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Abstract

Social categories such as the race or ethnicity of an individual are typically conveyed by the visual appearance of the face. The aim of 
this study was to explore how these differences in facial appearance are represented in human and artificial neural networks. First, 
we compared the similarity of faces from different races using a neural network trained to discriminate identity. We found that the 
differences between races were most evident in the fully connected layers of the network. Although these layers were also able to predict 
behavioural judgements of face identity from human participants, performance was biased toward White faces. Next, we measured 
the neural response in face-selective regions of the human brain to faces from different races in Asian and White participants. We 
found distinct patterns of response to faces from different races in face-selective regions. We also found that the spatial pattern of 
response was more consistent across participants for own-race compared to other-race faces. Together, these findings show that faces 
from different races elicit different patterns of response in human and artificial neural networks. These differences may underlie the 
ability to make categorical judgements and explain the behavioural advantage for the recognition of own-race faces.
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Introduction
The ability to categorize people based on the appearance of the 
face plays an important role in our daily social interactions. These 
decisions can often lead to stereotypical judgements about a per-
son or be used as a basis for group membership (Tajfel et al., 
1971; Macrae and Bodenhausen, 2000). A range of evidence shows 
that we are easily and automatically able to perceive the race 
of faces (Ellis et al., 1975; Shepherd and Deregowski, 1981; Hill 
et al., 1995; Yan et al., 2017). Our ability to accurately discriminate 
faces according to race shows that they have statistically differ-
ent visual properties (Farkas et al., 2005). The physical differences 
associated with race are evident in the average shape, as well as 
in hair and skin colour (Farkas et al., 2005). Behavioural studies 
have shown that both shape and colour are used in perceptual 
judgements of race (Hill et al., 1995). However, it is less clear how 
these differences in facial appearance are represented in human 
and artificial neural networks.

Differences in race can influence our ability to recognize 
faces—a phenomenon known as the other race effect—ORE (Mal-
pass and Kravitz, 1969; Meissner and Brigham, 2001). Neuroimag-
ing studies that have investigated the effect of face race have 
focussed on the ORE (Natu and O’Toole, 2013; Molenberghs and 
Louis, 2018; Bagnis et al., 2020). Some studies have found a larger 

fMRI response in face-selective regions to own-race faces (Golby 

et al., 2001; Feng et al., 2011; Natu et al., 2011), others report that 

a larger response to own-race faces is dependent on the task or 

type of image (Cunningham et al., 2004; Lieberman et al., 2005; 

Kim et al., 2006), whereas others find no difference in response to 

own-race and other-race faces (Hart et al., 2000; Brosch et al., 2013; 

Ratner et al., 2013). Other studies have used fMR adaptation—the 

reduced response to repeated exposures of the same stimulus 

(Grill-Spector et al., 1999; Andrews and Ewbank, 2004; Ewbank 

and Andrews, 2008; Andrews et al., 2010). These studies have 
reported greater adaptation to own-race faces compared to other-
race faces in the fusiform face area (FFA) (Hughes et al., 2019; 
Reggev et al., 2020) that suggest differences in the time-scale of 
response to own-race and other-race faces (Natu et al., 2011).

Fewer studies have directly explored the question of whether 
there are different patterns of responses to faces from different 
races. Multi-voxel pattern analysis has shown differences in the 
pattern of response to Asian and White faces across regions of 
the temporal lobe, including the fusiform gyrus (Natu et al., 2011). 
Distinct spatial patterns of response in face responsive regions of 
the occipital and temporal lobes have also been reported for Black 
and White faces (Ratner et al., 2013), although this is most evident 
in participants with significant own-race bias (Brosch et al., 2013).
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Differences in processing faces from different races have been 
shown by algorithms trained to recognize faces. For example, 
several studies have found that many algorithms have different 
levels of recognition for faces from different races (Furl et al., 
2002; Phillips et al., 2011; Natu and O’Toole, 2013). This is typically 
explained by a bias toward White or Caucasian faces, reflecting 
the images that are used to train the algorithm. In recent years, 
deep convolutional neural networks (DCNN) have surpassed pre-
vious face recognition algorithms in their ability to make accurate 
judgements across a range of natural viewing conditions (Parkhi 
et al., 2015; O’Toole et al., 2018). DCNNs also show a bias toward 
White faces, which again reflects the bias in the images used dur-
ing training (Cavazos et al., 2020). Nevertheless, this bias toward 
White faces can be reversed if the DCNN is trained on non-White 
faces (Tian et al., 2021).

The aim of this study was to explore the ability to discrimi-
nate race in deep neural networks and face-selective regions of 
the human brain. Previous studies have typically explored this 
question using either behavioural, neural or computational meth-
ods using different image sets. Differences in the interpretation 
could therefore reflect differences in methodological approach 
or images used. In this study, we used neuroimaging, computa-
tional and behavioural methods with the same image set of Asian, 
Black and White faces to ask a number of intersecting questions 
that explore the way that face race is represented in humans and 
artificial neural networks.

In the first analysis, we asked whether there were distinct pat-
terns of response to faces from different races in a DCNN trained 
to discriminate faces. Given the differences in image properties 
evident in faces from different races, the expectation was that 
these differences would be evident in the DCNN. However, it is 
not clear whether these differences would be most evident in 
the earlier convolutional layers that reflect the low-level image 
properties or in the later fully connected layers at which the 
representation of identity emerges. Next, we asked whether the 
behavioural biases in humans to categorize or individuate own-
race and other-races faces are reflected in the output of the DCNN. 
Given the bias toward white faces during training, we predicted a 
corresponding bias in the output of the DCNN.

In the second analysis, we investigated neural patterns of 
response to faces from different races in face-selective regions. 
We recruited a large sample of Asian and White participants and 
measured neural responses to faces from the same image set 
using fMRI. We asked if there were distinct patterns of neural 
response in face-selective regions to faces from different races. 
We also asked if the patterns of response were more distinct for 
own-race faces compared to other-race faces. Finally, we used fMR 
adaptation to determine if there was an own-race bias in the indi-
viduation of faces. In a control analysis, we compared patterns of 
response to pareidolic objects that give rise to the perception of 
a faces. Our prediction was that there should be no effect of par-
ticipant race, because both sets of participants would have had 
similar exposure to inanimate objects.

Methods
Stimuli
Examples of the images are shown in Figure 1. Face images were 
taken from a behavioural study that showed the ORE in a large 
group of Asian and White participants (Wang et al., 2022). In this 
study, there were three face matching tasks using either Asian, 
Black or White male faces. Each matching task had 90 trials. 
In each trial, a pair of face images was presented together. In 
half of the trials, the faces were from the same identity and in 
the remaining half of the trials the faces were from two differ-
ent identities. Pareidolic objects were also taken from a range 
of freely available internet sources. Scene images were drawn 
from indoor, outdoor man-made natural stimuli from the Scene 
Understanding (SUN) database (Xiao et al., 2010).

Deep convolutional neural network
We used the VGG-Face DCNN trained to discriminate facial iden-
ity (Parkhi et al., 2015). We compared each pair of face images 
from all three matching tasks. We used the automatic face 
detection algorithm packaged with VGG-Face to crop images to 
a square bounding box around the face, after which images 
were resized to 224 × 224 for input into the DCNN. The DCNN 
consists of 13 convolutional layers and 3 fully connected (Fc) 

Fig. 1. Examples of images from the different stimulus conditions.
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layers, which were used for the analysis. Each convolutional 
layer is followed by one or more non-linear layers, such as 
rectified linear units or max pooling, which were not used 
in this analysis. The dimensions of the layers are as fol-
lows: Conv1 = Conv1 = 224 × 224 × 64 = 3 211 264; Conv2 = 112 × 
112 × 128 = 1 605 632; Conv3 = 56 × 56 × 256 = 802 816; Conv4 = 28 
× 28 × 512 = 401 408; Conv5 = 14 × 14 × 512 = 100 352; Fc6 = 4096; 
Fc7 = 4096; Fc8 = 2622. The DCNN was trained on over 2.6 M 
face images from over 2.6 K identities. Face recognition on the 
Labeled Faces in Wild dataset (Huang et al., 2008) and YouTube 
Faces (Wolf et al., 2011) for VGG-Face is 99.9% and 97.4%,
respectively.

To determine which layers of the DCNN show a higher simi-
larity for faces of the same race compared to faces of different 
races, we measured the similarity between the feature vectors 
of all pairs of face images within each DCNN layer. To do this, 
the activations for each face from a given layer were flattened 
into vectors and then correlated. To determine which layers best 
predict behaviour, we measured the representational similarity 
(Kriegeskorte, 2008) for all pairs of faces on the matching task 
using the DCNN. Behavioural measurements were taken from a 
previous study in which Asian and White participants were asked 
to indicate whether pairs of Asian, Black or White faces were 
from the same identity or a different identity (Wang et al., 2022). 
Behavioural similarity matrices were constructed by calculating 
the proportion of same responses for each of the 90 trials in each 
task across Asian or White participants. The behavioural similar-
ity values were then correlated against the feature correlations 
for the corresponding 90 face pairs within each of the DCNN 
similarity matrices.

We tested the ability of the DCNN representations to decode 
both the race and identity of the faces. In each case, we employed 
two approaches: one based on signal detection theory, and 
another based on parametric tests of the correlations themselves. 
We first decoded the race of the faces. Using a signal detection 
theory approach, we used a one-versus-rest strategy where we 
tested the ability to decode each of the three target races against 
the remaining two races combined. For each of the 540 faces, 
we calculated the average correlation to other faces from the 
target race (excluding any comparisons between an image and 
itself). We then defined all faces from the target race as belong-
ing to the positive class and all faces from the other races as 
belonging to the negative class. We would predict higher corre-
lations within the positive than negative class if the target race 
can be decoded successfully. We measured decoding sensitivity 
by calculating the area under the receiver operating characteris-
tic (ROC) curve. We converted this to area under the curve (AUC) to 
a value of d’ according to the formula 𝑑′ =

√
2 × Φ−1 (AUC), where 

Φ−1 is the inverse of the standard normal cumulative distribu-
tion function. This process was then repeated for each layer of 
the DCNN, and then again selecting each race as the target race 
in turn. To compare decoding sensitivity against chance, we per-
formed a maximum statistic permutation test. For a given target 
race, on each permutation, the order of the class labels was per-
muted and the d’ scores recalculated for each layer of the DCNN, 
and the maximum score over all layers was recorded. This was 
repeated for 10 000 permutations to build an empirical null dis-
tribution that controls for the familywise error rate over DCNN 
layers. These permutations were then repeated for each race in 
turn. One-tailed P-values were estimated by the proportion of 
scores in the null distributions falling above the true d’ prime 
values—these P-values were then further Bonferroni corrected for 
the three races. Second, we performed parametric analyses of the 

correlation values themselves. For each face, we calculated the 
average correlation to other faces from the same race and to other 
faces from the other races, then took the difference between these 
values—this yielded an average ‘within > between race’ value for 
each image. These difference values were then entered into a two-
way mixed-design ANOVA with a repeated-measures factor the 
DCNN layer (16 levels) and an independent-samples factor for the 
face race (Asian, Black, White). A Greenhouse–Geisser spheric-
ity correction was applied to all effects. We also compared the 
correlations for each layer and race separately via a series of 
one-tailed paired-samples t-tests contrasting within-race greater 
than between-race; a Bonferroni–Holm correction for multiple 
comparisons was applied over the 48 layer and race combinations.

Next, we tested the ability to decode face identity. We 

selected the correlations for the 270 image pairs presented in 

the behavioural experiment (45 same-identity and 45 different-

identity pairs per each of the three races). We would predict higher 

correlations for the same- than different-identity pairs if the iden-
tity can be decoded successfully. We first employed the signal 
detection theory approach. For a given race, we calculated the 
area under the ROC curve for decoding same versus different 
identity pairs based on their correlations, which was then con-
verted to a d’ value. This was repeated for each race and DCNN 
layer in turn. We again employed a maximum statistic permu-
tation test to compare decoding sensitivity against chance. For 
each race, the same/different-identity class labels were permuted 
10 000 times. Familywise error corrected one-tailed P-values were 
derived from the empirical null distributions, which were then 
further Bonferroni corrected over the three races. Finally, we 
employed parametric tests of the correlations themselves. The 
correlations were entered into a three-way mixed-design anal-
ysis of variance (ANOVA) with a repeated-measures factor for 
DCNN layer (16 levels) and between-subjects factors for the 
identity-pairing (same, different) and race (Asian, Black, White). 
We additionally compared the correlations for each layer and 
race separately via a series of one-tailed independent-samples 
t-tests contrasting same-identity greater than different-identity; 
a Bonferroni–Holm correction was applied over the 48 layer and 
race combinations.

fMRI experiment
A sample of 28 East Asians (19 females, mean age = 22.0, 
SD = 3.0 years) and 29 Whites (20 females, mean age = 21.6, 
SD = 3.4 years) participants were recruited for this study from the 
staff and student population at the University of York. East Asian 
and White participants had grown up in East Asian or Western 
European countries, respectively. For Asian participants, the aver-
age stay-in UK period was less than a year (mean ±SEM: 10.7 
±0.57 months). All participants gave their written informed con-
sent. All participants had normal or corrected to normal vision. 
The study was approved by the York Neuroimaging Centre (YNiC) 
Ethics Committee.

Neural responses were measured using fMRI, while partic-
ipants viewed images from four conditions (Asian face, Black 
face, White face, Pareidolic object). Images from these conditions 
were presented in a blocked design in two arrangements (Same 
Image, Different Image). Each block was 6 s in duration and was 
composed of 6 images. Each image was presented for 800 ms 
presentation with a 200 ms inter-stimulus-interval. Blocks were 
separated with 9 s fixation screen. In Same Image blocks, a single 
image of the same face was presented six times, whereas in Dif-
ferent Image blocks, six different identity images were presented. 
The order of blocks and images were pseudo-randomized. Each 
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stimulus condition was repeated five times. We also included a 
control condition (Scene) to define the face regions.

Images were superimposed on a mid-gray background and had 
a visual angle of ∼10.7∘. They were back-projected onto a custom 
in-bore acrylic screen at a distance of 57 cm from the participant. 
Stimulus presentation was controlled through Psychopy (Peirce 
et al., 2019). To avoid any confounds with task difficulty, par-
ticipants performed an orthogonal non-face task in which they 
pressed a button with their right index finger on a response box 
whenever a green fixation cross appeared. Green fixation crosses 
occurred at random times during the stimulus presentation.

The structural and functional data were collected at the York 
Neuroimaging Centre with a 3T Siemens Magnetom Prisma MRI 
scanner (Siemens Healthcare, Erlangen, Germany) and a 20-
channel-phased array head coil. A gradient-echo echo-planar 
imaging (EPI) sequence was used to collect the functional data 
from 60 contiguous axial slices [repetition time (TR) = 3000 ms, 
echo time (TE) = 35 ms, FoV = 240 × 240 mm, matrix size = 80 × 
80, voxel size = 3 × 3 × 3 mm, flip angle = 90] that provided whole-
brain coverage. T-1-weighted MPRAGE anatomical scans were also 
acquired for anatomically localizing functional activation. The 
structural data were recorded via matrix of 176 × 256 × 256 and 
voxel size 1 × 1 × 1 mm, with repetition time (TR) = 2300 ms, and 
echo time (TE) = 2.26 ms.

The fMRI data were analysed using the fMRI Expert Analysis 
Tool (FEAT) v6.0 (http://www.fmrib.ox.ac.uk/fsl). Motion correc-
tion was achieved via MCFLIRT, FSL (http://www.fmrib.ox.ac.uk/
fsl). Slice-timing correction also applied and followed by tempo-
ral high-pass filtering (Gaussian-weighted least squares straight 
line fittings, sigma = 50 s). Spatial smoothing (Gaussian, FWHM 
5 mm) and pre-whitening were applied to remove temporal auto-
correction. For each condition, we generated parameter estimates 
by regressing the hemodynamic response of each voxel against 
a box-car that was convolved with a single-gamma haemody-
namic response function. Functional data were registered to a 
high-resolution T1-anatomical image, and then onto the standard 
Montreal Neurological Institute (MNI) brain (ICBM152).

We defined regions of interest (ROIs) across the brain using 
fMRI data from both Asian and White participants (see also Golby 

Fig. 2. Location of the face-selective regions following a group analysis 
across all participants. Regions of interest are superimposed on the 
MNI152 brain (x = 40, y = -−60, z = −16). FFA: fusiform face area, OFA: 
occipital face area, STS: posterior superior temporal sulcus, AMG: 
amygdala.

Table 1. MNI coordinates (mm) of peak voxels in face-selective 
regions

ROI Hemisphere x y z Voxels Face > scene (z)

FFA Left −42 −62 −16 500 6.4
Right 44 −52 −18 500 7.9

OFA Left −40 −80 −10 500 6.3
Right 48 −76 2 500 8.1

STS Left −48 −64 12 200 3.2
Right 48 −76 8 500 6.1

AMG Left −20 − 4 −14 200 3.5
Right 20 − 4 −10 200 4.7

et al., 2001; Feng et al., 2011; Hughes et al., 2019; Reggev et al., 2020). 
To define the ROIs, the response to all face conditions (Asian, Black 
and White) was contrasted with the response to scenes (Figure 2). 
This allowed the definition of the face-selective regions: fusiform 
face area (FFA), occipital face area (OFA), superior temporal sulcus 
(STS) and amygdala (AMG). The peak face-selective and scene-
selective voxels (i.e. those with the highest z-value) were identified 
and a flood fill algorithm was used to identify a cluster of 500 
spatially contiguous voxels for each ROI to a lower threshold of 
z > 2.3 (Weibert and Andrews, 2015). If it was not possible to define 
a 500 voxel ROI for a region, the region was defined by the largest 
size to the nearest 100 (Table 1). The 500 voxel ROIs were found 
bilaterally for the FFA and OFA. It was possible to define a 500 
voxel ROI in the right STS, but only 200 voxels ROI in the left 
STS. The AMG was defined by 200 voxel ROIs in the left and right
hemisphere. 

For the multi-voxel pattern analysis (MVPA), parameter esti-
mates for each different identity condition were normalized by 
subtracting the mean response across all different identity condi-
tions for each voxel. For each pairwise combination of conditions, 
the pattern of response in each participant was compared with 
the corresponding group pattern with the remaining participants 
in their group (Asian or White). This leave-one-participant-out 
(LOPO) cross-validation paradigm was repeated for each partic-
ipant for each combination of conditions (Rice et al., 2014). The 
MVPA was implemented using the PyMVPA toolbox (http://www.
pymvpa.org; Hanke et al., 2009). The Pearson correlation coeffi-
cients were then used to calculate the representational similarity 
in the patterns of response to different conditions. A Fisher’s 
z-transformation was then applied to the correlations prior to 
further statistical analysis.

For the adaptation analysis, we compared the peak responses 
for the Same-Identity and Different-Identity conditions in each 
ROI. To determine whether the magnitude of adaptation varied 
across different race faces and for different race participants, a 
mixed-design ANOVA was performed on each of the core face-
selective regions comprising a between-subjects factor of partic-
ipant race (Asian, White), and repeated-measures factors of Face 
Race (Asian, Black, White) and Adaptation (Same, Different).

Results
DCNN analysis
We used a pre-trained DCNN (VGG-Face) to compare faces from 
different races. Figure 3 shows the similarity matrices from the 
convolutional and fully connected layers across all 540 face 
images. This shows that the differences in similarity between 
faces from different races become most evident in the fully con-
nected layers. In the fully connected layers, the within-race versus 
between-race difference was similar for Asian, Black and White 
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Fig. 3. Similarity matrices from the images in the face matching task calculated from the 13 convolutional and 3 fully connected layers of VGG-Face. 
The similarity matrix shows the similarity (correlation) of all combinations of the 540 images in the stimulus set. The 540 images comprised 180 Asian, 
180 Black and 180 White faces. The similarity of each image pair was calculated by correlating the DCNN feature vectors for pairs of images.

faces. To determine whether faces from the same race (within) 
were more similar than faces from different races (between), we 
ran a t-test for each face race. For example, to show the catego-
rization effect for Asian faces, the correlations for all combina-
tions of Asian faces were compared to all combinations of Asian 
and Black or Asian and White faces. The statistical differences are 
shown for each layer in Table 2. An ANOVA on the within–between 
values revealed not only a main effect of Race [F(2537) = 5.49, 
P = 0.004] and Layer [F(2.21,1189.4) = 1530.4, P < 0.001], but also a 
Race*Layer interaction [F(4.42,1189.4) = 105.2, P < 0.001].

Next, we compared the categorization effect for faces from dif-
ferent races across different layers of the DCNN. Figure 4 (and 
Supplementary Figure S1) shows the sensitivity (d’) for decod-
ing each face-race against the other races across all layers of 
the DCNN. This shows that highest sensitivity to race was evi-
dent in the fully connected layers of the DCNN. However, we 
also found that the greatest differences in sensitivity to different 
race faces were evident in the later convolutional layers. Inter-
estingly, the DCNN is more sensitive to White faces compared to 
Asian and Black faces in these convolutional layers of the DCNN 
(Conv3.2—Conv5.3).

A well-established behavioural effect is that human partic-
ipants are able to individuate own-race faces more efficiently 
than other-race faces (Malpass and Kravitz, 1969; Meissner and 
Brigham, 2001). Accordingly, we asked whether there were differ-
ences in the ability of the DCNN to discriminate identity across 

Table 2. Same-race/different-race comparison from the output of 
VGG-Face

 Asian  Black  White

Layers t P t P t P

Conv1.1 53.73 0.001 31.03 0.001 34.26 0.001
Conv1.2 53.76 0.001 21.84 0.001 37.50 0.001
Conv2.1 43.28 0.001 27.13 0.001 35.00 0.001
Conv2.2 40.30 0.001 32.41 0.001 34.17 0.001
Conv3.1 36.54 0.001 32.01 0.001 43.16 0.001
Conv3.2 11.45 0.001 19.74 0.001 50.61 0.001
Conv3.3 1.03 0.301 25.28 0.001 49.80 0.001
Conv4.1 −3.82 0.001 26.48 0.001 50.98 0.001
Conv4.2 0.32 0.749 24.75 0.001 45.03 0.001
Conv4.3 2.16 0.031 27.76 0.001 41.15 0.001
Conv5.1 1.02 0.307 27.57 0.001 53.40 0.001
Conv5.2 11.89 0.001 37.77 0.001 61.18 0.001
Conv5.3 63.10 0.001 74.49 0.001 105.85 0.001
Fc6 185.18 0.001 177.87 0.001 120.28 0.001
Fc7 200.93 0.001 129.33 0.001 94.37 0.001
Fc8 171.61 0.001 177.66 0.001 158.92 0.001

the different races. We focused on the 90 face pairs used in each 
matching task (see Wang et al., 2022). For each task, there were 
45 same identity trials and 45 different identity trials. In each 
layer of the DCNN, we correlated the feature vectors between 
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Fig. 4. Sensitivity to decoding face races across different layers of VGG-Face. Filled symbols indicate decoding significantly higher than chance. 
Sensitivity to face race becomes most evident in the fully connected layers (Fc). However, there is also a greater sensitivity to White faces compared to 
Black and Asian faces in the later convolutional layers (Conv) of the DCNN.

Fig. 5. Decoding of facial identity in VGG-Face. Plot illustrates the sensitivity to decoding same-identity versus different-identity face pairs for each 
layer in each of the different races. Filled symbols indicate significantly higher sensitivity to same-identity than different-identity face pairs. The 
ability to discriminate identity was greatest in the fully connected layers (Fc) and there was a greater sensitivity to White faces compared to Asian and 
Black faces.

the identity pairs for each trial, then compared the similarity 
of the faces from the same identity trials against those from 
the different identity trials. Higher correlations were observed 
for same-identity compared to different-identity pairings in the 
later DCNN layers (peaking in fully connected layer 7), reflect-
ing decoding of facial identity. We entered the correlations into a 
three-way mixed-design ANOVA with independent-samples fac-
tors for the identity-pairing (same, different) and race (Asian, 
Black, White) and a repeated-measures factor for the DCNN-
layer (1–16). This revealed a significant main effect of DCNN-layer 
[F(2.79, 736.30) = 872.11, P < 0.001, 𝜂2

𝑃 = 0.77, 𝜂2
𝐺 = 0.62], but no sig-

nificant main effects of identity-pairing [F(1, 264) = 1.31, P = 0.254, 
𝜂2

𝑃 < 0.01, 𝜂2
𝐺 < 0.01] or race [F(2, 264) = 0.12, P = 890, 𝜂2

𝑃 < 0.01, 

𝜂2
𝐺 < 0.01]. Importantly, there were significant identity-pairing * 

DCNN-layer [F(2.79, 736.30) = 49.47, P < 0.001, 𝜂2
𝑃 = 0.16, 𝜂2

𝐺 = 0.09] 
and identity-pairing * race [F(2, 264) = 6.72, P = 0.001, 𝜂2

𝑃 = 0.05, 
𝜂2

𝐺 = 0.03] interactions. There was also a significant race*DCNN-
layer interaction [F(5.58, 736.30) = 3.80, P = 0.001, 𝜂2

𝑃 = 0.03, 𝜂2
𝐺

= 0.01]. Finally, the three-way identity-pairing by race by DCNN-
layer approached significance [F(5.58, 736.30) = 1.87, P = 0.088, 𝜂2

𝑃
= 0.01, 𝜂2

𝐺 < 0.01].
To further investigate the decoding of facial identity, we calcu-

lated the ability of the DCNN to discriminate same-identity and 
different-identity faces. Figure 5 (and Supplementary.Figure S2) 
shows the sensitivity (d’) for decoding each face race against the 
other races across all layers of the DCNN. This shows that highest 
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Fig. 6. (A) The correlation between pairwise image similarity in the DCNN and proportion of same identity judgements of Asian participants and (B) 
White participants was calculated for different layers in the DCNN. The dashed line indicates the critical r-value at P < 0.05. Significant correlations 
were most evident in the fully connected layers (14–16).

sensitivity to identity was evident in the fully connected layers 
of the DCNN. We also found that the sensitivity to identity was 
greatest for White faces in the fully connected layers. In summary, 
facial identity was decoded best in the fully connected DCNN lay-
ers. However, decoding accuracy was best for White faces, next 
best for Black faces and worst for Asian faces.

We then asked whether human performance on the matching 
tasks correlated with the representations within each layer of the 
DCNN. Again, this analysis focused on the 90 trials in each task 
(see Wang et al., 2022). In this study, 70 Asian participants and 
70 White participants made same identity or different identity 
judgements on the pairs of Asian, Black and White faces. Sim-
ilarity between each face pair in each layer of the DCNN was 
correlated with proportion of same identity judgements for Asian 
and White participants (Figure 6). We found that similarity in 
early convolutional layers of the DCNN did not predict behaviour. 
However, we found significant correlations in the fully connected 
layers for all three races. Interestingly, the correlation between 
behaviour and DCNN similarity was greatest for White faces. The 
highest correlations were evident in Fc7 (layer 15 in the DCNN). 
A Fisher’s z comparison of the correlations shows that were sig-
nificantly higher correlations in Fc7 between White faces and 
Asian faces (Asian participants: z = 4.16, P < 0.0001; White partic-
ipants: z = 4.81, P < 0.0001) and between White faces and Black 
faces (Asian participants: z = 3.37, P < 0.001; White participants: 
z = 3.15, P = 0.002). However, there was no difference between 
Asian and Black faces (Asian participants: z = 0.79, P = 0.429; 
White participants: z = 1.66, P = 0.09).

To summarize the DCNN analysis, we show the following key 
findings: (I) the categorization of face race and the ability to dis-
criminate identity is greater in the fully connected layers; (II) the 
categorization of White faces is more efficient than Asian and 

Black faces in the later convolutional layers; (III) the identifica-
tion of White faces is more efficient than Asian and Black faces; 
(IV) identity judgements from human participants are more cor-
related with the output of the fully connected layers with White 
compared to Asian and Black faces.

fMRI analysis
First, we asked if there were distinct spatial patterns of response 
to faces from different races, irrespective of whether they are 
own-race or other-race. Figure 7 shows the similarity in the pat-
terns of response to faces from the same race (Asian–Asian, 
Black–Black, White–White) compared with the similarity in the 
patterns of response to faces from different races (Asian–Black, 
Asian–White, Black–White). A Face Race (Same Race, Different 
Race) * Participant Race (Asian, White) repeated measure ANOVA 
was then performed for each ROI.

There was a significant main effect of Face Race in the OFA
[F(1, 55) = 31.097, P < 0.001, ηG

2 = 0.361] as well as a signifi-
cant interaction between Face Race and Participant Race [F(1, 
55) = 16.378, P <0.001, ηG

2 = 0.229). Planned comparisons showed a 
significant difference between same-race and different-race faces 
in both Asian (t = 5.311, P < 0.001, Cohen’s d = 0.795) and White 
(t = 1.708, P < 0.05, Cohen’s d = 0.267) participants. In the FFA, 
there was a significant main effect of Face Race [F(1, 55) = 6.245, 
P = 0.015, ηG

2 = 0.102], but no interaction between Face Race*Par-
ticipant Race [F(1, 55) = 1.111, P = 0.296, ηG

2 = 0.020]. Planned 
comparisons showed a significant difference between same-race 
and different race in Asian participants (t = 2.063, P = 0.049, 
Cohen’s d = 0.415) and a marginal effect for White participants 
(t = 1.380, P = 0.090, Cohen’s d = 0.259). In the STS, there was a 
significant main effect of Face Race [F(1, 55) = 5.335, P = 0.025, 
ηG

2 = 0.088], while the Face Race*Participant Race interaction was 
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Fig. 7. MVPA showing different spatial patterns of response to faces from different races in face regions. (A) The similarity in the spatial patterns of 
response between faces from the Same Race was compared to the similarity in the spatial patterns between faces from Different Races. (B) This shows 
a main effect of Face Race in all regions with more similar patterns of response to faces from the Same Race compared to Different Race (*** P < 0.001, 
* P < 0.05). Error bars represent standard error of the mean.

not significant [F(1, 55) = 2.843, P = 0.097, ηG
2 = 0.049]. Planned 

comparisons showed a significant difference between same-race 
and different race in Asian participants (t = 2.562, P = 0.008, 
Cohen’s d = 0.145), but no difference for White participants 
(t = 0.494, P = 0.313, Cohen’s d = 0.109). In the AMG, there was a 
significant main effect of Face Race [F(1, 55) = 4.799, P = 0.033, 

ηG
2 = 0.080], but no Face Race*Participant Race interaction [F(1, 

55) = 0.013, P = 0.909, ηG
2 < 0.0001]. Planned comparisons showed 

a marginal effect between same-race and different-race faces 
in the Asian participants (t = 1.604, P = 0.06, Cohen’s d = 0.062) 
and a marginal effect in White participants (t = 1.492, P = 0.073,
Cohen’s d = 0.300).

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/18/1/nsad059/7316691 by U

niversity of York user on 26 January 2024



A. Wang et al.  9

Fig. 8. MVPA showing more similar spatial patterns of response to own-race compared to other-race faces in the OFA and FFA. (A) The spatial pattern 
of response between White or between Asian faces was compared in Asian and White participants. (B) There was an interaction between Face and 
Participant race in the OFA and FFA (*P < 0.05, n.s. not significant). This reflects the spatial pattern of response to own-race faces being more similar 
than the pattern of response to other-race faces in these regions. Error bars represent standard error of the mean.

We then asked whether the spatial patterns of response 
were more distinct for own-race faces compared to other-race 
faces (Figure 8). To address this question directly, we restricted 
the analysis to Asian and White faces and performed a Face 
(Asian–Asian, White–White) * Participant Race (Asian, White) 
ANOVA. In the OFA, there was an interaction between Face*Par-
ticipant [F(1, 55) = 5.234, P = 0.026, ηG

2 = 0.087]. This reflected a 
larger effect for White faces in White participants [t(28) = 1.708, 
P = 0.049, Cohen’s d = 0.682] and a marginal effect for Asian faces 

in Asian participants [t(27) = 1.585, P = 0.062, Cohen’s d = 0.385]. In 
the FFA, there was an interaction between Face*Participant [F(1, 
55) = 4.261, P = 0.044, ηG

2 = 0.072]. This reflected a larger effect for 
Asian faces in Asian participants [t(27) = 2.816, P = 0.004, Cohen’s 
d = 0.168], but no corresponding larger effect for White faces 
in White participants [t(28) = 0.349, P = 0.365, Cohen’s d = 0.265]. 
There was no significant difference between Face * Participant in 
the STS [F(1, 55) = 1.939, P = 0.169, ηG

2 = 0.034] or the AMG [F(1, 
55) = 0.544, P = 0.460, ηG

2 = 0.010]. This shows that there was a sig-
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Fig. 9. fMR adaptation to faces from different races. There were no significant interactions between Face*Participant in any of the face-selective 
regions. This shows that the magnitude of adaptation was not modified by the race of the participants. Error bars represent SEM.

nificant difference in the pattern of response between own-race 
and other-race faces in the OFA and FFA, but not in the STS and 
AMG.

Next, we asked whether adaptation was greater for own-
race faces compared to other-race faces in the face-selective 
regions of human participants (Figure 9). A mixed-design ANOVA 
was performed on each of the core face-selective regions com-
prising a between-subjects factor of Participant Race (Asian, 
White), and repeated-measures factors of Face Race (Asian, Black, 
White) and Adaptation (Same, Different). There was a significant 
main effect of Adaptation in the OFA [F(1, 55) = 127.57, P < 0.001, 
ηG

2 = 0.699], FFA [F(1, 55) = 131.61, P < 0.001, ηG
2 = 0.705] and AMG 

[F(1, 55) = 28.28, P < 0.001, ηG
2 = 0.336], but not in the STS [F(1, 

55) = 0.444, P = 0.508, ηG
2 = 0.008]. There was also a significant 

Face*Adaptation interaction in each region [FFA: F(2, 110) = 5.906, 
P = 0.004, ηG

2 = 0.097; OFA: F(2, 110) = 8.477, P < 0.001, ηG
2 = 0.134; 

STS: F(2, 110) = 8.595, P < 0.001, ηG
2 = 0.135; AMG: F(2, 110) = 8.635, 

P < 0.001, ηG
2 = 0.136]. This shows that adaptation varied accord-

ing to the stimulus set, with higher adaptation to Asian faces. 
However, there was no Face*Participant interaction for Adapta-
tion in any of the face regions [FFA: F(2, 110) = 0.125, P = 0.882, 
ηG

2 = 0.002], OFA: F(2, 110) = 1.418, P = 0.247, ηG
2 = 0.025, STS: 

F(2, 110) = 1.868, P = 0.159, ηG
2 = 0.033, AMG: F(2, 110) = 0.676, 

P = 0.511, ηG
2 = 0.012]. Together, this shows that adaptation to dif-

ferent race faces was not modified by participant race in the face 
regions.

Next, we analyzed the response to pareidolic objects. These 
objects have a face-like appearance, but they are not associated 
with a particular race. First, we measured the spatial pattern of 

response to pareidolic faces in the face regions (Figure 10). Our 
aim was to determine if they showed a similar or different pattern 
of response to faces. To do this, we compared the spatial pattern 
of response of faces from different races (Face–Face: Asian–Black, 
Asian–White, Black–White) with the spatial pattern of response 
between faces and pareidolic objects (Face–Object: Asian–Object, 
Black–Object, White–Object). The data were analyzed by a Cate-
gory (Face–Face, Face–Object)*Participant (Asian, White) ANOVA. 
There was a significant effect of Category in the [OFA: F(1, 
110) = 130.368, P < 0.001, ηG

2 = 0.542; FFA: F(1, 110) = 109.884, 
P < 0.001, ηG

2 = 0.500; STS: F(1, 110) = 9.251, P = 0.003, ηG
2 = 0.078; 

AMG: F(1, 110) = 28.896, P < 0.001, ηG
2 = 0.208) reflecting higher cor-

relations for face–face than face–pareidolic object comparisons. 
There was no interaction between Category and Participant in 
the OFA [F(1, 110) = 2.334, P = 0.129, ηG

2 = 0.021], the FFA [F(1, 
110) = 1.602, P = 0.208, ηG

2 = 0.014] and the STS [F(1, 110) = 2.820, 
P = 0.096, ηG

2 = 0.025] but there was a significant interaction in the 
AMG [F(1, 110) = 4.705, P = 0.032, ηG

2 = 0.041]. Overall, these find-
ings show that the pattern of response to pareidolic objects is dis-
tinct from the pattern of response to faces in these face-selective 
regions, and this effect does not consistently vary between partic-
ipant races.

We also measured adaptation to pareidolic objects in the 
different face-selective regions. Figure 11 shows the adapta-
tion to pareidolic objects in Asian and White participants. 
We found adaptation to pareidolic objects in the FFA [F(1, 
55) = 3.008, P = 0.088, ηG

2 = 0.052] and OFA [F(1, 55) = 3.371, 
P = 0.072, ηG

2 = 0.058], but not in the STS [F(1, 55) = 1.457, P = 0.233, 
ηG

2 = 0.026] or AMG [F(1, 55) = 0.044, P = 0.836, ηG
2 = 0.001]. There 
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Fig. 10. MVPA showing different spatial patterns of response to faces and pareidolic objects (A) The spatial pattern of response between different race 
faces (Face–Face) was compared to the spatial pattern between faces and pareidolic objects (Face–Object) in Asian and White participants. (B) The 
results reveal a significant effect of Category due to more similar patterns of response between faces (Face–Face) compared to the patterns between 
faces and objects (Face–Object). Error bars represent standard error of the mean. *** P < 0.001, ** P < 0.005.

was no interaction between Adaptation*Participant in any of the 
face regions [FFA: (1, 55) = 2.923, P = 0.093, ηG

2 = 0.050; OFA: F(1, 
55) = 0.178, P = 0.675, ηG

2 = 0.003; STS: F(1, 55) = 1.681, P = 0.200, 
ηG

2 = 0.030; AMG: 0.201, P = 0.655, ηG
2 = 0.004]. Together, these 

analyses show that the face regions of Asian and White partici-
pants showed a similar level of adaptation to pareidolic objects.

Discusssion

Our ability to categorize faces based on differences in race can 

play an important role in everyday social interactions (Tajfel et al., 

1971; Macrae and Bodenhausen, 2000; Meissner and Brigham, 

2001). The aim of this study was to explore how differences in the 
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Fig. 11. Similar neural responses to pareidolic objects in Asian and White participants. Adaptation to pareidolic objects was evident in the OFA and 
FFA. However, there was no difference in the magnitude of adaptation to pareidolic objects between White and Asian participants. Error bars represent 
standard error of the mean.

faces of different races are represented in human and artificial 
neural networks.

First, we measured the similarity of face images from differ-
ent races in an artificial neural network that has been trained in 
the recognition of faces (VGG-Face; Parkhi et al., 2015). We found 
that the ability to discriminate faces from different races emerged 
in the later convolutional layers of the neural network and in 
the fully connected layers. This confirms the findings of a recent 
study that also used the VGG-Face (Tian et al., 2021). These find-
ings show that the structural differences that distinguish between 
faces from different races (Farkas et al., 2005; Hill et al., 1995) are 
evident in later stages of deep networks. The distinction between 
faces of different races in the top layers of the DCNN is perhaps 
not surprising in that race is an important cue to identity. Other 
studies have found that these layers of DCNNs also contain infor-
mation about other attributes of the face, such as gender and 
viewpoint (O’Toole and Castillo, 2021). However, it is notewor-
thy that the transformation of a face from one race to another 
is not always detectable in the output layer of some DCNNs (Han-
cock et al., 2020). Interestingly, we also found that the ability of 
the DCNN to differentiate same-race faces from different-race 
faces was greater for White compared to Asian and Black faces, 
particularly in the later convolutional layers of the DCNN.

Next, we measured the ability of the DCNN to discriminate 
identity. As expected, the difference between same-identity faces 
and different-identity faces was greatest in the fully connected 
layers. The ability to discriminate identity from the DCNN in this 
study was similar to that for human observers (see Wang et al., 
2022). However, we found that the ability to discriminate identity 
was greater for White faces compared to Asian and Black faces. 
This bias for White faces is consistent with previous studies that 
have shown that face recognition algorithms have a bias toward 
faces that are used during training (Cavazos et al., 2020; Tian et al., 
2021). This also fits with developmental studies in which the bias 
toward the recognition of own-race faces increases with experi-
ence (Kelly et al., 2005; Chien et al., 2016) and by the fact that the 
ORE can be reversed or reduced if a person is exposed to another 
racial group during development (Sangrigoli et al., 2005; Sangrigoli 
and De Schonen, 2004). We also found that similarity between 
images was correlated with perceptual judgements of identity, 

particularly in the later convolutional and fully connected lay-
ers. Interestingly, we found that this correlation was greater for 
White faces compared to Asian or Black faces. Although DCNNs 
have a structure that is analogous to the human visual system 
(Krizhevsky et al., 2012), the extent to which it operates in a similar 
way to the human visual system remains unclear (Kriegeskorte, 
2015). The ability of the DCNN to predict human perceptual judge-
ments and also show an own-race bias suggests a correspondence 
with the underlying representations in the human brain.

Next, we investigated whether there are different patterns of 
neural response to faces from different races in the human brain. 
Neuroimaging studies have identified a number of face selective 
regions (Haxby et al., 2000): the OFA, FFA and pSTS region. The OFA 
is thought to be involved in the early perception of facial features 
and has a feed-forward projection to both the pSTS and the FFA 
(Pitcher et al., 2007; Ishai, 2008; Davies-Thompson and Andrews, 
2012). The connection between the OFA and pSTS is thought to 
be important in processing dynamic changes in the face, such as 
changes in expression and gaze, which are important for social 
interactions (Andrews and Ewbank, 2004; Engell and Haxby, 2007). 
The connection between the OFA and FFA is considered to be 
involved in the representation of invariant facial characteristics 
that are important for recognition (Rotshtein et al., 2005; Weibert 
and Andrews, 2015). These regions interact with an extended net-
work of regions in the brain that process faces, such as the AMG 
(Harris et al., 2012).

Using MVPA, we compared the pattern of response to faces 
from the same race with the response to faces from different race. 
We used a LOPO MVPA approach in which we compared the pat-
tern of response in one individual with the pattern from a group 
analysis of all other participants (Rice et al., 2014; Watson et al., 
2014; Weibert et al., 2018; Coggan et al., 2019). This allowed us to 
ask how consistent the patterns of response were across differ-
ent groups of participants. We were able to provide evidence that 
there were distinct patterns of response to faces from the same 
race in each of the face-selective regions. The largest effects of 
race were found at the early stages of processing in the OFA. These 
findings are consistent with the idea that OFA represents an ear-
lier stage of processing in which the structural properties of the 
face are represented (Haxby et al., 2000). However, it could be the 
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case that this also might reflect that the pattern of response to 
faces is more consistent across participants in the OFA compared 
to other regions that could have a more idiosyncratic pattern of 
response. Nonetheless, these differences in representation may 
underlie our ability to categorize faces according to race.

Next, we asked whether own-race faces have a more simi-
lar pattern of response across participants when compared to 
other-race faces. We used a factorial analysis to ask whether the 
patterns of response across Asian participants were more similar 
to Asian faces compared to White faces and, conversely, were the 
patterns of response across White participants more similar for 
White faces compared to Asian faces. We found an own-race bias 
in the OFA and the FFA, but not in the STS or AMG. Previous MVPA 
studies have reported mixed findings on whether the spatial pat-
tern of response in face regions can differentiate own-race and 
other-race faces (Ng et al., 2006; Natu et al., 2011). For example, 
Natu et al. (2011) showed that the pattern of response to own-race 
and other-race faces was evident, but only for a region of inter-
est extended beyond the FFA. However, this study only measured 
responses from a relatively small number of participants, so it is 
possible that a significant difference may have become evident 
with a larger sample.

To further explore differences between own-race and other-
race faces, we used an fMR-adaptation paradigm (Grill-Spector 
and Malach, 2001; Andrews and Ewbank, 2004). The prediction 
was that there should be greater adaptation to own-race faces. 
We found significant adaptation (reduced response to repetitions 
of identity) for Asian, White and Black faces in face-selective 
regions. The magnitude of the adaptation varied was generally 
higher in the OFA and FFA compared to the STS (see also Andrews 
and Ewbank, 2004), which presumably reflects the fact that the 
images did not vary in facial expression (see Harris et al., 2012). 
However, we did not find that the magnitude of adaptation in 
any of the regions was modified by the race of the participant. 
These findings contrast with recent neuroimaging studies that 
found greater adaptation to own-race compared to other-race 
faces (Hughes et al., 2019; Reggev et al., 2020). A key difference 
between the current study and previous studies is our use of a 
factorial (cross-over) design in which both face race and partic-
ipant race are varied simultaneously. This avoids the potential 
problem that results are due to differences in the stimulus set, 
rather than an other-race effect, per se (Natu and O’Toole, 2013). 
It is interesting to note that we did find adaptation was greater to 
Asian faces compared with White faces and Black faces. So, if our 
analysis had been restricted to Asian participants it would have 
shown levels of adaptation that would have been consistent with 
the behavioural other race effect. Another possible explanation 
for the lack of adaptation effects could be related to the time-
scale of response to own-race and other-race faces. Natu et al.
(2011) showed that there was an initial response advantage for 
own-race faces followed by greater adaptation of the own-race 
face response.

Together, we find some clear similarities in the response to 

faces from different races in human and artificial neural net-

works. Our results show that the ability to differentiate face race is 

evident in the fully connected layers of the DCNN and in the pat-

tern of neural response across all face-selective regions. We find 

an own-race bias in the pattern of neural response of the OFA and 
FFA. That is, we find that Asian participants show more consistent 
patterns of response to Asian compared to White faces and White 
participants show more consistent patterns of response to White 
compared to Asian faces. This greater discrimination of own-race 
compared to other-race faces is similar to the pattern of results 

from the DCNN analysis in which there was a greater ability to 
discriminate race from White faces compared to Asian and Black 
faces, particularly in the later convolutional layers. This fits with 
the importance of the role of experience in the representation of 
faces in humans (Kelly et al., 2005; Chien et al., 2016; Sangrigoli 
et al., 2005; Sangrigoli and De Schonen, 2004) and DCNNs (Cava-
zos et al., 2020; Tian et al., 2021). We also found that a DCNN 
was able to discriminate identity more efficiently for White faces 
compared to Asian and Black faces, consistent with behavioural 
studies in White participants (Malpass and Kravitz, 1969; Meiss-
ner and Brigham, 2001). However, an own-race bias did not extend 
to the univariate adaptation analysis of the neuroimaging results.

We also measured the response to objects that are perceived 
as faces (pareidolia). Although these objects give rise to the per-
ception of a face, we did not expect that they would elicit a 
difference in response between the participants, as all partici-
pants would have a similar experience and perception of objects. 
Previous studies have found that pareidolic objects not only give 
rise to the perception of a face, but they also elicit face-like 
patterns of neural response (Taubert et al., 2020; Wardle et al., 
2020). In a recent study, we found that the recognition of parei-
dolic objects was affected in developmental prosopagnosia, which 
again suggests similar underlying processes (Epihova et al., 2022). 
Here, we found that there was significant adaptation to pareidolic 
objects in face-selective regions. However, we found that the spa-
tial pattern of response to pareidolic objects was distinct from 
the pattern to faces. Together, these findings show that the neu-
ral response to pareidolic objects in face-selective regions shows 
some similarities, but also some differences, to the response to 
faces. Nevertheless, we did not find any effect of participant race 
on the MVPA or adaptation analysis of the pareidolic objects. 
This presumably reflects a similar exposure to objects across the 
different-race groups.

The focus of this study has been on the representation of face 
race. However, we are also able to categorize faces according to 
gender and age. Previous studies have shown that the ability to 
discriminate faces in these categories is dependent on structural 
differences in the faces (Burton et al., 1993; Burt and Perrett, 1995). 
Accordingly, we would predict that this should be evident in the 
output of a deep neural network (see O’Toole and Castillo, 2021) 
or in the neural response of face regions in the human brain.

In conclusion, the results from this study show that structural 
differences in the faces from different races are found in the pat-
tern of response of later layers of the deep neural networks and in 
face-selective regions. We also found that the pattern of response 
to own-race faces was more similar to other-race faces in the OFA 
and FFA. These results provide a neural correlate for both the abil-
ity to make categorical judgements about the race of faces and the 
behavioural advantage for recognizing own-race faces.
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