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A narrow band of image dimensions is critical for face recognition 
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A B S T R A C T   

A key challenge in human and computer face recognition is to differentiate information that is diagnostic for 
identity from other sources of image variation. Here, we used a combined computational and behavioural 
approach to reveal critical image dimensions for face recognition. Behavioural data were collected using a 
sorting and matching task with unfamiliar faces and a recognition task with familiar faces. Principal components 
analysis was used to reveal the dimensions across which the shape and texture of faces in these tasks varied. We 
then asked which image dimensions were able to predict behavioural performance across these tasks. We found 
that the ability to predict behavioural responses in the unfamiliar face tasks increased when the early PCA di-
mensions (i.e. those accounting for most variance) of shape and texture were removed from the analysis. Image 
similarity also predicted the output of a computer model of face recognition, but again only when the early image 
dimensions were removed from the analysis. Finally, we found that recognition of familiar faces increased when 
the early image dimensions were removed, decreased when intermediate dimensions were removed, but then 
returned to baseline recognition when only later dimensions were removed. Together, these findings suggest that 
early image dimensions reflect ambient changes, such as changes in viewpoint or lighting, that do not contribute 
to face recognition. However, there is a narrow band of image dimensions for shape and texture that are critical 
for the recognition of identity in humans and computer models of face recognition.   

1. Introduction 

The ability to recognise a person from their face is fundamental to the 
way we interact with them. Models of face processing propose that faces 
are first represented in a pictorial code that contains detailed informa-
tion about the image, but is then transformed into a more abstract 
structural code that can be used for perception (Bruce & Young, 1986, 
2012). This transformation from a pictorial to a structural representa-
tion is important because, as we interact with faces in a natural envi-
ronment, the shape and texture of a face can vary dramatically due to 
movement of the head and changes in lighting. To be useful, the 
cognitive processes involved in recognition must be able to ignore these 
ambient image changes to reveal an invariant, structural representation 
that can be useful for recognition (Burton, 2013). 

The distinction between familiar and unfamiliar faces demonstrates 
the transformation from a pictorial to a structural code. While photo-
graphs of unfamiliar faces can be remembered and later recognised 
remarkably well, recognition performance with unfamiliar faces de-
grades as soon as any changes are made between learnt and test images 
(Bruce, 1982; Longmore, Liu, & Young, 2008; Hancock, Bruce, & 

Burton, 2000; Kemp, Towell, & Pike, 1997). In contrast, the behavioural 
hallmark of familiar face recognition is that it is remarkably successful 
across substantial changes in expression, viewing angle, and lighting 
conditions (Bruce, 1994; Bruce & Young, 2012; Burton, 2013). Models of 
face recognition propose key structural representations for familiar faces 
that are known as Face Recognition Units (FRUs), which selectively 
respond to faces from a particular identity (Bruce & Young, 1986; Bur-
ton et al., 1990). Although most theories of face recognition recognise 
the importance of FRUs, or some similarly abstractive representation, 
the nature of the visual properties that are used in this structural code 
remains unresolved. 

A distinction between shape and texture is often used to investigate 
which visual properties are important for recognition. For example, all 
face images consist of a set of edges created by abrupt changes in 
reflectance due to the shapes and positions of facial features and a 
broader pattern of reflectance based on the surface properties of the face 
known as texture (Andrews et al., 2016). A range of evidence suggests 
that the texture of the face is more important than shape for the 
recognition of identity (Hole et al., 2002; Burton, Jenkins, Hancock & 
White, 2005; Russell et al., 2007; Russell & Sinha, 2007). For example, 
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familiar face recognition is not substantially affected if the texture is 
presented on a standardized shape (Burton et al., 2005), or when face 
shape is distorted by stretching the image (Hole et al., 2002). In contrast, 
line drawings of faces, which contain shape information, but lack any 
texture, are not usually sufficient for recognition (Davies et al., 1978; 
Leder, 1999). Similarly, recognition of facial identity is disrupted by 
contrast-reversal, which causes large changes in texture but does not 
affect the shape of the face (Bruce & Langton, 1994; Russell et al., 2006; 
Harris, Young & Andrews, 2014). Nevertheless, there are some changes 
in the texture of the face, such as changes in the direction of lighting, 
that are unlikely to be diagnostic of identity. 

Certain aspects of shape or ‘second order configural properties’ of a 
face (Maurer et al, 2002) have also been suggested to play an important 
role in face recognition (McKone & Yovel, 2009; Tanaka and Gordon, 
2011; Piepers & Robbins, 2012). Empirical support for this perspective 
comes from studies that show shape information can be used to 
discriminate unfamiliar face images (O’Toole et al., 1999; Jiang, Blanz 
& O’Toole, 2006; Russell et al., 2007; Russell & Sinha, 2007, Caharel 
et al., 2009; Jiang, Blanz and Rossion, 2011; Lai, Oruc & Barton, 2013; 
Itz et al., 2016). However, it is not clear whether shape information is a 
useful cue for the recognition of identity across naturally varying images 
of familiar identities (Burton et al., 2015a). One challenge for a con-
figural account of face recognition is that shape cues (particularly from 
the internal features of the face) can vary quite dramatically as a result 
of rigid and non-rigid movements, such that the spatial distances be-
tween features can often vary as much within a person as between 
people (Burton et al., 2015b). 

The aim of this study was to investigate how shape and texture 
contribute to the recognition of identity in humans and computer 
models of face perception. Principal components analysis (PCA) is one of 
a number of related techniques used to derive statistical descriptions of 
image sets (Moon & Phillips, 2001; Gong et al., 2000) and has been used 
to explain the variance in face images that can be related to perception 
(Turk & Pentland, 1991; O’Toole et al., 1993; Hancock, Burton & Bruce, 
1996; Calder et al., 2001; Jozwik et al., 2022). When PCA is applied to 
faces, it delivers novel dimensions (eigenfaces), which together form a 
face-space, within which to characterise any face image (Scheuchenp-
flug, 1999; Tredoux et al., 2002; Nestor et al., 2013). The concept that 
individual faces are represented by their values across different di-
mensions is central to multidimensional models of face perception 
(Valentine, 1991; Valentine et al., 2016), and PCA provides one oper-
ationalisation of such a space. Within this framework, ‘early’ dimensions 
capture most variance within a learning set, and tend to be associated 
with coarse-scale image variation (for example coding changes in head 
orientation or whether an image is brighter on one side or the other). 
Later components, capturing progressively smaller variance, tend to 
capture finer-scale information. While PCA is applied to a particular set 
of faces, it is important to note that, given a sufficiently large sample, the 
resulting space generalises well. So, components derived from one set of 
faces, tend to capture the variance of novel sets well – particularly if 
training sets incorporate a range of variation in face images. This means 
that it is appropriate to ask how information about people’s identity is 
carried in the components derived from PCA – might some dimensions 
be more useful than others in capturing identity? 

Here, we investigated which image dimensions from a PCA of shape 
and texture could be used to predict recognition performance in humans 
and a computer model of faces. The relative importance of different 
dimensions on the recognition of identity was determined by measuring 
the effect of removing them in a variety of combinations. Our findings 
show that there is a relatively narrow band of image dimensions that are 
most important in forming a structural representation that is used for the 
recognition of faces. 

2. Methods 

2.1. Overview 

We collected data on human face perception using three different 
tests involving identification: (i) a card sorting task in which participants 
were asked to group previously unseen faces together by identity; (ii) a 
matching task in which viewers indicated whether pairs of unfamiliar 
faces showed the same or different people; (iii) two familiar face 
recognition tasks in which participants identified famous faces. For each 
of the face tasks, we carried out PCA on task stimuli along with a 
database of face images (N > 6000) representing a large range of 
naturally occurring (‘ambient’) photographs. We then asked whether 
the physical representation of task stimuli, within PCA-space, could 
account for human performance. We sampled over different ranges of 
components to do this (for example, discounting early dimensions). 
Finally, for the unfamiliar face tasks (i and ii, above) we asked whether 
an automated face recognition system, implemented as a Deep Con-
volutional Neural Network (DCNN) and trained on a very large data set 
of face images, could predict human performance on the face stimuli 
used in the behavioural tasks. Once again, we also examined the ca-
pacity of PCA, sampled over different ranges, to predict the performance 
of the DCNN. We now describe the details of these tests and the pro-
cedures employed. 

2.2. Participants 

Opportunity sampling was used to recruit participants who had 
grown up in the UK. For each experiment we computed an a-priori 
power analysis (α = 0.05, power level = 0.8) using G*Power (3.1.9.7, 
Faul et al., 2007) to determine the minimum sample size required to find 
an effect (if one was present) for each experiment. We recruited 60 
participants (31 female, mean age: 23.3 years) for the card sorting 
experiment (Pearson’s r correlation p H1 = 0.3, based on a moderate 
correlation, Cohen, 2013). We recruited 70 participants (58 female, 
mean age: 20.3 years) for the face matching experiment (experiment (p 
H1 = 0.3 based on a moderate correlation, Cohen, 2013). We recruited 
99 participants (61 female, mean age: 25.4) for familiar face recognition 
Experiment 1 (repeated measures ANOVA-within factors, 4 measure-
ments, ηp

2 = 0.02 indicating a small expected effect size, Cohen, 2013) 
and 103 participants (66 female, mean age: 26.4) for familiar face 
recognition Experiment 2 (repeated measures ANOVA-within factors, 5 
measurements, ηp

2 = 0.015 indicating a small expected effect size, 
Cohen, 2013). All participants gave their written informed consent. The 
study was approved by the Psychology Ethics Committee at the Uni-
versity of York. 

2.3. Card sorting task 

The card sorting task was taken from Jenkins et al. (2011). Twenty 
images of each of two Dutch celebrities, Chantel Janzen (CH) and 
Bridget Maasland (BM), were used (40 images in total). These in-
dividuals were unfamiliar to our participants. The criteria for image 
selection were that they showed the face in roughly frontal aspect, 
exceeded 150 pixels in height and were free from occlusions. Other than 
these restrictions, the images were free to vary in a way that reflects the 
variability found in natural viewing. The images were printed in grey 
scale to a size of 35 × 50 mm and laminated. Participants were given a 
shuffled stack of the 40 face images and asked to sort the faces into piles 
according to identity. We then calculated the proportion of participants 
that sorted each pair of faces into the same pile. This task was self-paced. 

2.4. Face matching task 

The matching task was taken from the Models Face Matching Test 
(Dowsett & Burton, 2015). There were 90 trials. In each trial, a pair of 
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face images was presented together. In half of the trials, the faces were 
from the same identity and in the remaining half of the trials the faces 
were from a different identity. Participants viewed images that were 
presented at a distance of approximately 57 cm, such that each image 
subtended approximately 7.8 × 10.2 degrees of visual angle. The two 
images were separated laterally by approximately 4.5 degrees. Partici-
pants were asked to indicate whether each pair of faces was from the 
same identity or a different identity. The task was self-paced. 

2.5. Familiar face recognition task 

The familiar face recognition task comprised two experiments 
involving naming familiar faces. Participants completed this experiment 
online using the Pavlovia platform (PSYCHOJS, Version 2020.2). Each 
trial began with a white fixation cross superimposed on a grey back-
ground for 0.5 s. This was followed by a centrally positioned face. Par-
ticipants pressed one of two buttons to indicate if the face was familiar or 
unfamiliar. Participants were instructed to respond as quickly and as 
accurately as possible. If participants indicated that the face was 
familiar, a new screen would appear containing a response box for 
participants to type the name or biographical information of the person. 
When this was complete, a new trial began. If participants indicated that 
the face was unfamiliar a new trial began immediately. The order in 
which the faces were presented was randomised for each participant. 
After each experiment, participants completed a familiarity check to test 
their ability to recognise the familiar faces, in which a novel high- 
resolution image from each identity was presented to participants and 
their task was to name the identity depicted in each image. 

The responses for the familiarity check were cross referenced with 
the responses given for the main experiment. For each participant, the 
identities that were not recognised in the familiarity check were auto-
matically removed from the main analysis. Participants entered 

biographical information about the person (instead of their name) 1.5% 
of the time for Experiment 1 and 2% of the time for Experiment 2. 
Biographical information was judged to be a match if it was deemed 
specific enough to the target identity, for example a description of 
“actor”, “musician” or “politician” would result in a non-match (even if 
these labels were true) but a description of “actor who played Harry 
Potter” was deemed specific enough for a match. 86.6% of the faces in 
the first experiment and 92.3% of the faces in the second experiment 
were recognized during the familiarity check. Accuracy and response 
time were calculated from these trials. 

The familiar face images used for this task depicted A-list celebrities, 
most of who are well-known Hollywood actors/actresses. Images were 
collected using a Google Image Search by entering the name of a ce-
lebrity and downloading images classified as “large” by the search en-
gine (size of 900 × 900 pixels and above) where the face was broadly 
front-facing and no part of it being obstructed (e.g. by other parts of the 
body, clothing or accessories). Apart from these criteria, the images 
varied naturally across lighting, emotional expressions, hairstyle, facial 
hair, etc. 

In the first familiar face experiment (Exp. 1), we used 24 familiar face 
images (8 female). Fig. 1 shows the 4 conditions that were created by the 
selective removal of shape and texture principal components from the 
images: 0 (no PCs removed), 4 (PCs 1–4 removed), 8 (PCs 1–8 removed), 
12 (PCs 1–12 removed). This gave a total of 144 (24 * 4) images. From 
these images, we created 4 stimulus sets in which there were 6 images 
from each of the 4 conditions giving a total of 24 images. In each 
stimulus set, there was only one image from each identity. Participants 
were allocated randomly to each image set. 

In the second familiar face experiment (Exp. 2), we used 20 familiar 
face images. There were 5 conditions that were created by the selective 
removal of shape and texture principal components from the images: 
0 (no PCs removed), 1–4 (PCs 1–4 removed), 5–8 (PCs 5–8 removed), 

Fig. 1. The effect of removing different bands of principal components from an example familiar face image from the two familiar face recognition experiments.  
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9–12 (PCs 9–12 removed) and 13–16 (PCs 13–16 removed). This gave 
rise to at total of 100 (20 * 5) images. From these images, we created 5 
stimulus sets in which there were 4 images from each of the 5 conditions 
giving a total of 20 images. In each stimulus set, there was only one 
image from each identity. Participants were allocated randomly to each 
image set. 

2.6. Principal components analysis (PCA) 

To approximate natural variation across faces and represent our pre- 
existing experience with faces in daily life, PCA was performed on a 
large image set containing 6100 images (see the ‘background set’ 
described in Mileva et al., 2020). The set contained a varying number of 
images for each identity (between 1 and 170 images) in order to simu-
late different levels of familiarity and all images were ambient, 
capturing variability across age, pose, lighting conditions, emotional 
expressions, image quality, and ethnicity. Images were rescaled to 380 
× 570 pixels. To be consistent across all image sets, we converted all 
images to greyscale. The shape of each image was determined by 
aligning 82 fiducial points to each face using the Interface software 
package (Kramer, Jenkins and Burton, 2016). The x, y coordinates from 
each image were then entered into the principal components analysis for 
shape. The texture of each face was generated by warping each image to 
a standard shape. The intensity values of each pixel within the standard 
shape were then entered into a principal components analysis of texture. 
This procedure generated principal components that captured the ways 
in which images in the set varied, both in terms of shape and texture. We 
used the first 100 PCs which explained 99.9% of the shape variance and 
91.6% of the texture variance. 

The images used in the card sorting task (N = 40) and in the face 
matching task (N = 180) were then projected into this 100-dimensional 
face space, producing unique a vector with shape and texture recon-
struction coefficients for each image that described its location within 
the face space. These reconstruction coefficients were used in the ana-
lyses described below. The images used in the familiar face recognition 
task (N = 24) were also projected into the same large face space. To 
determine the similarity between pairs of faces, a correlation was per-
formed on the PC loadings of one image with the PC loadings of another 
image. These values could then be correlated with corresponding 
behavioural measures on the card sorting or face matching tasks. In the 
familiar face recognition task, InterFace software package (Kramer 
et al., 2016) was used to perform different manipulations to each image 
in order to neutralise the effect of a small number of shape and texture 
PCs. This was done by assigning a value of 0 to each shape and texture 
component within the specified range. Three different manipulations 
were applied to create images for the first experiment, neutralising the 
effect of both shape and texture PCs 1–4, 1–8, and 1–12. The second 
experiment used narrower ranges of PCs (1–4, 5–8, 9–12, and 13–16) to 
more precisely determine the PCs related to face identity. All other PCs 
were left intact. Table 1 shows the variance explained by different bands 
of PCs in the Familiar Face Recognition Task. 

2.7. Deep convolutional neural network (DCNN) 

The VGG-Face DCNN (Parkhi, Vedaldi & Zisserman, 2015) was used 
to compare the similarity of face images. This DCNN consists of 13 
convolutional layers and 3 fully connected (Fc) layers. The input to the 
network is an image of size 224 × 224 pixels; images are cropped to a 
square bounding box centred on the face and rescaled to this resolution. 
Each convolutional layer is followed by one or more non-linear layers, 
such as rectified linear units or max pooling. The first two FC layers have 
4096 dimensions and the final FC layer has 2622 dimensions. The DCNN 
was trained on over 2.6 M face images from over 2.6 K identities. Face 
recognition on the Labeled Faces in Wild dataset (Huang et al., 2007) 
and YouTube Faces (Wolf et al., 2011) for VGG-Face is 99.9% and 
97.4%, respectively. 

We tested the ability to decode face identity from the PCA and DCNN 
outputs using a signal detection approach. Our prediction was higher 
correlations for the same- than different-identity pairs. We measured 
decoding sensitivity to identity by calculating the area under the 
receiver operating characteristic (ROC) curve. We converted this AUC to 
a value of d’ according to the formula d′ =

̅̅̅
2

√
× Φ− 1(AUC), where Φ− 1 

is the inverse of the standard normal cumulative distribution function. 

2.8. Transparency and openness 

These studies were conducted in compliance with the Transparency 
and Openness Promotion Guidelines. The experiments in this study were 
not preregistered. All publicly available material has been cited. Ano-
nymised data will be made freely available upon publication. 

3. Results 

3.1. Card sorting task 

To determine the role of shape and texture on the perception of 
identity, participants performed a card sorting task with the same 40 
face images (Jenkins et al., 2011). Participants were simply asked to 
group the photographs according to identity, so that different photos of 
the same person are grouped together. Participants were not told how 
many identities to expect and were free to group the images as they 
wished. Although the correct number of piles was 2, participants made 
on average about 8 piles (mean ± SEM: 7.8 ± 0.4; range: 2–15). Most 
piles contained images from the same identity. However, there were 
occasional errors in which a pile contained more than one identity 
(mean ± SEM: 1.0 ± 0.2; range: 0–4). 

From the card sort, a probability matrix was generated (Fig. 2A). 
Each cell in the matrix represents the probability (averaged across 
participants) that two faces were perceived to have the same identity (i. 
e. were sorted in the same pile). The higher values in the top left and 
bottom right of the similarity matrix show that participants typically 
sorted images into piles from one identity. On average, the probability 
that two images with the same identity were placed in the same pile was 
significantly higher than for two images with different identities 
(within-person: 0.41 + 0.01; between-person: 0.02 + 0.001; t(758) =
35.0, p < 0.0001). 

Next, we asked whether the probability that two images were sorted 
into the same pile could be predicted by the shape or texture of the 
images. To do this, we performed a representational similarity analysis 
comparing the behavioural similarity matrix with a corresponding 
similarity matrix based on the PCA data of the physical characteristics of 
the same images. The PCA matrix was generated by correlating (Pear-
son’s r) the PC loadings from one image with the PC loadings from a 
different image. Thus, there were corresponding values for image sim-
ilarity and perceptual similarity across all image pairs. These values 
were Fisher transformed prior to further statistical analysis. 

A correlation between the behavioural and PCA data was then 

Table 1 
Variance explained by different bands of principal components in the Familiar 
Face Recognition Task.   

Shape (%) Texture (%) 

Exp. 1   
PCs 1–4  96.55  63.67 
PCs 1–8  98.48  73.05 
PCs 1–12  99.15  77.81 
Exp. 2   
PCs 1–4  96.55  63.67 
PCs 5–8  1.93  9.38 
PCs 9–12  0.67  4.76 
PCs 13–16  0.31  2.62  
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performed independently for the within-person (Fig. 2B) and between- 
person (Fig. 2C) comparisons to avoid inflating comparisons. For the 
within-person comparisons, the ability of both shape and texture to 
explain patterns of behavioural responses in the card sorting task 
increased when the first principal components were removed from the 
analysis. This reached a maximum after 5 PCs were removed for shape 
and 4 PCs were removed for texture. Interestingly, if more PCs were 
removed the correlation began to decrease. For example, the correlation 
decreased if 7 or more PCs were removed for shape or when 5 or more 

PCs were removed for texture. A broadly similar pattern was evident for 
between-person comparisons, although the correlations were generally 
lower, reflecting the lower incidence (variance) of between-person 
grouping in this task. 

To determine whether shape or texture information from the PCA 
data alone could be used to discriminate identity, we compared the 
within-person PCA correlations (an image of BM with a different image 
of BM or an image of CJ with a different image of CJ) to between-person 
PCA correlations (an image of BM with an image of CJ) using d’. Fig. 3 

Fig. 2. Results from the card sorting task. (A) An 
example of a card sort from a participant showing 
individual piles of faces that the participant deter-
mined had the same identity (left). The probability 
(0.0 – 1.0) that individual pairs of images were sorted 
into the same pile was calculated across all partici-
pants, such that each cell in the similarity matrix 
(right) represents the probability that two of the im-
ages were placed in the same pile. There were 20 
images of 2 identities (BM, CJ) giving a perceptual 
similarity matrix of 40*40. To determine whether the 
probability that two images were placed in the same 
pile could be predicted by the shape or texture of the 
images, a correlation was performed between the 
perceptual similarity matrix and corresponding shape 
and texture matrices from the PCA data. This analysis 
was performed separately for within-person (B) and 
between-person (C) comparisons. The results show 
that the correlation between shape or texture and 
perceptual similarity increased when early principal 
components (PC) were removed from the analysis. 
The dashed line shows the critical r values at p < 0.05.   
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shows that within-person correlations were higher than between-person 
correlations for both shape and texture when all PCs were included in 
the analysis. However, as PCs were removed, the difference between the 
within-person and between-person values increased for both shape and 
texture. This difference was maximal for shape after the first 3 PCs were 
removed, whereas the difference was maximal for texture when the first 
6 PCs were removed. However, removing more PCs resulted in a 
reduction in the within-person and between-person difference. 

Next, we asked whether performance on the card sorting task could 
be predicted by performance of a DCNN (VGG-Face) that has been 
trained discriminate face identity (Parkhi et al, 2015). The DCNN 
compared all face pairs from the 40 images in the card sorting task. 
Fig. 4A shows the similarity matrices from the convolutional (Conv) and 
fully-connected (Fc) layers. Higher values on the top-left or bottom-right 
quadrants (within-person) compared to the bottom-left and top-right 
quadrants (between-person) of the matrices indicate greater discrimi-
nation of identity. Fig. 4B shows a statistical analysis (d’) of the within- 
person vs between-person values. This shows that the ability of the 
DCNN to discriminate between two identities increased from the con-
volutional layers (1–13) to the fully-connected (14–16) layers. 

We then asked whether differences in similarity of faces from the 
DCNN could be predicted by the perceptual probability that two faces 
were placed in the same pile in the card sorting task. The correlation 
between behavioural and DCNN is shown for within-person (Fig. 4C) 
and between-person (Fig. 4D) comparisons. These results again show 
there is an increase in the correspondence between the human observers 
and the DCNN from the convolutional to the fully connected layers. This 
provides support for the validity of the DCNN as a model of human 
behaviour, particularly in the later fully connected layers. 

Finally, we asked whether the similarity of images in the DCNN could 
be predicted by variation in the shape or texture across images from the 
PCA data. Because the highest performance is shown for the fully- 
connected layers, we focussed on fully-connected layer 7. We used this 
layer, because the final fully-connected layer (Fc8) is the distribution of 
activations over trained identities. Fc7, on the other hand, is typically 
interpreted as a set of visual features that are useful for generic face 

recognition. The similarity (correlation) between image pairs in shape 
and texture was compared with the similarity (correlation) in the output 
of the DCNN for within-person (Fig. 5A) and between-person (Fig. 5B) 
comparisons. The within-person analysis shows that the correlation 
between the DCNN and PCA data for both shape and texture increased 
when the initial PCs were removed from the analysis, but then decreased 
when more PCs were removed from the analysis. This is similar to the 
pattern for the behavioural to PCA correlation shown in Fig. 2 following 
the removal of PCs. A similar pattern was evident for shape in the 
between-person comparisons, but there was a less clear pattern for 
texture. Together, these findings suggest a similarity in the way in which 
human observers and the DCNN represent faces and how performance is 
related to image properties. 

3.2. Face matching task 

In this task, participants made same or different identity judgements 
on pairs of unfamiliar face images from the Models Face Matching Task 
(Dowsett & Burton, 2015). There were 90 trials in the matching task and 
overall accuracy was 76.2 ± 8.8 % (mean ± SD). To compare behav-
ioural data on the matching task, we calculated the average proportion 
of same responses for each image pair across all participants. We then 
asked whether the tendency of participants to report that an image pair 
as the same identity was predicted by the similarity in either the shape or 
texture of the images from the PCA data. 

Similarity in shape and texture across images was measured by 
correlating the PC loadings of one image with the PC loadings of another 
image. Fig. 6 shows the correlation between the behavioural judgements 
(proportion same) and the similarity of the images in shape and texture 
across trials. The ability of shape or texture to predict perceptual re-
sponses was not significant when all PCs were included in the analysis. 
However, significant correlations between behavioural responses and 
shape or texture became apparent when the initial PCs for shape and 
texture were removed from the analysis. 

Next, we asked if the proportion of same responses could be pre-
dicted by the similarity of images from the DCNN. A correlation between 

Fig. 3. Sensitivity (d’) to facial identity using shape and texture information. A similarity matrix was calculated from the PCA by correlating the PC loadings for each 
pair of faces. The within-person correlations were then compared with the between-person correlations. Removing PCs increased the difference between within- 
person and between-person values for both shape and texture. 
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behavioural judgements (proportion same) and similarity in DCNN is 
shown in Fig. 7A. This shows that the early layers of the DCNN do not 
predict behavioural judgements on the matching task. However, higher 
layers, particularly the fully-connected layers (14–16) show a significant 
correlation with the behavioural judgements of similarity. Conse-
quently, we restricted subsequent analyses to the final fully-connected 
layer (layer 16 – Fc8) and asked whether the shape and texture of the 
face images could predict the performance of the DCNN. Fig. 7B shows 
the correlation between the DCNN and shape or texture was not sig-
nificant when all PCs were included in the analysis. However, when the 
initial PCs were removed from the analysis, there was a significant 

correlation with both shape and texture. 

3.3. Familiar face recognition 

In the final experiments of this study, we explored how the removal 
of PCs would affect familiar face recognition. Given that we found 
similar patterns for removing shape and texture PCs in the unfamiliar 
face tasks, we decided to remove both shape and texture PCs simulta-
neously in the familiar face recognition task. In Exp. 1, we measured the 
recognition of familiar faces in which different numbers of PCs were 
removed from the image. There were 4 conditions in which either the 

Fig. 4. (A) Similarity matrices from the images in the card sorting task calculated separately in the 16 layers of a DCNN (VGG-Face). (B) A comparison between 
within-person and between-person values from each layer of the DCNN (convolutional: 1–13; fully-connected 14–16). Higher within-person compared to between- 
person sensitivity (d’) were found in the fully connected layers. Correlations between the DCNN and behavioural responses for (C) within-person and (D) between- 
person comparisons show that the fully connected layers were most closely linked to perception. Dashed lines show the critical values at p < 0.05. 
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first 0, 4, 8 or 12 PCs from both shape and texture were removed from 
the image. Fig. 8A shows the accuracy and response time for each 
condition. A repeated-measures ANOVA revealed a significant effect of 
condition for both accuracy (F(2.44, 239.1) = 225.7, p <.001, η2

p =.70) 
and response time (F(2.41, 236.6) = 619.2, p <.001, η2

p =.86). Planned 
comparisons showed that there was a significant difference between the 
0 and 4 PCs, which was due to an increased recognition accuracy (t(98) 
= 2.72, p =.008, d = 0.27) and a decreased response time (t(98) = 5.94, 
p <.001, d = 0.60) for the 4 PCs condition. There was also a significant 

difference between the 0 and 8 PC conditions, and between the 0 and 12 
PC conditions for accuracy and response time. However, these differ-
ences were due to a decrease in accuracy (0:8, t(98) = 11.43, p <.001, d 
= 1.15; 0:12, t(98) = 21.04, p <.001, d = 2.11) and an increase in 
response time (0:8, t(98) = 26.44, p <.001, d = 2.66; 0:12, t(98) =
28.47, p <.001, d = 2.86). These data show that removal of the initial 
PCs improves accuracy and reduces response time, whereas removal of 
later PCs reduces accuracy and increases response time. 

In Exp. 2, we investigated the effect of removing bands of PCs. 

Fig. 5. The role of shape and texture in the representation of faces in VGG-Face. The output from layer Fc7 was used to generate a similarity matrix. A correlation 
was then performed between the VGG-Face similarity matrix and the shape or texture similarity matrices from the PCA. This analysis was performed separately for 
within-person (B) and between-person (C) comparisons. The results show that the correlation between shape or texture and DCNN increased when early principal 
components (PC) were removed from the analysis. The dashed line shows the critical r value at p < 0.05. 
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Participants viewed images in which 0, 1–4, 5–8, 9–12 or 13–16 PCs of 
shape and texture were removed from the image. Fig. 8B shows the 
accuracy and response time for each condition. A repeated-measures 
ANOVA revealed a significant effect of condition for both accuracy (F 
(3.22, 327.9) = 125.9, p <.001, η2

p =.55) and response time (F(3.56, 
362.6) = 422.9, p <.001, η2

p =.81). Planned comparisons showed that 
there was a significant difference between the 0 and 1–4 PC conditions, 
which was again due to an increased recognition (t(102) = -1.840, p 
=.034, d = 0.18) and a decreased response time (t(102) = 2.40, p 
=.009, d = 0.24) for the 1–4 PC condition. There was also a significant 
difference between the 0 and 5–8 PCs conditions, and also between the 
0 and 9–12 PCs conditions for accuracy and response time. These dif-
ferences were due to a decrease in accuracy (0:5–8, t(102) = 13.08, p 
<.001, d = 1.29); 0:9–12, t(102) = 12.88, p <.001, d = 1.27) and an 
increase in response time (0:5–8, t(102) = 23.26, p <.001, d = 2.30; 
0:9–12, t(102) = 26.51, p <.001, d = 2.61)). Finally, there was no 
significant difference in accuracy between the 0 and 13–16 PCs removed 
conditions (t(102) = -0.21, p =.418, d = 0.02). However, there was a 
slight increase in response time (t(102) = -4.04, p <.001, d = 0.40). 
Nevertheless, the accuracy (t(102) = -13.27, p <.001, d = 1.31) and 
response time (t(102) = 25.00, p <.001, d = 2.46) were significantly 
different between the 9–12 and 13–16 conditions. These data show that 
removal of the initial PCs improves accuracy and reduces response time, 
whereas the selective removal of intermediate bands of PCs reduces 
accuracy and increases response time. Finally, removal of later bands of 
PCs has a minimal effect on recognition. 

4. Discussion 

The aim of this study was to determine what information is necessary 
for recognition of identity from faces. To address this issue, a principal 
components analysis was used to reveal the underlying dimensions of 
shape and texture in naturally varying face images from different 
identities. This allowed us to compare the importance of these image 
dimensions on a range of tasks involving judgements of identity. Our key 
finding is that the perception and recognition of identity from faces is 

critically dependent on a narrow band of statistical variation, express-
ible in terms of a simple linear decomposition of image sets. 

As faces have a similar structure, the ability to discriminate identity 
must be based on encoding subtle differences between images. A further 
challenge for successful face recognition is that, as a result of changes in 
viewing conditions, each face can generate an almost infinite number of 
images. So, it is necessary for the recognition system to differentiate 
between information in the image that provides cues about identity from 
other image variation that does not. Models of face processing address 
this issue by proposing that information about faces is first represented 
in an image-based or pictorial code, which is then transformed into a 
structural code that can be used for recognition (Bruce & Young, 1986, 
2012; Burton et al., 1990). However, the precise image properties that 
are used in this structural code have not been fully resolved. The face- 
space model provides a framework for explaining how variance across 
faces might be represented in a structural code that is used for recog-
nition (Valentine, 1991; Valentine et al., 2016). In this model, different 
properties of the face are represented in a multidimensional face space. 
Each face is represented by a location in this multidimensional space, 
such that faces that are close together are perceived to be more similar 
and those that are separated by larger distances are perceived to be more 
different. Nevertheless, it has not been clear how many dimensions are 
important or what they might represent. 

PCA allows an objective, data-driven approach to understand image 
variation across faces (Turk & Pentland, 1991; O’Toole et al., 1993; 
Calder et al., 2001; Jozwik et al., 2022). This technique can be used to 
reveal a number of principal components that account for variance in 
face images. In this study, we asked whether these principal components 
from the PCA correspond to the dimensions that are used for a structural 
code that could underpin the recognition of faces. To do this, we 
compared the similarity of the values across different dimensions for 
pairs of faces with the same identity or with different identities. We then 
progressively removed principal components or dimensions from the 
analysis to determine the effect on judgements of identity in unfamiliar 
faces. Removing the initial image dimensions of shape and texture 
increased the correlation between image similarity and patterns of 

Fig. 6. The role of shape and texture in the prediction of behavioural responses in a matching task. To determine whether the probability that two images were 
reported as having the same identity could be predicted by the shape or texture of the images, a correlation was performed between the proportion of same responses 
across the 90 trials and their similarity in shape or texture. The results show that the correlation between behavioural judgements and shape or texture increased 
when early principal components (PC) were removed from the analysis. Dashed lines show the critical r value at p < 0.05. 
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perceptual performance on sorting (Jenkins et al., 2011) and matching 
(Dowsett & Burton, 2015) tasks with unfamiliar faces. However, 
removing more shape and texture dimensions led to a reduction in the 
difference between same and different identity images and reduced the 
correlation between perceptual performance and image similarity. Our 
findings that the distance in PC space predicts perceptual performance 
when early PCs are removed from the analysis fundamentally extends 
previous work showing a link between the perception of face images and 
their position in PCA space (Turk & Pentland, 1991; O’Toole et al., 1993; 
Hancock, Burton & Bruce, 1996; Calder et al., 2001; Burton et al., 2016; 
Jozwik et al., 2022). 

The importance of texture in the perception of identity is consistent 
with previous studies showing that the manipulation of texture infor-
mation in the face through contrast reversal has a significant effect on 

recognition (Bruce & Langton, 1994; Russell et al., 2006; Harris et al. 
2014). Moreover, the recognition of faces also becomes much more 
difficult when texture is removed from the image (Davies et al., 1978; 
Leder, 1999; Burton et al., 2005). Finally, the recognition of hybrid faces 
in which the texture from one identity is combined with the shape from 
another familiar identity (Burton et al., 2005, 2015) is strongly biased 
toward the texture of the image (Andrews et al., 2016; Rogers et al., 
2022). However, the increased correspondence between the perception 
of identity and texture when the initial image dimensions were removed 
suggests that not all texture information contributes to recognition. 
Presumably, these early image dimensions reflect ambient changes in 
the texture (e.g., illumination) that are not diagnostic of an identity. For 
practical reasons we used greyscale images in this study. Although faces 
can be reliably recognized from greyscale images, it would be interesting 

Fig. 7. (A) Similarity of each pair of the 90 images in the matching calculated from different layers of the DCNN. (B) Correlation between similarity values from each 
layer of the DCNN and behavioural judgements (proportion same). Higher correlations were found in the fully connected layers. (C) Correlation between similarity of 
images from the final fully-connected layer (Fc8) of the DCNN and the similarity in shape and texture. The results show that the correlation between the DCNN and 
shape or texture increased when early principal components (PC) were removed from the analysis. Dashed lines show the critical r value at p < 0.05. 
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to see how colour also contributes to the texture information that is 
important for face recognition in future studies. 

The shape or configuration of the face has also been suggested to be 
important for face recognition and is often referred to as configural 
processing (McKone & Yovel, 2009; Tanaka & Gordon, 2011; Piepers & 
Robbins, 2012; Rogers et al., 2022). However, a challenge for configural 
accounts of face recognition is that they do not specify which aspects of 
shape are important (Burton et al., 2015). Natural variation in face 
images caused by rigid changes in viewpoint or non-rigid changes (such 
as in expression or during speech) can often lead to large changes in the 
configuration or shape of the face. So, it has not been clear whether 
shape could be a useful cue for face recognition (Burton et al., 2015). 
Our analysis shows that when the early PCs are removed from the 
analysis, the shape or configuration of the face does contain information 
that allows the discrimination of identity. That is, face images with the 
same identity had a more similar shape than images from different 
identities. Similarity in shape also predicted whether images were 

perceived to have the same identity. This shows that PCA could provide 
a useful way of operationalising how the shape or configuration of the 
face can be used for the perception of identity. 

We next asked whether a computer model of face recognition using a 
deep convolutional neural network (DCNN) was sensitive to shape and 
texture information in a similar way to human observers. DCNNs have 
made significant progress in solving the complex problem of recognizing 
faces across naturally occurring changes in the image (O’Toole et al., 
2018). Indeed, the development of DCNNs has been influenced by the 
organisation of the primate visual system (Kriegeskorte, 2015; Yamins 
and DiCarlo, 2016). However, it remains unclear whether these provide 
useful models of the human visual system (Cichy & Kaiser, 2019). In this 
study, we used a DCNN trained to discriminate faces (VGG-Face; Parkhi, 
Vedaldi & Zisserman, 2015) and found that performance was correlated 
with perceptual judgements of identity, particularly in the later con-
volutional and fully connected layers. We also found that the shape and 
texture of the face images predicted performance on the DCNN in a 

Fig. 8. Familiar face recognition experiment. (A) In Exp.1, removal of 4 PCs resulted in increased accuracy and a reduction in response time to familiar faces. 
However, removal of 8 or 12 PCs resulted in decreased accuracy and increased response time. (B) In Exp.2, removal of the PCs 1–4 again resulted in increased 
accuracy and a reduction in response time to familiar faces. Removal of 5–8 or 9–12 PCs resulted in a significant decrease in accuracy and an increased response time. 
However, removal of PCs 13–16 had no effect on accuracy and a limited effect on response time. Horizontal lines indicate significant differences (p < 0.05) relative to 
the 0 PCs condition (original reconstruction). Error bars indicate standard error of the mean. 

T.J. Andrews et al.                                                                                                                                                                                                                             



Vision Research 212 (2023) 108297

12

similar way to human perception. These findings concur with a recent 
study that showed that DCNNs trained on faces use shape and texture 
information in a similar way to humans (Daube et al., 2021). Our results 
extend these findings showing that the correspondence between per-
formance on the DCNN and variance in shape and texture increases 
when the early image dimensions were removed from the analysis. 
Together, these findings provide evidence in support of DCNNs being 
useful models of human face perception (O’Toole et al., 2018; Abudar-
ham et al., 2019). 

Finally, we explored which dimensions of the image are important 
for familiar faces. To tackle this question, we removed PCs or image 
dimensions from familiar face images and measured the effect on 
recognition. In the first experiment, we found that removing the early 
PCs of shape and texture increased recognition and decreased response 
time. In contrast, removal of later PCs reduced recognition and increased 
response time. In the second experiment, we asked whether there are 
select bands of image dimensions that are important for recognition. 
Again, we found that removing the early PCs improved recognition 
compared to when no PCs were removed. Conversely, we found that 
removing intermediate bands of PCs resulted in a significant decrease in 
the recognition accuracy and increased response time. However, 
removing later PCs had a minimal effect on recognition compared to no 
PCs being removed. These findings suggest that the initial PCs reflect 
ambient image information that is not used for recognition. However, 
there is an intermediate band of PCs that plays a key role in recognition. 
These could reflect the multidimensional structural code that is used for 
recognition. 

A key feature of our study was the use of ambient face images that 
reflect the image variation that occurs in natural viewing. Although the 
early image dimensions for both shape and texture explain most of the 
image variance, they do not appear to contain information that is 
important for the recognition of identity. In contrast, intermediate 
image components which represent more subtle changes in the shape 
and texture of the image appear to be important for recognition. These 
findings are relevant to the debate surrounding the difference between 
unfamiliar and familiar face perception (Young & Burton, 2018a, 2018b, 
2021; Rossion, 2018; Sunday & Gauthier, 2018; Blauch, Behrmann & 
Plaut, 2021a; 2021b; Yovel & Abudarham, 2021). Our proposal is that 
an important aspect of the change from a pictorial representation that is 
used for unfamiliar face perception to a structural representation that is 
used for familiar face recognition involves the removal of ambient in-
formation in the image. The ability to recognise familiar faces would 
appear to depend on the ability to ignore this irrelevant information and 
focus on the image properties that are important for recognition. On the 
other hand, the difficulty in the recognition of unfamiliar faces may 
reflect the inability to ignore this information. It is interesting to spec-
ulate whether the ability to ignore irrelevant information may explain 
individual differences on tasks of face recognition (White & Burton, 
2022). 

Finally, it is important to note that there are many other signals 
available in face images, in addition to identity - for example, the sex, 
age, expression or pose of a face. The degree to which these different 
sources of information are processed independently by human viewers 
remains a topic of debate (Young, 2018; Duchaine & Yovel, 2015; 
Connolly et al, 2019). Our study opens the interesting possibility that the 
information space derived from statistical techniques, like PCA, contains 
discrete bands capturing information about different aspects of the face. 
In previous work, it has been shown that early components can capture 
not only superficial image noise, but also gross characteristics of faces 
that are independent of identity, such as expression (Calder & Young, 
2005), gender (O’Toole et al 1993), race (O’Toole et al 1994), age (Burt 
& Perrett, 1995) and pose (Burton et al, 2016). It is now possible to 
interrogate the information space derived from face sets in order to 
establish whether there are specific ranges carrying more subtle per-
sonal information, such as expressions or facial speech. Focussing on the 
statistical information space, rather than the frequency analysis of 

individual images, opens up a potentially useful route for future research 
in face perception more generally, beyond recognition of identity. It is 
interesting to note that this possibility arises from a comparatively 
simple linear analysis such as PCA. Of course, many more complex, non- 
linear, decompositions of statistical face-space are possible, but never-
theless, the approach described here offers a (perhaps surprising) degree 
of interpretability. 

In conclusion, our results suggest that an intermediate band of image 
dimensions contains the structural code that is used to discriminate 
identity. We show that variation across these image dimensions predicts 
performance of humans and computer models of face recognition. 
Recent studies in face recognition have shown that the discrimination of 
identity from a PCA is improved by the addition of a classifier (Kramer 
et al., 2017; Kramer et al., 2018). These results suggest that these clas-
sifiers may improve recognition by increasing the weight of these critical 
band of PCs or image dimensions. These findings provide a new 
perspective for understanding of the structural code that underpins the 
recognition of faces. 
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