#### Some unexpected rank 1 asymptotics

#### Simon Eveson

Department of Mathematics University of York simon.eveson@york.ac.uk

ISAAC, August 2011

### Asymptotic equivalence in normed spaces

Suppose  $(a_n)_{n\in\mathbb{N}}$  and  $(b_n)_{n\in\mathbb{N}}$  are two sequences in a normed space. Say  $a_n\sim b_n$  as  $n\to\infty$  if

$$\frac{\|a_n - b_n\|}{\|a_n\|} \to 0$$

as  $n \to \infty$ .

Suppose T is a bounded operator on a Banach space X. Under what circumstances is there a sequence  $(S_n)_{n\in\mathbb{N}}$  of rank 1 operators such that  $T^n\sim S_n$  as  $n\to\infty$ ? If such a sequence exists, how can it be described?

### Asymptotic equivalence in normed spaces

Suppose  $(a_n)_{n\in\mathbb{N}}$  and  $(b_n)_{n\in\mathbb{N}}$  are two sequences in a normed space. Say  $a_n\sim b_n$  as  $n\to\infty$  if

$$\frac{\|a_n - b_n\|}{\|a_n\|} \to 0$$

as  $n \to \infty$ .

Suppose T is a bounded operator on a Banach space X. Under what circumstances is there a sequence  $(S_n)_{n\in\mathbb{N}}$  of rank 1 operators such that  $T^n\sim S_n$  as  $n\to\infty$ ? If such a sequence exists, how can it be described?

- The complementary spectral projections associated with  $\lambda$  and  $\sigma(T)\setminus\{\lambda\}$  are  $Px=\phi(x)u$  (rank 1) and Qx=x-Px where  $Tu=\lambda u,\ T^*\phi=\lambda\phi$  and  $\phi(u)=1$
- $\blacktriangleright$  Since T,P,Q commute, P projects onto the eigenspace of  $\lambda$  and PQ=QP=0, we have

$$T^n = (P+Q)T^n(P+Q) = PT^nP + QT^nQ = \lambda^nP + (QTQ)^n$$

- ▶  $\|\lambda^n P\| = |\lambda|^n \|u\| \|\phi\|$  and  $\sigma(QTQ) \subseteq D(0, \rho)$  so  $\|(QTQ)^n\| = o(\rho^n) = o(|\lambda|^n)$  as  $n \to \infty$ .
- ▶ Conclusion:  $T^n \sim \lambda^n P$  (rank 1) as  $n \to \infty$ .

- ▶ The complementary spectral projections associated with  $\lambda$  and  $\sigma(T) \setminus \{\lambda\}$  are  $Px = \phi(x)u$  (rank 1) and Qx = x Px where  $Tu = \lambda u$ ,  $T^*\phi = \lambda \phi$  and  $\phi(u) = 1$
- ▶ Since T, P, Q commute, P projects onto the eigenspace of  $\lambda$  and PQ = QP = 0, we have

$$T^n = (P+Q)T^n(P+Q) = PT^nP + QT^nQ = \lambda^nP + (QTQ)^n$$

- ▶  $\|\lambda^n P\| = |\lambda|^n \|u\| \|\phi\|$  and  $\sigma(QTQ) \subseteq D(0, \rho)$  so  $\|(QTQ)^n\| = o(\rho^n) = o(|\lambda|^n)$  as  $n \to \infty$ .
- ▶ Conclusion:  $T^n \sim \lambda^n P$  (rank 1) as  $n \to \infty$ .

- ▶ The complementary spectral projections associated with  $\lambda$  and  $\sigma(T) \setminus \{\lambda\}$  are  $Px = \phi(x)u$  (rank 1) and Qx = x Px where  $Tu = \lambda u$ ,  $T^*\phi = \lambda \phi$  and  $\phi(u) = 1$
- Since T,P,Q commute, P projects onto the eigenspace of  $\lambda$  and PQ=QP=0, we have

$$T^n = (P+Q)T^n(P+Q) = PT^nP + QT^nQ = \lambda^nP + (QTQ)^n$$

- ▶  $\|\lambda^n P\| = |\lambda|^n \|u\| \|\phi\|$  and  $\sigma(QTQ) \subseteq D(0, \rho)$  so  $\|(QTQ)^n\| = o(\rho^n) = o(|\lambda|^n)$  as  $n \to \infty$ .
- ▶ Conclusion:  $T^n \sim \lambda^n P$  (rank 1) as  $n \to \infty$ .

- ▶ The complementary spectral projections associated with  $\lambda$  and  $\sigma(T) \setminus \{\lambda\}$  are  $Px = \phi(x)u$  (rank 1) and Qx = x Px where  $Tu = \lambda u$ ,  $T^*\phi = \lambda \phi$  and  $\phi(u) = 1$
- $\blacktriangleright$  Since T,P,Q commute, P projects onto the eigenspace of  $\lambda$  and PQ=QP=0, we have

$$T^n = (P+Q)T^n(P+Q) = PT^nP + QT^nQ = \lambda^nP + (QTQ)^n$$

- $\|\lambda^n P\| = |\lambda|^n \|u\| \|\phi\| \text{ and } \sigma(QTQ) \subseteq D(0,\rho) \text{ so } \|(QTQ)^n\| = o(\rho^n) = o(|\lambda|^n) \text{ as } n \to \infty.$
- ▶ Conclusion:  $T^n \sim \lambda^n P$  (rank 1) as  $n \to \infty$ .

- ► The complementary spectral projections associated with  $\lambda$  and  $\sigma(T) \setminus \{\lambda\}$  are  $Px = \phi(x)u$  (rank 1) and Qx = x Px where  $Tu = \lambda u$ ,  $T^*\phi = \lambda \phi$  and  $\phi(u) = 1$
- ▶ Since T, P, Q commute, P projects onto the eigenspace of  $\lambda$  and PQ = QP = 0, we have

$$T^{n} = (P+Q)T^{n}(P+Q) = PT^{n}P + QT^{n}Q = \lambda^{n}P + (QTQ)^{n}$$

- $\|\lambda^n P\| = |\lambda|^n \|u\| \|\phi\| \text{ and } \sigma(QTQ) \subseteq D(0,\rho) \text{ so } \\ \|(QTQ)^n\| = o(\rho^n) = o(|\lambda|^n) \text{ as } n \to \infty.$
- ▶ Conclusion:  $T^n \sim \lambda^n P$  (rank 1) as  $n \to \infty$ .

- ▶ If T has a more complicated peripheral spectrum then  $T^n$  will typically not be asymptotically of rank 1.
- e.g. a non-nilpotent  $N \times N$  complex matrix is asymptotically of rank 1 iff among the eigenvalues of maximal magnitude there is exactly one Jordan block of maximal size.
- What about quasinilpotent (spectrum =  $\{0\}$ ) operators?

- ▶ If T has a more complicated peripheral spectrum then  $T^n$  will typically not be asymptotically of rank 1.
- e.g. a non-nilpotent  $N \times N$  complex matrix is asymptotically of rank 1 iff among the eigenvalues of maximal magnitude there is exactly one Jordan block of maximal size.
- ▶ What about quasinilpotent (spectrum = {0}) operators?

- ▶ If T has a more complicated peripheral spectrum then  $T^n$  will typically not be asymptotically of rank 1.
- ightharpoonup e.g. a non-nilpotent N imes N complex matrix is asymptotically of rank 1 iff among the eigenvalues of maximal magnitude there is exactly one Jordan block of maximal size.
- What about quasinilpotent (spectrum =  $\{0\}$ ) operators?

- ▶ If T has a more complicated peripheral spectrum then  $T^n$  will typically not be asymptotically of rank 1.
- ightharpoonup e.g. a non-nilpotent N imes N complex matrix is asymptotically of rank 1 iff among the eigenvalues of maximal magnitude there is exactly one Jordan block of maximal size.
- ▶ What about quasinilpotent (spectrum =  $\{0\}$ ) operators?

#### Volterra Convolution Operators

Suppose  $k \in L^1(0,1)$  and  $p \in [0,\infty]$ . Then

$$(V_k f)(t) = \int_0^t k(t-s)f(s) \,\mathrm{d}s$$

defines a bounded map on  $L^p(0,1)$  with  $||V_k|| \le ||k||_1 = \int_0^1 |k|$ . This is the *Volterra convolution operator with kernel* k;  $V_k$  is compact and quasinilpotent. If  $q, k \in L^1(0,1)$  then

$$V_k V_g = V_g V_k = V_{k*g}$$

where

$$(k*g)(t) = \int_0^t k(t-s)g(s) \,\mathrm{d}s$$

In particular,

$$V_{l_n}^n = V_{k*n}$$

where

$$k^{*n} = k * k * \dots * k$$

# Riemann-Liouville fractional integration operators (I)

For  $\alpha>0$  and  $\mu\in\mathbb{R}$  define  $V^{\alpha}_{(\mu)}\in B(L^p(0,1))$  by

$$(V_{(\mu)}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \exp(\mu(t-s))(t-s)^{\alpha-1} f(s) \,\mathrm{d}s$$

For fixed  $\mu$ , these form a semigroup:  $V_{(\mu)}^{\alpha+\beta}=V_{(\mu)}^{\alpha}V_{(\mu)}^{\beta}$ .  $V^{\alpha}:=V_{(0)}^{\alpha}$  are the *Riemann-Liouville fractional integration operators*;  $V:=V_{(0)}^{1}$  is indefinite integration:

$$(Vf)(t) = \int_0^t f(s) \, \mathrm{d}s$$

What happens as  $\alpha \to \infty$ ?

# Riemann-Liouville fractional integration operators (II)

Outline argument (Eveson 2003, 2005, cf. Thorpe 1998, Kershaw 1999):

▶ When  $\alpha$  is large,  $t^{\alpha-1}$  can be well approximated on [0,1] by  $\exp((\alpha-1)(t-1))$ , so  $V^{\alpha}_{(\mu)}$  can be well approximated by

$$(T_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

When  $\alpha$  is large,  $\exp((\alpha-1)(t-s-1))$  is much smaller for s>t than it is for s< t, so  $T_{\mu,\alpha}$  can be well approximated by  $S_{\mu,\alpha}$  where

$$(S_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^1 \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

 $ightharpoonup S_{\mu,\alpha}$  has rank 1.

# Riemann-Liouville fractional integration operators (II)

Outline argument (Eveson 2003, 2005, cf. Thorpe 1998, Kershaw 1999):

▶ When  $\alpha$  is large,  $t^{\alpha-1}$  can be well approximated on [0,1] by  $\exp((\alpha-1)(t-1))$ , so  $V^{\alpha}_{(\mu)}$  can be well approximated by

$$(T_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

▶ When  $\alpha$  is large,  $\exp((\alpha-1)(t-s-1))$  is much smaller for s>t than it is for s< t, so  $T_{\mu,\alpha}$  can be well approximated by  $S_{\mu,\alpha}$  where

$$(S_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^1 \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

 $\triangleright S_{\mu,\alpha}$  has rank 1.

# Riemann-Liouville fractional integration operators (II)

Outline argument (Eveson 2003, 2005, cf. Thorpe 1998, Kershaw 1999):

▶ When  $\alpha$  is large,  $t^{\alpha-1}$  can be well approximated on [0,1] by  $\exp((\alpha-1)(t-1))$ , so  $V^{\alpha}_{(\mu)}$  can be well approximated by

$$(T_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

▶ When  $\alpha$  is large,  $\exp((\alpha-1)(t-s-1))$  is much smaller for s>t than it is for s< t, so  $T_{\mu,\alpha}$  can be well approximated by  $S_{\mu,\alpha}$  where

$$(S_{\mu,\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^1 \exp(\mu(t-s)) \exp((\alpha-1)(t-s-1)) f(s) ds$$

 $\triangleright$   $S_{\mu,\alpha}$  has rank 1.

# Riemann-Liouville fractional integration operators (III)

This leads to various asymptotically equal sequences; e.g. the Riemann-Liouville operators

$$\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, \mathrm{d}s$$

are asymptotically equal to the rank 1 operators given by

$$\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} f(s) \, \mathrm{d}s$$

Can now read off information from the simpler asymptotic form, e.g. on  $L^p(0,1)$ 

$$||V_{(\mu)}^{\alpha}|| \sim \frac{C_p e^{\mu}}{\Gamma(\alpha+1)}$$

where  $C_p = p^{-1/p}q^{-1/q}$   $(p^{-1} + q^{-1} = 1)$ ,  $C_1 = C_{\infty} = 1$ .

# Riemann-Liouville fractional integration operators (III)

This leads to various asymptotically equal sequences; e.g. the Riemann-Liouville operators

$$\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, \mathrm{d}s$$

are asymptotically equal to the rank 1 operators given by

$$\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} f(s) \, \mathrm{d}s$$

Can now read off information from the simpler asymptotic form, e.g. on  $L^p(0,1)\,$ 

$$||V_{(\mu)}^{\alpha}|| \sim \frac{C_p e^{\mu}}{\Gamma(\alpha+1)}$$

where  $C_p = p^{-1/p}q^{-1/q}$   $(p^{-1} + q^{-1} = 1)$ ,  $C_1 = C_{\infty} = 1$ .

(Eveson 2003) We have

$$\frac{\|V^{\alpha} - S_{\alpha}\|}{\|S_{\alpha}\|} \to 0 \text{ as } \alpha \to \infty$$

where  $\|\cdot\|$  is the operator norm on  $L^p(0,1)$ . In the case p=2, there are other norms of interest, in particular *Schatten norms*.

- ▶ The operator norm: covered by the  $L^p$  analysis.
- ► The Hilbert-Schmidt norm: not so hard.
- ► The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm and above by the trace norm, the equivalence holds in every Schatten norm.

$$||V^{\alpha}|| \sim \frac{1}{2\Gamma(\alpha+1)}$$

(Eveson 2003) We have

$$\frac{\|V^{\alpha} - S_{\alpha}\|}{\|S_{\alpha}\|} \to 0 \text{ as } \alpha \to \infty$$

where  $\|\cdot\|$  is the operator norm on  $L^p(0,1)$ . In the case p=2, there are other norms of interest, in particular *Schatten norms*.

- ▶ The operator norm: covered by the  $L^p$  analysis.
- ► The Hilbert-Schmidt norm: not so hard.
- ► The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm and above by the trace norm, the equivalence holds in every Schatten norm.

$$||V^{\alpha}|| \sim \frac{1}{2\Gamma(\alpha+1)}$$

(Eveson 2003) We have

$$\frac{\|V^{\alpha} - S_{\alpha}\|}{\|S_{\alpha}\|} \to 0 \text{ as } \alpha \to \infty$$

where  $\|\cdot\|$  is the operator norm on  $L^p(0,1)$ . In the case p=2, there are other norms of interest, in particular *Schatten norms*.

- ▶ The operator norm: covered by the  $L^p$  analysis.
- ▶ The Hilbert-Schmidt norm: not so hard.
- ► The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm and above by the trace norm, the equivalence holds in every Schatten norm.

$$||V^{\alpha}|| \sim \frac{1}{2\Gamma(\alpha+1)}$$

(Eveson 2003) We have

$$\frac{\|V^{\alpha} - S_{\alpha}\|}{\|S_{\alpha}\|} \to 0 \text{ as } \alpha \to \infty$$

where  $\|\cdot\|$  is the operator norm on  $L^p(0,1)$ . In the case p=2, there are other norms of interest, in particular *Schatten norms*.

- ▶ The operator norm: covered by the  $L^p$  analysis.
- The Hilbert-Schmidt norm: not so hard.
- ▶ The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm and above by the trace norm, the equivalence holds in every Schatten norm.

$$||V^{\alpha}|| \sim \frac{1}{2\Gamma(\alpha+1)}$$

(Eveson 2003) We have

$$\frac{\|V^{\alpha} - S_{\alpha}\|}{\|S_{\alpha}\|} \to 0 \text{ as } \alpha \to \infty$$

where  $\|\cdot\|$  is the operator norm on  $L^p(0,1)$ . In the case p=2, there are other norms of interest, in particular *Schatten norms*.

- ▶ The operator norm: covered by the  $L^p$  analysis.
- The Hilbert-Schmidt norm: not so hard.
- ▶ The trace norm: not so easy.

Since every Schatten norm is bounded below by the operator norm and above by the trace norm, the equivalence holds in every Schatten norm.

$$||V^{\alpha}|| \sim \frac{1}{2\Gamma(\alpha+1)}$$

(Eveson 2005) Suppose  $k \in L^1(0,1)$  and define  $V_k \in B(L^p(0,1))$  by

$$(V_k f)(t) = \int_0^t k(t-s)f(s) \,\mathrm{d}s$$

Suppose the exponential function  $\mathrm{e}^{\mu t}$  meets k tangentially at 0, i.e. k is differentiable from the right at 0, k(0)=1 and  $k'(0+)=\mu$ . Then  $V_k^n \sim V_{(\mu)}^n \sim \mathrm{rank}\text{-}1$ .

Idea of proof: write

$$k(t) = e^{\mu t} + h(t);$$
  $V_k = V_{(\mu)} + V_h;$   $V_k^n = (V_{(\mu)} + V_h)^n$ 

where h(t)=o(t)  $(t\to 0)$ . Expand the RHS using the binomial theorem, use the fact that  $\|V_{(\mu)}^n\| \asymp 1/n!$  but  $\|V_h^n\| = o(1/(2n)!)$   $(n\to \infty)$ .

(Eveson 2005) Suppose  $k \in L^1(0,1)$  and define  $V_k \in B(L^p(0,1))$  by

$$(V_k f)(t) = \int_0^t k(t-s)f(s) \,\mathrm{d}s$$

Suppose the exponential function  $\mathrm{e}^{\mu t}$  meets k tangentially at 0, i.e. k is differentiable from the right at 0, k(0)=1 and  $k'(0+)=\mu$ . Then  $V^n_k \sim V^n_{(\mu)} \sim \mathrm{rank}\text{-}1$ . Idea of proof: write

$$k(t) = e^{\mu t} + h(t);$$
  $V_k = V_{(\mu)} + V_h;$   $V_k^n = (V_{(\mu)} + V_h)^n$ 

where h(t)=o(t)  $(t\to 0)$ . Expand the RHS using the binomial theorem, use the fact that  $\|V_{(\mu)}^n\| \asymp 1/n!$  but  $\|V_h^n\| = o(1/(2n)!)$   $(n\to \infty)$ .

For example, let k(t)=1-t so  $\mathrm{e}^{-t}$  meets k(t) tangentially at t=0, and let  $k^{*n}$  be the nth convolution power of k, i.e. the kernel of  $V_k^n$ .



$$V_k^n \sim [g(0)\Gamma(\alpha)]^n V_{(g'(0)/g(0))}^{\alpha n} \sim \text{rank-1}$$

For example, let k(t)=1-t so  $\mathrm{e}^{-t}$  meets k(t) tangentially at t=0, and let  $k^{*n}$  be the nth convolution power of k, i.e. the kernel of  $V_k^n$ .



$$V^n_k \sim [g(0)\Gamma(lpha)]^n V^{lpha n}_{(g'(0)/g(0))} \sim$$
 rank-1

For example, let k(t)=1-t so  $\mathrm{e}^{-t}$  meets k(t) tangentially at t=0, and let  $k^{*n}$  be the nth convolution power of k, i.e. the kernel of  $V_k^n$ .



$$V_k^n \sim [g(0)\Gamma(lpha)]^n V_{(g'(0)/g(0))}^{lpha n} \sim ext{rank-1}$$

For example, let k(t)=1-t so  $\mathrm{e}^{-t}$  meets k(t) tangentially at t=0, and let  $k^{*n}$  be the nth convolution power of k, i.e. the kernel of  $V_k^n$ .



$$V^n_k \sim [g(0)\Gamma(lpha)]^n V^{lpha n}_{(g'(0)/g(0))} \sim$$
 rank-1

For example, let k(t)=1-t so  $\mathrm{e}^{-t}$  meets k(t) tangentially at t=0, and let  $k^{*n}$  be the nth convolution power of k, i.e. the kernel of  $V_k^n$ .



$$V_k^n \sim [g(0)\Gamma(\alpha)]^n V_{(g'(0)/g(0))}^{\alpha n} \sim \text{rank-1}$$

#### The polylaplacian in one dimension: Thorpe BCs

Consider the Riemann-Liouville operator

$$(V^n f)(t) = \frac{1}{\Gamma(n)} \int_0^t (t-s)^{n-1} f(s) \, ds$$

for  $n\in\mathbb{N}$ . Thorpe (1998) observed that  $(V^n)^*(V^n)$  on  $L^2(0,1)$  is the solution operator for the BVP

$$(-1)^n g^{(2n)} = f;$$

$$g^{(j)}(0) = 0 \quad (0 \le j \le n-1); \qquad g^{(j)}(1) = 0 \quad (n \le j \le 2n-1).$$

Since  $V^n$  is asymptotically of rank 1, the same is true for  $(V^n)^*(V^n)$ . What about other boundary conditions?

## The polylaplacian in one dimension: Dirichlet BCs

(Eveson / Fewster 2007, Böttcher / Widom 2007, Kalyabin 2010) Consider the BVP on  $\left[-1,1\right]$ 

$$(-1)^n g^{(2n)} = f; \ g^{(j)}(\pm 1) = 0 \quad (0 \le j \le n - 1)$$

This has a solution operator  $T_n$  on  $L^2(0,1)$ , and

$$||T_n|| = r(T_n) \sim \frac{1}{\sqrt{2}(2n)!}$$

Conjecture (Eveson / Fewster 2007)  $T_n$  is asymptotically of rank 1.

## The polylaplacian in one dimension: Dirichlet BCs

(Eveson / Fewster 2007, Böttcher / Widom 2007, Kalyabin 2010) Consider the BVP on  $\left[-1,1\right]$ 

$$(-1)^n g^{(2n)} = f; \ g^{(j)}(\pm 1) = 0 \quad (0 \le j \le n - 1)$$

This has a solution operator  $T_n$  on  $L^2(0,1)$ , and

$$||T_n|| = r(T_n) \sim \frac{1}{\sqrt{2}(2n)!}$$

Conjecture (Eveson / Fewster 2007):

 $T_n$  is asymptotically of rank 1.

### The polylaplacian in n dimensions: Dirichlet BCs

Consider the polylaplacian  $(-\Delta)^m$  on the unit ball  $B_n$  in  $\mathbb{R}^n$ , with Dirichlet boundary conditions. Green's function (Boggio 1905) is

$$G_{m,n}(x,y) = k_{m,n}|x-y|^{2m-n} \int_{1}^{[x,y]/|x-y|} \frac{(v^2-1)^{m-1}}{v^{n-1}} dv$$

where

$$[x,y] = (|x|^2|y|^2 - 2x \cdot y + 1)^{1/2}$$

$$k_{m,n} = \frac{\Gamma(1+n/2)}{n\pi^{n/2}4^{m-1}[(m-1)!]^2} > 0.$$

Assume m > n/2, so  $G_{m,n}$  is continuous. Solution operator is

$$(T_{m,n}f)(x) = \int_{B} G_{m,n}(x,y)f(y) dy$$

(compact, symmetric, positive definite, non-negative kernel). How does this behave as  $m \to \infty$ ?

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n},\ h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2} \text{ in } L^2(B_n)$$

(C) 
$$G_{m,n} \sim \frac{\kappa_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

(D) 
$$T_{m,n} \sim rac{k_{m,n}}{2m} S_{m,n}$$
 in any Schatten norm

(E) 
$$||T_{m,n}|| \sim \lambda_{m,n}$$
 for any normalised Schatten norm

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n},\ h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2} \text{ in } L^2(B_n)$$

(C) 
$$G_{m,n} \sim \frac{k_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

(D) 
$$T_{m,n} \sim \frac{k_{m,n}}{2m} S_{m,n}$$
 in any Schatten norm

(E)  $||T_{m,n}|| \sim \lambda_{m,n}$  for any normalised Schatten norm

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n},\ h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2} \text{ in } L^2(B_n)$$

(C) 
$$G_{m,n} \sim \frac{\kappa_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

- (D)  $T_{m,n} \sim \frac{k_{m,n}}{2m} S_{m,n}$  in any Schatten norm
- (E)  $||T_{m,n}|| \sim \lambda_{m,n}$  for any normalised Schatten norm

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n},\ h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2}$$
 in  $L^2(B_n)$ 

(C) 
$$G_{m,n} \sim \frac{k_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

- (D)  $T_{m,n} \sim \frac{k_{m,n}}{2m} S_{m,n}$  in any Schatten norm
- (E)  $||T_{m,n}|| \sim \lambda_{m,n}$  for any normalised Schatten norm

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n},\ h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2}$$
 in  $L^2(B_n)$ 

(C) 
$$G_{m,n} \sim \frac{k_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

(D) 
$$T_{m,n} \sim \frac{k_{m,n}}{2m} S_{m,n}$$
 in any Schatten norm

(E)  $||T_{m,n}|| \sim \lambda_{m,n}$  for any normalised Schatten norm

(Eveson 2011) Say  $T_{m,n}h_{m,n}=\lambda_{m,n}h_{m,n}$  where  $\lambda_{m,n}$  is the maximal eigenvalue of  $T_{m,n}$ ,  $h_{m,n}\geq 0$  (Jentzsch),  $\|h_{m,n}\|_2=1$ . For  $x,y\in B_n$  define:

$$L_{m,n}(x) = (1 - |x|^2)^m$$
  $K_{m,n}(x,y) = L_{m,n}(x)L_{m,n}(y)$ 

Let  $S_{m,n}$  be the rank 1 integral operator on  $L^2(B_n)$  with kernel  $K_{m,n}$ . Then as  $m \to \infty$ :

(A) 
$$\lambda_{m,n} \sim \frac{\Gamma(n/2)}{(2\pi)^{1/2}} \frac{1}{\Gamma(2m+n/2+1/2)}$$

(B) 
$$h_{m,n} \sim \frac{L_{m,n}}{\|L_{m,n}\|_2}$$
 in  $L^2(B_n)$ 

(C) 
$$G_{m,n} \sim \frac{k_{m,n}}{2m} K_{m,n}$$
 in  $L^2(B_n \times B_n)$ 

(D) 
$$T_{m,n} \sim \frac{k_{m,n}}{2m} S_{m,n}$$
 in any Schatten norm

(E)  $||T_{m,n}|| \sim \lambda_{m,n}$  for any normalised Schatten norm

### Idea of proof

$$G_{m,n}(x,y) = k_{m,n}|x-y|^{2m-n} \int_{1}^{\lfloor x,y\rfloor/|x-y|} \frac{(v^2-1)^{m-1}}{v^{n-1}} dv$$

(Boggio). After change of variables and some calculation,

$$G_{m,n}(x,y) = \frac{k_{m,n}}{2} (1 - |x|^2)^m (1 - |y|^2)^m \times \int_0^1 \frac{w^{m-1} dw}{(|x-y|^2 + (1 - |x|^2)(1 - |y|^2)w)^{n/2}}$$

The shaded term is  $(k_{m,n}/2)K_{m,n}(x,y)$ . As m increases, its mass concentrates near x=y=0, so asymptotically the remaining term can be replaced by its value at x=y=0; this is  $\sim 1/m$ . In some sense this shows that  $G_{m,n}\sim k_{m,n}/(2m)K_{m,n}$ . Now prove (A)–(E)!

#### Lower-order perturbations

Fix  $n \in \mathbb{N}$  and a differential operator  $\mathscr{A}$ ,

$$\mathscr{A}f = \sum_{\alpha: |\alpha| \le d} a_{\alpha} D^{\alpha}$$

where  $a_{\alpha}$  is a continuous function on  $\overline{B_n}$ . Then the solution operators for  $(-\Delta)^m$  and  $(-\Delta)^m + \mathscr{A}$  (with Dirichlet boundary conditions in both cases) are asymptotically equal in every Schatten norm. In particular, the results described above apply to the solution operator of  $(-\Delta)^m + \mathscr{A}$ .

This is because the solution operator for  $(-\Delta)^m + \mathscr{A}$  is

$$T_{m,n}(I+\mathscr{A}T_{m,n})^{-1}$$

and  $\mathscr{A}T_{m,n} \to 0$  as  $m \to \infty$ .

#### Lower-order perturbations

Fix  $n \in \mathbb{N}$  and a differential operator  $\mathscr{A}$ ,

$$\mathscr{A}f = \sum_{\alpha: |\alpha| \le d} a_{\alpha} D^{\alpha}$$

where  $a_{\alpha}$  is a continuous function on  $\overline{B_n}$ . Then the solution operators for  $(-\Delta)^m$  and  $(-\Delta)^m + \mathscr{A}$  (with Dirichlet boundary conditions in both cases) are asymptotically equal in every Schatten norm. In particular, the results described above apply to the solution operator of  $(-\Delta)^m + \mathscr{A}$ .

This is because the solution operator for  $(-\Delta)^m+\mathscr{A}$  is

$$T_{m,n}(I + \mathscr{A}T_{m,n})^{-1}$$

and  $\mathscr{A}T_{m,n} \to 0$  as  $m \to \infty$ .

#### Question

A variety of linear systems have asymptotic rank-1 behaviour.

- Normalised iterates  $T^n/\|T^n\|$  converge to a rank-1 spectral projection, if the peripheral spectrum of T consists of a single, isolated, simple eigenvalue.
- ▶ The iterates of some quasinilpotent operators *T* (e.g. many Volterra operators) can be asymptotically equivalent to sequences of rank-1 operators.
- ▶ Solution operators of some BVPs are asymptotically equivalent to sequences of rank-1 operators, as the order of the BVP tends to infinity, e.g.  $\mathscr{A} + \Delta^m$  with Dirichlet BCs.

Instead of the case-by-case calculations currently known, is there a theoretical framework which explains why this happens?

Mat. Palermo, 20 (1905) A. Böttcher, H. Widom, From Toeplitz eigenvalues through Green's Kernels to higher-order Wirtinger-Sobolev inequalities,

▶ T. Boggio, Sulle funzioni di Green d'ordine m, Rend. Circ.

- Operator Theory: Adv. Appl. (2007)  $\triangleright$  S. P. Eveson, Norms of iterates of Volterra operators on  $L^2$ ,
- J. Operator Theory 50 (2003) ▶ S. P. Eveson, Asymptotic behaviour of iterates of Volterra operators on  $L^p(0,1)$ , Int. Eqns. Operator Theory 53 (2005)
- S. P. Eveson, Some asymptotic properties of the polylaplacian operator, J. Math. Anal. Appl. (in press, 2011?)
- ▶ S. P. Eveson, C. J. Fewster, Mass Dependence of Quantum Energy Inequality Bounds, J. Math. Phys. 48 (2007) ► F. Gazzola, H-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems, Springer Lecture Notes 1991 (2010)
  - ▶ G. A. Kalyabin, Sharp estimates for derivatives of functions in

- the Sobolev classes  $W_2^r(-1,1)$ , Proc. Steklov Inst. 2010 ▶ B. Thorpe, The norm of powers of the indefinite integral

operator on (0,1), Bull. London Math. Soc. 30 (1998)