III)

This leads to various asymptotically equal sequences; e.g. the
Riemann-Liouville operators

1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds

are asymptotically equal to the rank 1 operators given by

tα−1

Γ(α)

∫ 1

0
(1− s)α−1f(s) ds

Can now read off information from the simpler asymptotic form,
e.g. on Lp(0, 1)

‖V α
(µ)‖ ∼

Cpe
µ

Γ(α+ 1)

where Cp = p−1/pq−1/q (p−1 + q−1 = 1), C1 = C∞ = 1.



Schatten Norms of Riemann-Liouville Operators

(Eveson 2003) We have

‖V α − Sα‖
‖Sα‖

→ 0 as α→∞

where ‖ · ‖ is the operator norm on Lp(0, 1). In the case p = 2,
there are other norms of interest, in particular Schatten norms.

I The operator norm: covered by the Lp analysis.
I The Hilbert-Schmidt norm: not so hard.
I The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm
and above by the trace norm, the equivalence holds in every
Schatten norm.
In every normalised Schatten norm (i.e. one in which rank-1
orthogonal projections have norm 1), we have

‖V α‖ ∼ 1

2Γ(α+ 1)
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More general Volterra convolution operators (I)

(Eveson 2005) Suppose k ∈ L1(0, 1) and define Vk ∈ B(Lp(0, 1))
by

(Vkf)(t) =

∫ t

0
k(t− s)f(s) ds

Suppose the exponential function eµt meets k tangentially at 0, i.e.
k is differentiable from the right at 0, k(0) = 1 and k′(0+) = µ.
Then V n

k ∼ V n
(µ) ∼ rank-1.

Idea of proof: write

k(t) = eµt + h(t); Vk = V(µ) + Vh; V n
k = (V(µ) + Vh)n

where h(t) = o(t) (t→ 0). Expand the RHS using the binomial
theorem, use the fact that ‖V n

(µ)‖ � 1/n! but ‖V n
h ‖ = o(1/(2n)!)

(n→∞).
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More general Volterra convolution operators (II)

For example, let k(t) = 1− t so e−t meets k(t) tangentially at
t = 0, and let k∗n be the nth convolution power of k, i.e. the
kernel of V n

k .

1

1

0

eµttn−1

k∗n(t)

n = 1

More generally: if k(t) = tα−1g(t) where g(0) 6= 0 and g′(0+)
exists then

V n
k ∼ [g(0)Γ(α)]nV αn

(g′(0)/g(0)) ∼ rank-1
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The polylaplacian in one dimension: Thorpe BCs

Consider the Riemann-Liouville operator

(V nf)(t) =
1

Γ(n)

∫ t

0
(t− s)n−1f(s) ds

for n ∈ N. Thorpe (1998) observed that (V n)∗(V n) on L2(0, 1) is
the solution operator for the BVP

(−1)ng(2n) = f ;

g(j)(0) = 0 (0 ≤ j ≤ n− 1); g(j)(1) = 0 (n ≤ j ≤ 2n− 1).

Since V n is asymptotically of rank 1, the same is true for
(V n)∗(V n). What about other boundary conditions?



The polylaplacian in one dimension: Dirichlet BCs

(Eveson / Fewster 2007, Böttcher / Widom 2007, Kalyabin 2010)
Consider the BVP on [−1, 1]

(−1)ng(2n) = f ; g(j)(±1) = 0 (0 ≤ j ≤ n− 1)

This has a solution operator Tn on L2(0, 1), and

‖Tn‖ = r(Tn) ∼ 1√
2(2n)!

Conjecture (Eveson / Fewster 2007):
Tn is asymptotically of rank 1.
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The polylaplacian in n dimensions: Dirichlet BCs

Consider the polylaplacian (−∆)m on the unit ball Bn in Rn, with
Dirichlet boundary conditions. Green’s function (Boggio 1905) is

Gm,n(x, y) = km,n|x− y|2m−n
∫ [x,y]/|x−y|

1

(v2 − 1)m−1

vn−1
dv

where
[x, y] = (|x|2|y|2 − 2x.y + 1)1/2

km,n =
Γ(1 + n/2)

nπn/24m−1[(m− 1)!]2
> 0.

Assume m > n/2, so Gm,n is continuous. Solution operator is

(Tm,nf)(x) =

∫
Bn

Gm,n(x, y)f(y) dy

(compact, symmetric, positive definite, non-negative kernel).
How does this behave as m→∞?



Results

(Eveson 2011) Say Tm,nhm,n = λm,nhm,n where λm,n is the
maximal eigenvalue of Tm,n, hm,n ≥ 0 (Jentzsch), ‖hm,n‖2 = 1.
For x, y ∈ Bn define:

Lm,n(x) = (1− |x|2)m Km,n(x, y) = Lm,n(x)Lm,n(y)

Let Sm,n be the rank 1 integral operator on L2(Bn) with kernel
Km,n. Then as m→∞:

(A) λm,n ∼
Γ(n/2)

(2π)1/2
1

Γ(2m+ n/2 + 1/2)

(B) hm,n ∼
Lm,n
‖Lm,n‖2

in L2(Bn)

(C) Gm,n ∼
km,n
2m

Km,n in L2(Bn ×Bn)

(D) Tm,n ∼
km,n
2m

Sm,n in any Schatten norm

(E) ‖Tm,n‖ ∼ λm,n for any normalised Schatten norm
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Idea of proof

Gm,n(x, y) = km,n|x− y|2m−n
∫ [x,y]/|x−y|

1

(v2 − 1)m−1

vn−1
dv

(Boggio). After change of variables and some calculation,

Gm,n(x, y) =
km,n

2
(1− |x|2)m(1− |y|2)m ×∫ 1

0

wm−1 dw

(|x− y|2 + (1− |x|2)(1− |y|2)w)n/2

The shaded term is (km,n/2)Km,n(x, y). As m increases, its mass
concentrates near x = y = 0, so asymptotically the remaining term
can be replaced by its value at x = y = 0; this is ∼ 1/m.
In some sense this shows that Gm,n ∼ km,n/(2m)Km,n. Now
prove (A)–(E)!



Lower-order perturbations

Fix n ∈ N and a differential operator A ,

A f =
∑

α:|α|≤d

aαD
α

where aα is a continuous function on Bn. Then the solution
operators for (−∆)m and (−∆)m + A (with Dirichlet boundary
conditions in both cases) are asymptotically equal in every
Schatten norm. In particular, the results described above apply to
the solution operator of (−∆)m + A .

This is because the solution operator for (−∆)m + A is

Tm,n(I + A Tm,n)−1

and A Tm,n → 0 as m→∞.
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Question

A variety of linear systems have asymptotic rank-1 behaviour.

I Normalised iterates Tn/‖Tn‖ converge to a rank-1 spectral
projection, if the peripheral spectrum of T consists of a single,
isolated, simple eigenvalue.

I The iterates of some quasinilpotent operators T (e.g. many
Volterra operators) can be asymptotically equivalent to
sequences of rank-1 operators.

I Solution operators of some BVPs are asymptotically
equivalent to sequences of rank-1 operators, as the order of
the BVP tends to infinity, e.g. A + ∆m with Dirichlet BCs.

Instead of the case-by-case calculations currently known, is there a
theoretical framework which explains why this happens?
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