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When we view nearby objects, we generate appreciably different retinal images in each
eye. Despite this, the visual system can combine these different images to generate a
unified view that is distinct from the perception generated from either eye alone (stereop-
sis). However, there are occasions when the images in the two eyes are too disparate to
fuse. Instead, they alternate in perceptual dominance, with the image from one eye being
completely excluded from awareness (binocular rivalry). It has been thought that binocular
rivalry is the default outcome when binocular fusion is not possible. However, other studies
have reported that stereopsis and binocular rivalry can coexist.The aim of this study was to
address whether a monocular stimulus that is reported to be suppressed from awareness
can continue to contribute to the perception of stereoscopic depth. Our results showed
that stereoscopic depth perception was still evident when incompatible monocular images
differing in spatial frequency, orientation, spatial phase, or direction of motion engage in
binocular rivalry.These results demonstrate a range of conditions in which binocular rivalry
and stereopsis can coexist.
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INTRODUCTION
Theories of binocular integration are usually based around the
phenomenon of stereopsis, which necessitates that the two monoc-
ular images are combined to form a single cyclopean image
(Wheatstone, 1838; Julesz, 1971). The success of this conception
is best exemplified by our current understanding of stereopsis,
which depends on the convergence of monocular information
onto disparity-sensitive binocular neurons that generate (or at
least initiate) a sensation of depth (Cumming, 1997; Parker, 2007).
However, the idea that binocular vision always involves integration
of the two eye views is not easily reconciled with the experience
of binocular rivalry (Alais and Blake, 2005). For example, if ver-
tical stripes are presented to one eye and horizontal stripes are
presented to a corresponding location in the other eye, the same
region of visual space is perceived as being occupied by vertical
stripes or horizontal stripes, but not by both. If the two monoc-
ular streams were simply united, one would presumably see a
grid.

So, how can the visual system deal with monocular signals
in such different ways? One possible explanation is that binoc-
ular rivalry is the default outcome when binocular correspon-
dence cannot be solved (Blake, 1989; Lehky and Blake, 1991).
In this model, rivalry results from reciprocal inhibition between
monocular signals prior to binocular convergence. In the pres-
ence of well-matched monocular signals, the reciprocal inhibition
responsible for rivalry is reduced by binocular neurons that gen-
erate the sensation of stereoscopic depth. However, if the mod-
ulating effect of the binocular circuitry is weakened by poorly
matched stimuli, then the two monocular signals can engage in
rivalry. Evidence in support of this model, comes from stud-
ies that show stereoscopic depth is disrupted during binocular
rivalry (Blake et al., 1991; Harrad et al., 1994; Cogan et al.,
1995).

The idea that binocular suppression only occurs when fusion is
not possible is challenged by other studies that report that rivalry
and stereopsis can coexist in the same location of the visual field
(see Wolfe, 1986, for review). For example, it has been reported that
stereoscopic depth is still evident when stereo targets are presented
on a background undergoing rivalry (Treisman, 1962; Ogle and
Wakefield, 1967; Harrad et al., 1994). Other studies have shown
that random dot stereograms can still elicit a perception of depth
in the presence of rivalrous noise (Julesz and Miller, 1975; May-
hew and Frisby, 1976). However, in all these studies judgments
of stereoscopic depth could result from only partial dominance
during binocular rivalry (Blake et al., 1991). So, it is possible that
stereoscopic depth and rivalry are occurring at different spatial
locations, giving the impression of coexistence.

Our aim was to determine whether a monocular stimulus
whose appearance was reported as being completely suppressed
from awareness could contribute to the perception of stereoscopic
depth. Our stimulus involved judging the relative depth of grating
patches that were presented at different binocular disparities. The
grating patches in the two eyes differed in spatial frequency, orien-
tation, spatial phase, and motion, so that they engaged in binocular
rivalry on the majority of trials. Participants were asked to make
stereoscopic depth judgments and then immediately report the
perceptual appearance of the stimuli. Only trials in which the
form from one eye dominated perception were used to generate
stereoacuity thresholds.

MATERIALS AND METHODS
STIMULI
Stimuli were programmed using a VSG2/5 graphics card (CRS,
Rochester, England) and presented on a monochrome monitor
with a fast phosphor decay (Clinton Monoray) and a frame-rate
of 120 Hz. Gamma correction was used to ensure that the monitor
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was linear over the entire luminance range used in the experi-
ments. Participants viewed the display in a darkened room at a
distance of 2.28 m through ferro-electric shutter-goggles (CRS,
Rochester, England), which alternately occluded the two eyes at
the same frequency as the frame-rate of the monitor. Thus, suc-
cessive frames were seen by only one eye with no perceptible flicker
at this high alternation rate. Participants fixated on a dark spot that
remained visible throughout the experiments. In all of the experi-
ments reported here, stimuli were circular patches of sinusoidally
modulated grating (contrast, 40%) with a 0.8˚ hard edge envelope
on a background of average luminance. Responses were recorded
via a CB3 response box (CRS, Rochester, England). Participants
were experienced psychophysical observers and had normal or
corrected-to-normal vision and good stereopsis.

PSYCHOMETRIC PROCEDURE
Stereoacuity thresholds were first determined for monocular stim-
uli that differed in spatial frequency. To increase the number of
trials in which full dominance was reported, we used a tech-
nique known as flash suppression (Wolfe, 1984; Holmes et al.,
2006; see http://www.scholarpedia.org/article/Flash_suppression
for a demonstration). First, an identical adapting stimulus was
presented to both eyes. The adapting stimulus was a vertical
grating patch in the center of the display with a spatial fre-
quency between 1.5 and 6.0 cycles/deg. Participants adapted to
the form/appearance of this grating patch for 1 s. This was fol-
lowed by a 1.5-s binocular presentation of three vertically arranged
patches of grating. Figure 1 shows the spatial layout of the stimuli.
On each trial, the spatial frequency of the gratings in one eye was
3 cycles/deg, while the spatial frequency of the gratings in the other
eye varied between 1.5 and 6.0 cycles/deg. The spatial frequency of
the gratings presented to one eye was identical to the adaptor. The
top and bottom of the three grating patches in each monocular
image were given opposite horizontal disparities such that one or
other was in front of fixation during the stereo presentation. The
central patch was always at zero disparity. Horizontal jitter ±5 arc
min was applied independently to the spatial position of the top
and bottom patches. This prevented the use of monocular cues
to determine depth. The task of the observers was to press a but-
ton to indicate which grating patch (top or bottom) was closest.
Immediately after their stereo judgment, observers were asked to
indicate which grating patches were perceptually dominant. Trials
in which full dominance was not reported for all grating patches
in one eye and for the duration of the presentation were discarded
from further analysis. Participants were easily able to detect dif-
ferences between 3 cycles/deg patch and all spatial frequencies that
were used.

Next, observers judged stereoscopic depth for monocular stim-
uli that differed in orientation, spatial phase, and direction of
motion. In orientation blocks, participants viewed an identical
adapting grating patch in the center of the screen that was either
vertical, or tilted to the left or right of vertical (5˚ or 7.5˚). This
was followed by a stereo presentation of three vertically aligned
grating patches with the same stimulus parameters to one eye and
gratings with an opposite tilt to the other. Participants determined
the relative depth of the grating patches and then reported whether
the patch was tilted to the right or left. In the spatial phase blocks,

FIGURE 1 | Front and side views of the stimulus. (A) Stimuli were three
vertically arranged grating patches. Each patch was 0.8˚ in diameter and
they were separated by 1˚. The gratings presented to each eye could vary in
either: spatial frequency, orientation, spatial phase, or direction of motion.
(B) The top and bottom of the three grating patches in each monocular
image were given equal and opposite horizontal disparities such that one or
other was in front of fixation during the stereo presentation. The task of the
participant was to press a button to indicate which grating patch was
closest and then to report the appearance of the gratings.

the adapting stimulus was composed of a patch of vertical grat-
ing in the center of the display (spatial freq: 3 cycles/deg) with a
spatial (cosine) phase of 0˚. This was followed by a stereo presen-
tation of three grating patches with the same spatial phase (0˚) as
the adaptor in one eye and grating patches with a spatial phase
of either 0˚ or 180˚ to the other eye. Participants indicated depth
and then indicated whether all grating patches had a spatial phase
of 0˚ (bright in the center) or 180˚ (dark in the center). Finally,
stereoacuity thresholds were determined for stimuli that differed
in their direction of motion. In this experiment, observers viewed
an identical adapting stimulus in the center of the display that was
presented to both eyes for 1 s. The adapting stimulus was com-
posed of a patch of vertical gratings (spatial freq: 3 cycles/deg)
with a temporal frequency of 0.5 cycle/s to the left or to the right.
This was followed by a 1.5-s stereo presentation of three grating
patches with the same direction of motion as the adaptor in both
eyes or with opposite directions-of-motion in each eye. Partici-
pants indicated depth and then indicated the perceived direction
of movement of the gratings in the patches.

Stereoacuity functions in each experiment were based on five
repetitions of a test block for each observer. Each test block con-
tained 10 disparity steps for each stimulus combination and each
stereo judgment was repeated five times. Within each test block,
stimulus combinations were varied in a counterbalanced design,
so that each stimulus was presented an equal number of times to
the right and left eyes. For threshold discrimination, cumulative-
Gaussian curves were fitted to the data. The difference between
performance at 0.25 and 0.75 was taken as the threshold.

RESULTS
SPATIAL FREQUENCY
Observers reported the complete dominance of all grating patches
in one eye for the duration of the stimulus in over 90% of tri-
als (S1: 96.1 + 3.1%; S2: 93.7 + 3.1%; S3: 95 + 1.7%). Trials in
which the gratings from one eye or the other did not dominate
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FIGURE 2 | Stereoacuity functions for grating stimuli patches with

different spatial frequencies in the two eyes. The combination of spatial
frequencies used from (left to right) were: 1.5:3.0, 1.9:3.0, 2.4:3.0; 3.0:3.0;

3.8:3.0; 4.9:3.0; 6.0:3.0 cycles/deg. Participants were asked to indicate
whether the upper or lower grating patch was closest. A negative value on
the x axis represents an uncrossed disparity. Bars represent SEM.

exclusively were not analyzed. Therefore, with the exception of
when both gratings had the same spatial frequency, stereoscopic
judgments were made when the form from only one eye was vis-
ible. Figure 2 shows the stereoscopic depth functions from three
observers. Thresholds were lowest when the gratings had the same
spatial frequency (3.0: 3.0 cycles/deg: mean + SEM = 1.47 + 0.59)
and increased as the spatial frequency of the gratings were
made more different from each other (1.5: 3.0 = 2.83 + 0.64; 1.9:
3.0 = 1.93 + 0.54; 2.4: 3.0 = 1.90 + 0.53; 3.8: 3.0 = 3.13 + 0.28; 4.9:
3.0 = 3.00 + 0.31; 6.0: 3.0 = 3.43 + 0.23). An ANOVA showed that
there was an effect of spatial frequency for S1 [F(1,6) = 4.3,
p < 0.005], but not for S2 (F = 0.71, p = 0.64) or S3 (F = 0.92,
p = 0.49). Nevertheless, the key point is that clear psychometric
functions are apparent for each observer when the spatial fre-
quency of the two monocular images differed by as much as a
factor of two.

ORIENTATION
Next, stereoacuity thresholds were determined for grating patches
that varied in orientation from 0˚ to 15˚ (Figure 3A). When the
orientations of the two gratings were different, participants indi-
cated complete suppression of the form of the gratings presented
to one eye or the other in about 90% of trials (S1: 88.6 + 1.6%; S2:
89.0 + 2.2%). Stereoscopic depth judgments were only assessed in
these trials. The results, shown in Figure 3, show that thresholds
were lowest when the grating patches had the same orientation
(i.e., vertical) and increased as they were made more different
from each other. An ANOVA revealed that there was a signifi-
cant effect of orientation for S1 (F = 5.9, p < 0.05), but not for
S2 (F = 2.8, p = 0.1). However, again both observers were still
able to generate good stereoscopic depth functions when the
content of the grating patches in one eye was suppressed from
perception.
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FIGURE 3 | Stereoacuity thresholds for grating patches that varied in

orientation (A), spatial phase (B), or direction of motion (C). Bars
represent SEM.

SPATIAL PHASE
Stereoscopic depth judgments were then made when grating stim-
uli differed in their spatial phase. Clear dominance of one or other
stimulus was apparent in over 90% of the 180˚ phase different
trials (S1: 92.0 + 5.0%; S2: 97.2 + 1.2%). Figure 3B shows that
thresholds were lower when both sets of gratings had the same
spatial phase (0˚) compared to when the gratings were 180˚ out of
phase (0˚ and 180˚). This difference was significant for S1 (t = 9.4,

p < 0.05), but not for S2 (t = 1.9, p = 0.20). Nonetheless, reliable
stereoscopic depth functions were still obtained when the form of
one image was suppressed from awareness.

DIRECTION OF MOTION
Finally, stereoacuity thresholds were determined for stimuli that
differed in their direction of motion. Participants reported com-
plete dominance of one spatial frequency or the other across all
three grating patches for the duration of the presentation on over
40% of trials (S1: 97 ± 0.9%; S3: 48 ± 6.6%). Figure 3C shows
the stereoacuity thresholds from two participants. For one partic-
ipant, thresholds were significantly lower when the gratings had
the same direction of motion and increased when the direction
of motion of the gratings was in the opposite directions. How-
ever, this difference was not statistically significant S1 (t = 2.5,
p = 0.16). There was not difference in the stereo-thresholds for
S3 (t = 0.01, p = 0.93). Again, stereo judgments were still possible
even when the direction of motion of one stimulus was completely
suppressed from perception.

DISCUSSION
The aim of this study was to determine whether depth judgments
based on binocular disparity can occur for two monocular objects
that differ in spatial structure or local motion. Our results show
that stereopsis is still possible when the appearance of an object
from one eye is completely suppressed from awareness during
binocular rivalry.

A number of previous studies have reported that stereoscopic
depth perception can coexist with binocular rivalry (Treisman,
1962; Ogle and Wakefield, 1967; Julesz and Miller, 1975; Harrad
et al., 1994). However, in all of these studies participants were not
asked to report whether the image in the “suppressed” eye was per-
ceptually dominant during judgments of depth. So, it is possible
that, in these studies, partial dominance could result in stereo-
scopic depth and rivalry occurring at different spatial locations,
giving the impression of coexistence. These problems were cir-
cumvented in the present study by having participants report the
depth and appearance of the stimulus on each trial. Only those tri-
als in which the form from one eye dominated perception for the
duration of the trial were used to generate stereoacuity thresholds.

The coexistence of stereopsis and binocular rivalry in this
study demonstrates that binocular disparity information can be
processed even when the appearance of one monocular image
has been suppressed from awareness. These findings fit with a
recent study that showed binocular integration and suppression
are possible when vertical gratings were presented to each eye
(Su et al., 2009). In this study, the stimuli in the two eyes were
identical gratings except that a circular patch in the center of the
vertical grating of one eye was phase-shifted relative to the sur-
rounding grating. This generated both local rivalry and disparity
signals. Although participants used the disparity information to
generate a perception of stereoscopic depth, thresholds for the
detection of a probe stimulus at the location of the circular patch
in corresponding regions of the other eye were increased. This
clearly demonstrates the coexistence of binocular integration and
suppression. Interestingly, the stimulus used by Su et al. (2009)
is similar to the phase-shifted stimulus used in this experiment
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(Figure 3B). However, in this experiment, we used the participant’s
reports of awareness to indicate interocular suppression.

The illusory conjunction of form and depth reported in this
study fits with other reports that have shown that independent
competition between different features of a stimulus can occur
during binocular rivalry. For example, a suppressed stimulus can
influence the appearance of the dominant stimulus by changing
the perception of its orientation (Pearson and Clifford, 2005),
direction of motion (Andrews and Blakemore, 2002), luminance
(Carlson and He, 2000), and color (Carney et al., 1987; Holmes
et al., 2006; Hong and Shevell, 2009). The implication from these
studies is that the neural mechanisms underlying suppression dur-
ing binocular rivalry can operate independently on the features
that make up the stimulus. These findings suggest that a stimu-
lus that is suppressed during binocular rivalry is not equivalent
to physical removal of the stimulus. Rather, the stimulus can con-
tinue to influence perception. These findings are consistent with
the idea that the suppression of information during rivalry is not
an all or nothing process, but one that occurs at multiple sites
throughout the visual system (Blake and Logothetis, 2002; Tong
et al., 2006; Blake and Wilson, 2011).

Circumstances in which rivalry and stereopsis coexist are com-
mon in natural viewing. For example, when we view a 3D scene,
occluding objects typically generate images in corresponding
regions of the two eyes that are different (Anderson and Nakayama,
1994). However, if these rivalrous zones are consistent with view-
ing an occluding object, they are perceived at an appropriate depth
(Shimojo and Nakayama, 1990). In this study, when a dispar-
ity was applied to the images, the rival stimuli in the two eyes
did not occupy corresponding retinal points throughout. Never-
theless, when one grating patch dominated perception, it always
appeared as a single circular patch. It would appear, therefore, that
it is possible for binocular rivalry to take place even when some
aspects of the rival stimuli occupy non-corresponding regions
of visual space. Presumably, information from stereoscopic pro-
cessing can influence which regions of the retina interact during
rivalry.

Although our results show that stereo-depth is possible when
the monocular input differs on a variety of stimulus dimensions.
A number of other reports have shown that reducing the corre-
spondence in spatial structure between the two monocular images
affects stereopsis. For example, adding masking noise at one spa-
tial frequency impairs stereoscopic depth at similar, but not at
different spatial frequencies (Julesz and Miller, 1975; Mayhew and
Frisby, 1976; Yang and Blake, 1991). Neurophysiological stud-
ies have shown that there are two possible mechanisms that the
visual system could use to process binocular disparity information
(Cumming, 1997; Blake and Wilson, 2011). One model is based
on binocular detectors, with identical receptive field structures,
located at different locations for the left and right eyes (Anzai et al.,
1997). An opposing model proposes that the envelope enclosing
the receptive fields in the right and left eye are in corresponding
retinal positions, but have a different spatial structure (DeAngelis
et al., 1991). These mechanisms are based on first-order mecha-
nisms that involve detecting corresponding luminance profiles in
the two eyes. In our paradigm, the first-order or luminance pat-
tern of the rivalrous stereograms did not match in the two eyes.
This suggests that a second-order mechanism is involved. Behav-
ioral evidence for second-order stereo-depth mechanism has been
shown in a number of studies (Zeigler and Hess, 1999; Hess and
Wilcox, 2008). Stereoscopic depth perception can even be obtained
with dichoptically mixed first- and second-order stimuli (Edwards
et al., 2000). Physiological support for second-order depth percep-
tion is evident in a subset of neurons in extrastriate regions of cat
visual cortex (Tanaka and Ohzawa, 2006). Our findings suggest
that the second-order stereo mechanisms can still operate during
binocular rivalry.

In conclusion, our results show that a stimulus that is com-
pletely suppressed from awareness during binocular rivalry can
nonetheless contribute to the processing of disparity. This gives
rise to an illusory conjunction in which form information from
one eye is combined with depth information from both eyes. These
results demonstrate a range of stimulus conditions in which rivalry
and stereopsis can coexist.
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