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a b s t r a c t

Face-selective regions in the amygdala and posterior superior temporal sulcus (pSTS) are strongly
implicated in the processing of transient facial signals, such as expression. Here, we measured neural
responses in participants while they viewed dynamic changes in facial expression. Our aim was to
explore how facial expression is represented in different face-selective regions. Short movies were
generated by morphing between faces posing a neutral expression and a prototypical expression of a
basic emotion (either anger, disgust, fear, happiness or sadness). These dynamic stimuli were presented
in block design in the following four stimulus conditions: (1) same-expression change, same-identity, (2)
same-expression change, different-identity, (3) different-expression change, same-identity, and (4) different-
expression change, different-identity. So, within a same-expression change condition the movies would
show the same change in expression whereas in the different-expression change conditions each movie
would have a different change in expression. Facial identity remained constant during each movie but in
the different identity conditions the facial identity varied between each movie in a block. The amygdala,
but not the posterior STS, demonstrated a greater response to blocks in which each movie morphed from
neutral to a different emotion category compared to blocks in which each movie morphed to the same
emotion category. Neural adaptation in the amygdala was not affected by changes in facial identity. These
results are consistent with a role of the amygdala in category-based representation of facial expressions
of emotion.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Transient changes in facial musculature that signal current
emotional state are critical for effective social interactions. A
prominent model of face perception has proposed that a neural
pathway from the occipital face area (OFA) to the posterior
superior temporal sulcus (pSTS) is involved in processing transient
facial signals such as facial expression and eye gaze. In this model
the STS is thought to have reciprocal connections with the
amygdala which is recruited for further analysis of facial expres-
sion (Haxby, Hoffman, & Gobbini, 2000). The sensitivity of the STS
and amygdala to a range of facial expressions has been demon-
strated across a variety of experiments (Adolphs, Tranel, Damasio,
& Damasio, 1994; Adolphs et al., 1999; Andrews & Ewbank, 2004;
Baseler, Harris, Young, & Andrews, 2013; Engell & Haxby, 2007;
Harris, Young, & Andrews, 2012; Narumoto, Okada, Sadato, Fukui,
& Yonekura, 2001).

However, relatively little is known regarding how facial expres-
sion is encoded in these regions. Models of facial expression

perception have debated whether facial expressions are represented
as belonging to discrete categories of emotion or as gradations along
continuous dimensions (see Bruce & Young, 2012). Although usually
treated as incompatible opposites there is evidence for both
accounts. Evidence for categorical perception of expression is shown
by the consistency with which basic emotions are recognized
(Ekman, 1972) and by the increased sensitivity to changes in facial
expression that alter the perceived emotion (Calder, Young, Perrett,
Etcoff, & Rowland, 1996; Etcoff & Magee, 1992). In contrast,
continuous or dimensional models are better able to explain the
systematic confusions that occur when labeling facial expressions
(Woodworth & Schlosberg, 1954). Continuous models can also
account for the fact that we are readily able to perceive differences
in intensity of a given emotional expression (Calder, Young,
Rowland, & Perrett, 1997; Young et al., 1997) and for variation in
the way that basic emotions are expressed (Rozin, Lowery, & Ebert,
1994).

Previously, we offered evidence supporting a synthesis of the
above accounts at the neural level by demonstrating that expres-
sion is represented in the brain in both a categorical and a
continuous manner (Harris et al., 2012). Specifically, by morphing
static images of faces to create equal physical changes between
images that either fell within the same emotion category or
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crossed the boundary between different emotion categories, we
showed that the amygdala is more sensitive to between than
within-category changes (showing a more categorical representa-
tion of facial expression) whereas the pSTS is equally sensitive to
within and between-category change (indicating a more contin-
uous representation).

In this current study, we aimed to further explore the catego-
rical representation of expression in the amygdala using dynamic
stimuli. Dynamic changes in facial expression can provide a
stringent test of categorical representations, as dynamic movies
necessarily incorporate continuous transient changes in expres-
sion, and many of these changes need to be disregarded in order to
assign dynamic expressions into discrete categories. We used short
movies that always showed a change from a neutral resting
expression to an intense emotional expression. These movies were
created by animating morphed images of facial expressions of
basic emotions from the Ekman and Friesen (1976) series. We then
used a block fMR-adaptation design to compare neural responses
to blocks involving a series of these short movies in which the final
expressions were either the same (e.g. all fear) or different (mixed
emotions). So within a block participants we saw a series of
movies which displayed a dynamic change from a neutral expres-
sion to the apex of an emotion. In the same-expression change
conditions the same change in expression was displayed across all
movies (e.g. all neutral to fear). In the different expression
conditions each movie had a different facial expression change
(neutral to fear, neutral to disgust, neutral to happy etc). These
same and different expression blocks could be presented with
either the same or different facial identity. In the same identity
conditions each movie would show the same person across the
block, whilst in the different identity conditions each movie would
show a different person.

This design incorporates contrasts that provide substantial
criteria for a category-based response to moving expressions. A
neural region using a predominately categorical representation of
expression should show a greater response to the different
compared to the same change in expression conditions, as these
conditions involve a change in the emotion category. Moreover, a
region showing a response based primarily on emotional cate-
gories should also be relatively insensitive to changes in facial
identity. However, if a region does not represent expression into
emotion categories it should respond equally to the same and
different expression blocks, because all of the movies are based on
morphed sequences of images that undergo continuous changes.
From Harris et al.’s (2012) results with static expressions, we
predicted that the amygdala, but not the pSTS, would demonstrate
a categorical representation of expression.

2. Method

2.1. Subjects

Nineteen participants took part in this experiment (14 females; mean age, 23).
All participants were right-handed and had normal or corrected-to-normal vision.
Visual stimuli (81�81) were back-projected onto a screen located inside the
magnetic bore, 57 cm from subjects0 eyes. All subjects provided written informed
consent and the study was given ethical approval by the York Neuroimaging Centre
Ethics Committee.

2.2. Localiser scan

A functional localiser was used to independently identify regions of interest.
This localiser involved a block design with five different conditions: (1) faces, (2)
bodies, (3) inanimate objects, (4) places, and (5) scrambled images of the former
categories. Face images were taken from the Psychological Image Collection at
Stirling (PICS; http://pics.psych.stir.ac.uk/). These images varied in viewpoint
(frontal, 3

4 view, profile) and expression (neutral, happy, speaking) within a block.

Both male and female faces were used. Body images were taken from a collection at
the University of Bangor (http://www.bangor.ac.uk/�pss811/), and contained
clothed male and female headless bodies in a variety of postures. Images of places
consisted of a variety of unfamiliar indoor scenes, houses and buildings, city scenes
and natural landscapes. Stimuli in the object condition consisted of different
inanimate objects including tools, ornaments, and furniture. Fourier-scrambled
images were created by randomizing the phase of each two-dimensional frequency
component in the original image, while keeping the power of the components
constant. Scrambled images were generated from the images used in the other
stimulus categories.

Each stimulus block consisted of 10 images from a single stimulus condition.
Each image within a block was presented for 700 ms and followed by a 200 ms
blank screen, resulting in a total block length of 9 s. Stimulus blocks were separated
by a 9 s gray screen with a central fixation cross. Each condition was repeated four
times in a counterbalanced design resulting in a total scan length of 7.2 min. All
participants viewed the same sequence of blocks and images. To ensure partici-
pants maintained attention throughout the experiment, participants had to detect
the presence of a red dot superimposed onto 20% of the images. No significant
differences in red dot detection were evident across experimental conditions
(Accuracy: 96.5%, F(1,18)¼0.71; RT: 673.4 ms, F(1,18)¼1.95, p¼0.18).

2.3. Experimental scan

2.3.1. Stimuli
The initial face stimuli were Ekman faces selected from the Young et al. Facial

Expressions of Emotion Stimuli and Tests (FEEST) set (Young, Perrett, Calder,
Sprengelmeyer, & Ekman, 2002). Five individuals posing five expressions (anger,
disgust, fear, happiness and sadness) were selected based on the following three
main criteria: (i) a high recognition rate for all expressions (mean recognition
rate in a six-alternative forced-choice experiment: 93% Young et al., 2002),
(ii) consistency of the action units (muscle groups) across different individuals
posing a particular expression, and (iii) visual similarity of the posed expression
across individuals. Using these criteria to select the individuals from the FEEST set
helped to minimize variations in how the expressions were posed.

The frames for the movies were generated by morphing between each individual0s
neutral expression and each of their prototype expressions in 5% steps using Psycho-
Morph (Tiddeman, Burt, & Perrett, 2001). Movies were generated by playing the
morphed images in sequence using Adobe Premiere Pro. The first (neutral) frame was
played for 160 ms and the final frame (prototype expression) was played for 280 ms.
The 18 intermediate frames were each played for 40 ms. Validation of the movie stimuli
was demonstrated in an expression-classification experiment, inwhich recognition rates
of the dynamic expressions were compared to the recognition rate for the equivalent
original prototype expression. Participants either classified the static or dynamic
expressions in a 5AFC task. 20 participants (11 females; mean age 29) rated the static
expressions and 20 participants (12 females; mean age 27) rated the dynamic
expressions. The static stimuli were shown for an equivalent amount of time as the
dynamic stimuli and both were followed by a 2 s gray screen, during which participants
could make their response. This experiment found that recognition accuracy for the
static expression was 83.6% and for the dynamic expressions 84.3%.

2.3.2. Procedure
The aim of this experiment was to investigate the nature of the representation

of expression in the amygdala and pSTS. There were four conditions in this
experiment which all involved blocks showing a sequence of movies each of which
involved a dynamic change in expression from a neutral pose to a basic emotion:
(1) same-expression change, same-identity, (2) same-expression change, different-
identity, (3) different-expression change, same-identity, and (4) different-expression
change, different-identity. The same-expression change conditions involved 5 movies
all displaying the same change in expression (i.e. all neutral to the same emotion).
In the different-expression change conditions each of the 5 movies displayed a
change from neutral to a different basic emotion. Each movie was created using the
face of a single model (identity). In the same-identity conditions the same identity
was shown in each of the 5 movies, and in the different-identity conditions each of
the 5 movies had a different facial identity. The movie stimuli were presented in
blocks, with 5 movies per block. Each movie was presented for 1160 ms and
separated by a gray screen presented for 200 ms. Successive stimulus blocks were
separated by a 9 s fixation gray screen. Each condition was presented 10 times in a
counterbalanced order, giving a total of 40 blocks. This resulted in total scan
duration of 10.5 min. To ensure participants maintained attention throughout the
experiment, participants had to push a button when they detected the presence of
a red dot, which was superimposed onto 20% of the movies. No significant
differences in red dot detection were evident across experimental conditions
(Accuracy: 96.0%, F(1,18)¼0.14; RT: 646.7 ms, F(1,18)¼0.35).

2.4. Imaging parameters and fMRI analysis

Data was collected using a GE 3T HD Excite MRI scanner at York Neuroimaging
Centre at the University of York. A Magnex head-dedicated gradient insert coil was
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used in conjunction with a birdcage, radio-frequency coil tuned to 127.4 MHz.
A gradient-echo EPI sequence was used to collect data from 38 contiguous
axial slices (TR¼3, TE¼25 ms, FOV¼28�28 cm2, matrix size¼128�128, slice
thickness¼4 mm). These were co-registered onto a T1-weighted anatomical image
(1�1�1 mm3) from each participant. To improve registrations, an additional
T1-weighted image was taken in the same plane as the EPI slices. Statistical analysis
of the fMRI data was performed using FEAT (http://www.fmrib.ox.ac.uk/fsl). The
initial 9 s of data from each scan were removed to minimize the effects of magnetic
saturation. Motion correction was followed by spatial smoothing (Gaussian, FWHM
6 mm) and temporal high-pass filtering (cutoff, 0.01 Hz).

Face-selective regions were individually defined in each individual using the
localiser scan by the average of the following contrasts: face4body, face4object,
face4place and face4scrambled. Statistical images were thresholded at po0.001
(uncorrected). In this way, contiguous clusters of voxels located in the inferior
fusiform gyrus, in the posterior occipital cortex and in the superior temporal lobe of
individual participants could be identified as the FFA, OFA and the pSTS respec-
tively. A different approach had to be taken to define the amygdala. Signals in the
anterior regions of the temporal lobe are typically noisy, because of the proximity
to the ear canals. The lower within-participant signal-to-noise makes it difficult to
determine face-selectivity in the amygdala at the level of individual participants. A
face-responsive ROI in the amygdala was therefore defined from the face-selective
statistical map at the group level, thresholded at po0.001 (uncorrected). This ROI
in the amygdala was then transformed into the individual MRI space for each
participant. The time-course of response in the amygdala ROI was then evaluated
for each participant to ensure that it responded more to faces than non-face
stimuli. In all other respects, the data were processed in exactly the same way for
all ROIs.

For the experimental scan, the time series of MR response from each voxel
within a ROI was converted from units of image intensity to percentage signal
change. All voxels in a given ROI were then averaged to give a single time series for
each ROI in each participant. Individual stimulus blocks were normalized by
subtracting every time point by the zero point for that stimulus block. The
normalized data were then averaged to obtain the mean time course for each
stimulus condition. The peak response was taken as an average of the TR 2 (6 s) and
TR 3 (9 s) following the onset of each block.

3. Results

The location of all face-selective regions is shown in Fig. 1 and
Table 1. The localiser was able to identify a posterior part of right STS
and a region in the right amygdala which responded more to faces
than to non-face stimuli. A further two regions, the OFA and FFA, also
showed a preferential response to faces and were identified in both
the left and right hemispheres. To determine whether there was any
difference in the neural response across the hemispheres in the
adaptation experiment, we conducted a 2�2�4 ANOVA with Hemi-
sphere (left, right), Region (OFA, FFA) and Condition (same-expression
change, same-identity, same-expression change, different-identity,
different-expression change, same-identity, different-expression
change, different-identity) as the main factors (participants in which
the OFA and FFA could only be identified unilaterally (see Table 1),
were not included in this ANOVA). There was no main effect of Hemis-
phere (F(1,12)¼2.73, p¼0.13). There was also no significant Hemispher-
enCondition (F(3,36)¼0.45), HemispherenRegion (F(1,12)¼0.25) or
HemispherenRegionnCondition (F(3,36)¼1.17, p¼0.34) interactions.

Accordingly, for participants that demonstrated bilate ral OFA and
FFA, the neural responses were combined across hemispheres.

Next, we determined whether there was any difference
between the response in the face-selective regions to dynamic
changes in facial expression and to changes in identity. A 4�2�2
ANOVA with Region (pSTS, amygdala, FFA, OFA) Expression (same,
different) and Identity (same, different) as the main factors,
revealed significant main effects of Expression (F(1,14)¼7.30, p¼
0.02) and Region (F(3,42)¼63.71, po0.0001) and a marginal, but
not statistically significant effect of Identity (F(1,14)¼4.35, p¼
0.06). There was also a significant interaction between Region
� Expression (F(3,42)¼3.06, p¼0.04).The main focus of the analysis
is the pSTS and the amygdala as these regions have been
previously implicated in the processing of facial expression
(Harris et al., 2012; Haxby et al., 2000). To further investigate
whether these two regions demonstrated a different pattern of
response, we conducted a 2�2�2 ANOVAwith the factors Region
(amygdala, pSTS), Expression (same, different) and Identity (same,
different). This revealed a significant main effect of Region
(F(1,14)¼48.42, po0.001) and Expression (F(1,14)¼5.67, p¼0.03)
but not identity (F(1,14)¼0.01) There was also a significant Region-
nExpression interaction (F(1,14)¼6.99, p¼0.02), suggesting a dis-
sociable representation of expression in these regions. Therefore,
to investigate how the response to dynamic changes in facial
expression differed between the face-selective regions, the pat-
terns of response in the face-selective regions of interest were
considered individually.

Fig. 2c shows the peak responses in the posterior part of the
right STS. A 2�2 ANOVA with the factors Expression (same,
different) and Identity (same, different) revealed no significant
effect of Expression (F(1,17)¼0.66), or Identity (F(1,17)¼0.20). There
was also no significant ExpressionnIdentity interaction (F(1,17)¼
1.97, p¼0.18). In contrast, the amygdala was sensitive to blocks of

Fig. 1. Location of regions that were more responsive to faces compared to non-face stimuli in the Localiser scan. MNI coordinates (mm) of slices: x¼46, y¼�52, z¼�24.
FFA: fusiform face area, OFA: occipital face area, pSTS: posterior superior temporal sulcus, and AMG: amygdala.

Table 1
MNI coordinates (mm) of face-selective regions. Coordinates for the center of
gravity were averaged across all participants. Standard error is reported in
parenthesis.

Region n x y z

FFA 19
L 18 �41 (1.0) �54 (1.5) �21 (1.0)
R 19 43 (1.1) �55 (3.2) �22 (1.6)
OFA 19
L 15 �39 (2.1) �84 (1.5) �16 (0.9)
R 19 43 (1.6) �80 (2.0) �14 (1.2)
STS 18
R 53 (1.7) �51 (2.6) 4.7 (1.0)
Amygdala 16
R 17 �9 �18
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faces in which the dynamic change in expression varied across the
block. A 2�2 repeated measures ANOVA found a significant main
effect of Expression (F(1,15)¼5.10, p¼0.04) but not Identity
(F(1,15)¼0.23). There was no significant interaction Expressionni-
dentity (F(1,15)¼0.08). The main effect of Expression was due to the
bigger response to the different-expression conditions compared to
the same-expression conditions (different expression: 0.19%, same
expression: 0.05%). This pattern held regardless of whether the
blocks showed the same or different identities.

The responses to the different conditions in the FFA are shown in
Fig. 3. A 22�2 ANOVA revealed no significant main effect of
Expression (F(1,18)¼0.44) but there was a main effect of Identity
(F(1,18)¼6.37, p¼0.02). There was a borderline but not significant
ExpressionnIdentity interaction (F(1,18)¼3.48, p¼0.08). The main effect
of Identity was due to a bigger response to the different-identity
conditions compared to the same-identity conditions. The OFA showed

a similar pattern of response to that found in FFA. There was no
significant effect of Expression (F(1,18)¼0.73), but there was a signifi-
cant effect of Identity (F(1,18)¼10.15, p¼0.01). There was also a
significant ExpressionnIdentity interaction (F(1,18)¼4.47, p¼0.05).
The interaction was due to a significantly bigger response to diffe-
rent-identity condition compared to same-identity condition for the
same-expression change (t(18)¼3.31, p¼0.004) but not for the different-
expression change conditions (t(18)¼1.59, p¼0.39).

In summary, the results from this experiment reveal that the
amygdala was sensitive to the emotion category, with a greater
response to blocks of movies that varied in the category of
emotion compared to blocks of movies displaying the same change
in emotion. This is consistent with a more categorical representa-
tion of expression. This is dissociable form the response in the
pSTS which did not discriminate between blocks with same
change and different changes in expression.

Fig. 2. Example stimuli and neural responses to dynamic changes in facial expression: (a) alternate frames from an example neutral to happiness movie. (b) Example of the
sequence of movies within a block from the four experimental conditions: (upper, left) same-expression, same-identity; (upper, right) same-expression, different-identity;
(lower, left) different-expression, same-identity; (lower, right) different-expression, different-expression. (c) Peak responses to the different conditions in the pSTS and
amygdala. The results show that the pSTS was responsive to all conditions, consistent with a continuous representation of facial expression. However, the amygdala was
more sensitive to a series of expression movies which displayed different changes in the emotion category, demonstrating a more categorical representation of emotion.
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4. Discussion

The aim of this experiment was to use an fMR-adaptation
paradigm to explore the response to dynamic facial expressions of
emotion across different face-selective regions. We found a dis-
sociation between the neural representation of facial expression in
the amygdala and other face-selective regions. The amygdala had a
greater response to blocks of movies that morphed to different
facial expressions of emotion compared to blocks of movies that
always morphed to the same expression. Moreover, adaptation to
dynamic changes in expression in the amygdala was invariant to
changes in facial identity.

Models of facial expression perception have debated whether
facial expressions are represented as belonging to discrete cate-
gories of emotion or as gradations along continuous dimensions
(see Bruce & Young, 2012). Previously, we offered an alternative
perspective to the longstanding controversy by showing that both
categorical and continuous representations of expression are used
by the brain (Harris et al., 2012). Pairs of faces were morphed to
create equal physical changes between images that either fell
within the same emotion category or crossed the boundary
between different emotion categories. We showed that the amyg-
dala was more sensitive to between than within-category changes
(showing a more categorical representation of facial expression),
whereas the pSTS was equally sensitive to within and between-
category change (indicating a more continuous representation).

The results from the present study support the conclusion that
the amygdala is involved in the categorical representation of facial
expressions of emotion. Dynamic movies provide a novel and
stringent test of categorical perception as inherent in all the
movies are continuous changes in expression. A categorical repre-
sentation of expression will therefore need to disregard these
largely irrelevant continuous changes in expression in order to
determine the emotion category. The amygdala demonstrated a
neural pattern of response consistent with a region that is able to
assign expressions to discrete categories of emotion. The more
categorical representation of expression demonstrated in the
amygdala is optimal for the proposed role of this region in
processing biologically relevant signals pertinent to survival
(Adolphs et al., 1999; Sander, Grafman, & Zalla, 2003). This is
reflected in neuropsychological studies of patients with amygdala
damage who have demonstrated impairments in emotion recogni-
tion (Adolphs et al., 1994; Anderson & Phelps, 2000; Young et al.,
1995), which are often accompanied by an attenuated reaction to

potential threats (Feinstein, Adolphs, Damasio, & Tranel, 2011;
Sprengelmeyer et al., 1999).

Although we have demonstrated a more categorical response in
the amygdala compared to the pSTS it does not necessarily imply
that the amygdala is insensitive to changes in facial expression
that do not result in a change to the perceived emotion. Indeed,
both the category to which a facial expression belongs (its social
meaning) and its intensity convey information pertinent to the
observer. Consistent with this, a number of studies have shown
that responses in the amygdala can be modulated by changes in
the emotion0s intensity (Morris et al., 1996; Thielscher & Pessoa,
2007). Nevertheless, the key finding here is that using dynamic
stimuli we provide support for our previous proposal for a
dissociation between the way facial expressions of emotion are
represented in the pSTS and amygdala.

A categorical response to facial expression may not necessarily
be useful in all interactions and there are many everyday examples
where a continuous representation of expression may be more
useful. This is reflected in how the interpretation of facial expres-
sions can be influenced by the context in which they are encoun-
tered (Russell & Fehr, 1987). Furthermore, even the basic
emotional facial expressions can be quite variable in how they
are displayed (Rozin et al., 1994). Together, these findings suggest a
more flexible continuous representation is also required for
judgements of facial expression. The sensitivity to all the changes
in facial expression shown in the present study is not inconsistent
with the idea that the pSTS could be the neural substrate for this
continuous representation. This would fit with previous studies
that have shown a continuous representation of facial expression
in the pSTS (Harris et al., 2012; Said, Moore, Norman, Haxby, &
Todorov, 2010). Together, these findings highlight the role of the
pSTS in processing moment-to-moment signals important in social
communication (Allison, Puce, & McCarthy, 2000).

Because of the considerable importance attached to the efficient
processing of facial information, different neural subcomponents are
thought to be optimally tuned to different facial signals. As such,
models of face perception have proposed that invariant features of the
face such as identity are processed largely independently of the more
dynamic features (Haxby et al., 2000). In this study, we showed that
the sensitivity of the response in the amygdala to changes in facial
expression was largely independent of identity. In contrast, the OFA
was sensitive to both changes in facial expression and facial identity.
The FFA demonstrated a similar pattern of results to the OFA, showing
sensitivity to identity and a borderline (although not statistically

Fig. 3. Peak responses to the different stimulus conditions in the OFA and FFA. Both regions showed a significant increase in response to changes in expression and to
changes in identity.
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significant) sensitivity to changes in expression. The results in the OFA
and FFA broadly reflect the pattern observed in the pSTS. These
findings might therefore be seen as consistent with the notion that the
FFA is involved in judgements of both identity and expression (Cohen
Kadosh, Henson, Cohen Kadosh, Johnson, & Dick, 2010; Fox, Moon,
Iaria, & Barton, 2009; Ganel, Valyear, Goshen-Gottstein, & Goodale,
2005). However, this possibility should be treated cautiously because
the same pattern of results would be predicted in neural regions that
are sensitive to any structural change in the face image. Indeed, recent
studies have demonstrated that the FFA and OFA do not hold image
invariant representations of faces (Davies-Thompson, Gouws, &
Andrews, 2009; Pitcher, Walsh, & Duchaine, 2011; Xu, Yue, Lescroart,
Biederman, & Kim, 2009).

In conclusion, using dynamic changes in facial expression we
demonstrate a dissociation between the neural representation of
expression in the pSTS and amygdala, with a more categorical
representation of expression in the amygdala. The more catego-
rical amygdala response is likely optimal for efficient processing of
information pertinent to survival.
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