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Neuroimaging studies have found distinct patterns of response to different categories of scenes.However, the rel-
ative importance of low-level image properties in generating these response patterns is not fully understood. To
address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability
to perceive the category. We then measured the effect of these manipulations on category-selective patterns of
fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter
was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns
of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of re-
sponse. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response.
In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that
image filter had amarked effect on the patterns of response in scene-selective regions. For example, low-pass in-
door images generated similar patterns of response to low-pass natural images. The effect of filter varied across
different scene-selective regions, suggesting differences in the way that scenes are represented in these regions.
These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties
of the image, particularly the spatial frequency content.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Despite their spatial complexity and heterogeneity, human ob-
servers are able to reliably categorise real world scenes even when im-
ages are presented rapidly (Greene and Oliva, 2009; Potter, 1975) or
visually degraded (Torralba, 2009; Walther et al., 2011). This capacity
is thought to be based on neural activity in regions of human visual cor-
tex that are selectively responsive to visual scenes (Aguirre and
D'Esposito, 1997; Dilks et al., 2013; Epstein and Kanwisher, 1998;
Maguire, 2001; Nasr et al., 2011). Whilst studies using univariate fMRI
analyses have reported comparable levels of response within these re-
gions to different images of scenes (Epstein and Kanwisher, 1998),
more recent reports employing multivariate techniques have shown
that there are distinct patterns of response to different categories of
scene (Walther et al., 2009, 2011) suggesting a finer-grained organisa-
tion that might underpin perceptual discriminations. However, the
functional dimensions that shape these patterns have not been fully
resolved.

Some reports have argued that patterns of response reflect high-
level, categorical differences amongst scenes (Walther et al., 2009,
2011). For example, Walther et al. (2011) showed that the ability to de-
code scene categories from fMRI data was similar for photographs and
rews).
line drawings, suggesting some level of invariance to the low level prop-
erties of images. However, other studies have suggested that patterns of
response in scene-selective regionsmay be better explained in terms of
visual properties of scenes such as spatial layout (e.g., Kravitz et al.,
2011; Park et al., 2011; Watson et al., 2014). This latter account is con-
sistentwith the sensitivity of the amplitude of response in these regions
for orientation (Nasr and Tootell, 2012), spatial frequency (Musel et al.,
2014; Rajimehr et al., 2011), visual contrast (Kauffmann et al., 2015),
rectilinearity (Nasr et al., 2014), and visual field location (Arcaro et al.,
2009; Golomb and Kanwisher, 2012; Levy et al., 2001). Nevertheless,
these studies employed univariate analyses, so it remains unclear
whether these modulations in the amplitude of response also affect
the pattern of response.

In a recent study,we demonstrated that low-level properties of visu-
al scenes (defined by the GIST descriptor; Oliva and Torralba, 2001),
predicted patterns of neural response in scene-selective regions
(Watson et al., 2014). However, images drawn from the same scene cat-
egory are likely to have similar low-level properties (Oliva and Torralba,
2001). So, reliable category-specific patterns of response are expected
under both categorical and image-based accounts. Therefore, it remains
unclear whether patterns are determined primarily bymembership of a
common category or by the shared low-level image statistics character-
istic of that category.

In the current study, we provide a direct comparison of the relative
importance of image properties and category in determining patterns
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of response in scene-selective regions. Participants viewed images from
two different categories of scene (indoor and natural) that are known to
have distinct image properties (Oliva and Torralba, 2001) and to elicit
different patterns of response in scene-selective regions (Walther
et al., 2009; Watson et al., 2014). Low-level visual properties of the
scenes weremanipulated by filtering the images by orientation (Exper-
iment 1) and spatial frequency (Experiment 2) as previous reports have
suggested functional biases for these properties (Nasr and Tootell, 2012;
Rajimehr et al., 2011). Using multi-voxel pattern analysis (MVPA), we
compared the similarity of the patterns of neural response to each con-
dition across the core scene regions (PPA, RSC, OPA). Our predictionwas
that if scene-selective regions are sensitive to image properties, then
some degree of similarity should be seen between conditions sharing
the samefilter. If scene-selective regions are solely sensitive to category,
then conditions sharing the same category should elicit similar patterns
of response regardless of the low-level manipulation. The use of pattern
analysis allows us to determinewhether image properties are an impor-
tant organising factor in the topography of this region of the brain.

Methods

Participants

25 participants (8 males; mean age, 25.52; age standard deviation,
4.28; age range, 19–33) took part in Experiment 1 and 24 (8 males;
mean age, 25.46; age standard deviation, 3.27; age range, 20–32) took
part in Experiment 2. All participants were neurologically healthy,
right-handed, and had normal or corrected-to-normal vision. Written
consent was obtained for all participants and the study was approved
by the York Neuroimaging Centre Ethics Committee.

Stimuli

Visual stimuli were back-projected onto a custom in-bore acrylic
screen at a distance of approximately 57 cm from the participant with
all images subtending approximately 10.7° of visual angle. Images pre-
sented in the main experiment runs were taken from the LabelMe
scene database (http://cvcl.mit.edu/database.htm; Oliva and Torralba,
2001) and presented in greyscale. The image set comprised 128 images;
64 indoor and 64 natural scenes. These categories were selected on the
basis of their inclusion in previous studies of scene processing (Oliva
and Torralba, 2001; Walther et al., 2009). Images were first converted
to greyscale— this is important as the filtering process can produce un-
desirable artefacts in colour images. For instance, high-pass filtering a
colour image is likely to introduce false colour into areas of the image
not passed by the filter, which will now appear a colour given by the
mean luminance of each colour channel. Next, luminance histograms
were equated across all images using the MATLAB SHINE toolbox
(Willenbockel et al., 2010) prior to any filtering. The full sets of indoor
and natural images are shown in Supplementary Figs. 1 and 2
respectively.

Filtering was performed by weighting the Fourier spectrum of each
image to preserve either horizontal or vertical orientations (Experiment
1), or high or low spatial frequencies (Experiment 2). In Experiment 1,
filters were wrapped Gaussian profiles, with a wide angle cut-off
(FWHM=75°) that ensured images remained recognisable after filter-
ing. In Experiment 2 filters were Gaussian profiles with cut-offs set at
less than 2 cycles/degree and greater than 6 cycles/degree at FWHM
for the low- and high-pass filters respectively. Filter cut-offs for Experi-
ment 2 were based upon those used in previous literature (Oliva and
Schyns, 1997; Schyns and Oliva, 1994, 1999). A soft window was ap-
plied around the edges of all images to reduce wrap-around edge arte-
facts associated with the filtering process. Fig. 1 shows examples of
the images used in each experiment.

For each experiment, an additional localiser scan was performed. An
independent set of 64 scene images were drawn from the SUN database
(http://groups.csail.mit.edu/vision/SUN/; Xiao et al., 2010) and present-
ed in full colour. The SUN database is hierarchically organised into
manmade-indoor, manmade-outdoor and natural-outdoor scenes, and
stimuli were drawn in approximately equal numbers from each of
these 3 classifications. Fourier-scrambled images were created by ap-
plying the same set of random phases to each 2-dimensional frequency
component in each colour channel of the original image whilst keeping
the magnitude constant. Intact and scrambled images were then
rescaled to have a mean luminance equal to that of the images used in
the experimental scan. Fig. 2a shows examples of the images used in
the localiser scan.

Experimental design

During the localiser scan, participants viewed images from 2 stimu-
lus conditions: (1) intact scene images and (2) phase scrambled ver-
sions of the same images in condition 1. During the experimental scan
participants viewed images from 4 stimulus conditions comprising 2
scene categories (indoor and natural) across 2 levels of filtering (Exper-
iment 1: horizontal-pass, vertical-pass; Experiment 2: low-pass, high-
pass).

In both the localiser and experimental scans, images from each con-
dition were presented in a blocked fMRI design with 9 images per block
(8 unique and 1 repeated). Each image was presented for 750 ms
followed by a 250 ms grey screen that was equal in mean luminance
to the scene images. Each stimulus block was separated by a 9 s period
inwhich the same grey screen as used in the inter-stimulus interval was
presented. In order to minimise eye movements a central fixation cross
was superimposed on all images and the grey screen and participants
were instructed to maintain fixation for the duration of both scans.
Each condition was repeated 8 times in a counterbalanced block design
giving a total of 16 and 32 blocks in the localiser and experimental scans
respectively. Tomaintain attention throughout the scan sessions partic-
ipants performed a one-back task inwhich theywere required to detect
the repeated presentation of one image in each block, responding to the
repeated imagewith a button press. By using a passive taskwe avoid bi-
asing neural responses towards either one of our experimental manip-
ulation; for instance, a categorisation task might bias responses
towards the category manipulation, whereas an image-based task
might bias responses towards the filter manipulation.

Imaging parameters

All scanningwas conducted at the YorkNeuroimagingCentre (YNiC)
using a GE 3 T HDx Excite MRI scanner. A Magnex head-dedicated gra-
dient insert coil was used in conjunction with a birdcage, radiofrequen-
cy coil tuned to 127.7 MHz. Data were collected from 38 contigual axial
slices via a gradient-echo EPI sequence (TR= 3 s, TE= 32.5ms, FOV=
288 × 288 mm, matrix size = 128 × 128, voxel dimensions =
2.25 × 2.25 mm, slice thickness = 3 mm, flip angle = 90°).

fMRI analysis

Univariate analyses of the fMRI data were performed with FEAT
v5.98 (http://www.fmrib.ox.ac.uk/fsl). In all scans the initial 9 s of
data were removed to reduce the effects of magnetic stimulation. Mo-
tion correction (MCFLIRT, FSL, Jenkinson et al., 2002) was applied
followed by temporal high-pass filtering (Gaussian-weighted least-
squared straight line fittings, sigma= 50 s). Spatial smoothing (Gauss-
ian) was applied at 6 mm FWHM to both the localiser and experiment
runs, in linewith previous studies employing smoothing in conjunction
with MVPA (Op de Beeck, 2010; Watson et al., 2014). Parameter esti-
mates were generated for each condition by regressing the hemody-
namic response of each voxel against a box-car regressor convolved
with a single-gamma HRF. Next, individual participant data were en-
tered into higher-level group analyses using a mixed-effects design
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Fig. 1. (a) Examples of images from conditions in Experiment 1 (left panels) and Experiment 2 (middle panels). For comparison, equivalent unfiltered images are shown (right panels).
(b) Average Fourier amplitude spectra across all images in each condition.
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(FLAME, FSL). Functional data were first registered to a high-resolution
T1-anatomical image and then onto the standardMNI brain (ICBM152).

A scene-selective region of interest was defined from the localiser
data of both experiments using the contrast of intact scenes N scrambled
scenes (Fig. 2b). The intact scenes share the same amplitude spectra
with their phase scrambled counterparts, thus such a contrast provides
a clearer control for low-level visual differences than other commonly
Fig. 2. (a) Examples of images presented in the localiser scan. (b) Mask
used contrasts such as scenes N objects or scenes N faces. For instance,
although scenes and objects / faces differ in their categorymembership,
they also differ in a large number of image properties (e.g., spatial fre-
quency, orientation, and retinotopic eccentricity). Given that this exper-
iment aimed to investigate the neural representation of image
properties, it was important to use the contrast that provided a stronger
control for such visual differences. This ROI therefore provides a
used for ROI analyses defined by the contrast of intact N scrambled.



Table 1
Peak MNI mm co-ordinates and thresholds of standard scene-selective clusters (PPA, RSC,
OPA).

Region Hemisphere x y z Threshold (Z)

PPA L −24 −52 −14 5.21
R 26 −50 −16 5.68

RSC L −18 −62 4 4.24
R 16 −54 −2 4.92

OPA L −36 −88 4 5.23
R 36 −82 4 5.54
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definition including scene-selective voxels across a wide extent of cor-
tex — this enables us to test the distributed neural representations of
the images as originally described by Haxby et al. (2001). This scene-
selective ROI was used for subsequent MVPA across both experiments.

We also generated more restrictive ROIs constrained to the classical
scene-selective regions (parahippocampal place area (PPA),
retrosplenial complex (RSC), and occipital place area (OPA)) that have
been reported in previous fMRI studies (Dilks et al., 2013; Epstein and
Kanwisher, 1998; Maguire, 2001). Within the MNI-2 × 2 × 2 mm
space, group intact N scrambled statistical maps were first averaged
across the experiments. Next, seed points were defined at the peak
voxels within the average intact N scrambled statistical map for each re-
gion (PPA, RSC, OPA) in each hemisphere. For a given seed, a flood fill al-
gorithm was used to identify a cluster of spatially contiguous voxels
around that seed which exceeded a given threshold. This threshold
was then iteratively adjusted till a cluster size of approximately 500
voxels was achieved (corresponding to a volume of 4000 mm3); actual
cluster sizes ranged from 499 to 501 voxels as an optimal solution to the
algorithm was not always achievable. This step ensures that estimates
of multi-voxel pattern similarity are not biased by the different sizes
of ROIs being compared. Clusters were combined across hemispheres
to yield 3 ROIs, each comprising approximately 1000 voxels. These re-
gions are shown in Fig. 3. MNI co-ordinates of the seeds are given in
Table 1. These seed points had similar locations to those reported in
Fig. 3. Masks used for ROI analyses of core scene regions. Each mask comprises approxi-
mately 500 voxels (4000 mm3) in each hemisphere. Slices of MNI brain span the range
from Z = −22 to Z = 16 in 2 mm increments.
previous literature (see Watson et al., 2014 — Supplementary Table 1).
To ensure clusters were appropriately sized we additionally repeated
our analyses across using clusters across a range of sizes from 200 to
500 voxels. We found that the cluster size made little to no difference
upon themain results (Supplementary Fig. 3). An additional early visual
control ROI was defined from the V1 region of the Jülich histological
atlas (Amunts et al., 2000; Eickhoff et al., 2005). We also tested for pos-
sible differences in response within the PPA region by splitting this re-
gion precisely halfway along its posterior–anterior extent into a
posterior PPA and an anterior PPA region.

Next, wemeasured patterns of response to different stimulus condi-
tions in each experiment. Parameter estimates were generated for each
condition in the experimental scans. The reliability of response patterns
was tested using a leave-one-participant-out (LOPO) cross-validation
paradigm (Poldrack et al., 2009; Shinkareva et al., 2008) in which pa-
rameter estimates were determined using a group analysis of all partic-
ipants except one (Supplementary Fig. 4). This generated parameter
estimates for each scene condition in each voxel. This LOPO process
was repeated such that every participant was left out of a group analysis
once. These data were then submitted to correlation-based pattern
analyses (Haxby et al., 2001, 2014) implemented using the PyMVPA
toolbox (http://www.pymvpa.org/; Hanke et al., 2009). Parameter esti-
mates were normalised by subtracting the mean response per voxel
across all experimental conditions (see Haxby et al., 2001). For each it-
eration of the LOPO cross-validation, the normalised patterns of re-
sponse to each stimulus condition were correlated between the group
and the left-out participant. This allowed us to determine whether
there are reliable patterns of response that are consistent across individ-
ual participants. A Fisher's Z-transformation was then applied to the
correlations prior to further statistical analyses.

We next used a representational similarity analysis (RSA;
Kriegeskorte et al., 2008) utilising multiple regression to assess the rela-
tive contributions of category information and image properties to the
neural response patterns. For each factor (category and filter type) a bina-
ry regressor was generated representing a model correlations matrix
whereby ones were placed on those elements where the relevant factor
was shared and zeroes on all other elements. The regressors therefore
represent the extreme cases where the patterns of response are entirely
predicted by either the scene category or by the filtering; these regressors
are illustrated for Experiments 1 and2 in Figs. 5a–b and8a–b respectively.
Each regressor was then repeated and tiled across LOPO iterations. The
outcomes measure was defined as the MVPA correlation matrices
concatenated across LOPO iterations. All regressors and outcomes were
then Z-scored such that all outputs of the regression model are given in
standardised units. These regressors and outcomes were then entered
into the multiple regression model. This analysis yielded a beta value
and associated standard error for each regressor which would be expect-
ed to differ significantly from zero if that regressor were able to explain a
significant amount of the variance in the MVPA correlations. A t-contrast
was used to assess the significance of the differences between the betas.

Behavioural experiment

In order to ensure that thefiltering process did not disrupt the ability
of participants to perceive the scenes categorically, we conducted an

http://www.pymvpa.org/
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additional behavioural experiment. A new set of 20 participants (5
males; mean age, 26.80; age standard deviation, 3.32; age range,
23–34) were presented with the images used in the fMRI experiments
plus their unfiltered equivalents. This produced 10 conditions across 2
categories (indoor, natural) and 5 levels of filtering (horizontal-pass,
vertical-pass, high-pass, low-pass, unfiltered). For each participant, im-
ages were divided into 5 subsets and then each subset randomly
assigned to a different filtering condition such that participants only
saw each image once across all filtering conditions. A chin rest was
used to maintain viewing distance across participants. Images
subtended a visual angle of approximately 10.7°. In each trial a fixation
screenwas presented for 1000ms, followed by an image for 750ms. Im-
portantly, both visual angle and stimulus duration were set to match
those of the fMRI experiment. Following this, a blank screen was pre-
sented for 2250 ms or until the participant made a response. Partici-
pants were required to indicate, with a button press, whether the
image was of an indoor or natural scene as quickly and as accurately
as possible, and were able to respond immediately after stimulus onset.

Results

Experiment 1

In Experiment 1, we measured patterns of neural response to differ-
ent categories of scene (indoor andnatural) filtered by orientation (hor-
izontal-pass and vertical-pass). Fig. 4 shows the normalised group
responses to each condition across the scene-selective ROI. Responses
above the mean are shown in red and responses below the mean are
shown in blue.

A correlation based MVPA (Haxby et al., 2001) was conducted to
measure the similarity of the neural responses to different conditions
(Fig. 5c). To test the contribution of category and image factors to the
Fig. 4. Group patterns of response to conditions in Experiment 1. Patterns are restricted to regi
dicate normalised values above and below the mean respectively.
neural responses, we used a representational similarity analysis
(Kriegeskorte et al., 2008). Model correlation matrices were generated
representing the extreme cases where the patterns of response are en-
tirely predicted by the scene category (Fig. 5a) or by the orientation fil-
ter (Fig. 5b). Thesewere then used as regressors in amultiple regression
analysis of the fMRI data. Fig. 5d shows the resulting coefficients for
each regressor. Both the category (β=0.82, p b .001) and filter regres-
sors (β=0.17, p b .001) explained a significant amount of the variance
in theMVPA correlationmatrix. However, a t-contrast revealed that the
category regressor explained significantly more variance than the filter
regressor (t = 12.84, p b .001). A series of post-hoc paired-sample t-
tests were used to compare the critical elements of the correlationsma-
trix representing the same-category, different-filter and different-
category, same-filter correlations. In all cases, same-category/
different-filter correlations were found to be significantly greater than
different-category/same-filter correlations (indoor-horizontal-pass/
indoor-vertical-pass N indoor-horizontal-pass/natural-horizontal-pass:
t(24) = 13.32, p b .001; natural-horizontal-pass/natural-vertical-
pass N indoor-horizontal-pass/natural-horizontal-pass: t(24) = 7.07,
p b .001; indoor-horizontal-pass/indoor-vertical-pass N indoor-verti-
cal-pass/natural-vertical-pass: t(24) = 14.68, p b .001; natural-
horizontal-pass/natural-vertical-pass N indoor-vertical-pass/natural-
vertical-pass: t(24) = 8.64, p b .001). An additional post-hoc test did
not find a significant difference between correlations in the indoor-
horizontal-pass/natural-horizontal-pass and the indoor-vertical-pass/
natural-vertical-pass comparison (t(24) = 1.13, p = .271). Thus, pat-
terns were no more of less similar for horizontal-pass than vertical-
pass filtered images.

Restricting the regression analysis to the standard scene-selective re-
gions (PPA, RSC, OPA) revealed a similar pattern of results (Fig. 6). Re-
sponses in the PPA were significantly predicted by the category (β =
0.85, p b .001) but not the filter regressor (β = 0.04, p = .204), with
ons defined by the response of intact scenes N scrambled scenes. Red and blue colours in-



Fig. 5. Experiment 1 analysis. Condition labels: indoor horizontal-pass (IHo), natural horizontal-pass (NHo), indoor vertical-pass (IVe), natural vertical-pass (NVe). Binary models were
defined representing the caseswhere the patterns of response are entirely predicted by either the category (a) or thefilter type (b). Thesewere entered into amultiple regression analysis
as regressors, whilst the fMRIMVPA correlations (c)were entered as outcomes. The resulting regression coefficients are shown in (d). Error bars represent 1 SEM(* p b .05, ** p b .01, *** p b

.001).

Fig. 6. Experiment 1: standard scene-selective regions and V1. (a) MVPA correlation matrices. (b) These matrices were compared against binary regressors of category and filter effects
using a multiple regression analysis; resulting beta coefficients are shown for each regressor. Error bars represent 1 SEM (* p b .05, ** p b .01, *** p b .001).
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significantly more variance explained by the category than the filter re-
gressor (t=16.34, p b .001). Responses in the RSCwere significantly pre-
dicted by the category (β = 0.77, p b .001) but not the filter regressor
(β= 0.02, p = .529), with significantly more variance explained by the
category than the filter regressor (t = 12.01, p b .001). Responses in the
OPA were significantly predicted by the category (β = 0.73, p b .001)
but not the filter regressor (β = 0.07, p = .095), with significantly
more variance was explained by the category than the filter regressor
(t = 10.21, p b .001). In contrast to the scene regions, responses in the
early visual (V1) control region were significantly predicted by both the
category (β = 0.36, p b .001) and filter regressors (β = 0.25, p b .001).
Therewas no significant difference between the effect of category and fil-
ter (t = 1.28, p = .203). Results of post-hoc t-tests for these regions are
given in Table 2.

Experiment 2

In Experiment 2, we measured patterns of neural response to differ-
ent categories of scene (indoor andnatural)filtered by spatial frequency
(high-pass and low-pass). Fig. 7 shows the normalised group responses
to each condition across the scene-selective ROI. Responses above the
mean are shown in red and responses below the mean are shown in
blue.

Correlation basedMVPAwas used to assess the similarity of the neu-
ral responses across different conditions. The influence of category and
image factors on the fMRI data was assessed using a representational
similarity analysis. Model correlation matrices representing the cases
where responses are entirely predicted by the scene category (Fig. 8a)
or by the spatial frequency filtering (Fig. 8b) were entered as regressors
in amultiple regression analysis of the fMRI data (Fig. 8c). Fig. 8d shows
the resulting coefficients for each regressor. Both the category (β =
0.23, p b .001) and filter regressors (β=0.86, p b .001) explained a sig-
nificant amount of the variance in the MVPA data. However, in contrast
to Experiment 1, the filter regressor explained significantly more vari-
ance than the category regressor (t= 16.93, p b .001). Post-hoc tests re-
vealed greater different-category/same-filter than same-category/
different-filter correlations in all cases (indoor-high-pass/natural-
high-pass N indoor-high-pass/indoor-low-pass: t(23) = 17.56,
p b .001; indoor-high-pass/natural-high-pass N natural-high-pass/natu-
ral-low-pass: t(23) = 10.29, p b .001; indoor-low-pass/natural-low-
pass N indoor-high-pass/indoor-low-pass: t(23) = 20.26, p b .001;
indoor-low-pass/natural-low-pass N natural-high-pass/natural-low-
pass: t(23)= 15.95, p b .001). An additional post-hoc test revealed sig-
nificantly higher correlations in the indoor-low-pass/natural-low-pass
than the indoor-high-pass/natural-high-pass comparison (t(23) =
10.51, p b .001), indicating greater similarity in the neural response pat-
terns across low-pass than high-pass filtered images.

Restricting the regression analyses to the standard scene-selective
regions (PPA, RSC, OPA) revealed a more variable pattern of results
(Fig. 9). Responses in the PPA were significantly predicted by both the
category (β = 0.66, p b .001) and filter regressors (β = 0.43, p b

.001). However, in contrast to the scene-selective region as a whole,
more variance was explained by the category than the filter regressor
(t = 4.33, p b .001) in this subregion. Responses in the RSC were signif-
icantly predicted by both the category (β=0.35, p b .001) and filter re-
gressors (β=0.53, p b .001) but in this case slightly more variance was
Table 2
Experiment 1: t-statistics and significance of post-hoc pairwise t-tests for standard scene
selective regions (PPA, RSC, OPA) and V1 (* p b .05, ** p b .01, *** p b .001).

PPA RSC OPA V1

IHo/IVe N IHo/NHo 9.35*** 9.30*** 9.25*** 2.49(ns)
NHo/NVe N IHo/NHo 8.68*** 8.77*** 7.05*** −2.13(ns)
IHo/IVe N IVe/NVe 9.84*** 7.14*** 6.97*** 3.83**
NHo/NVe N IVe/NVe 9.26*** 7.05*** 5.09*** −0.18(ns)
explained by the filter than the category regressor (t = 2.41, p = .017).
Responses in the OPA were significantly predicted by both the category
(β=0.22, p b .001) and filter regressors (β=0.66, p b .001), but again
significantlymore variancewas explained by thefilter than the category
regressor (t = 6.25, p b .001). Responses in the V1 control region were
significantly predicted by the filter (β=0.95, p b .001) but not the cat-
egory regressor (β = 0.03, p = .213), with significantly more variance
explained by the filter than the category regressor (t = 29.96, p b

.001). Results of post-hoc t-tests for these regions are given in Table 3.
Previous experiments have suggested a possible division of labour

between anterior and posterior regions of the PPA (Aminoff et al.,
2007; Arcaro et al., 2009; Baldassano et al., 2013; Epstein, 2008). Ac-
cordingly, we re-analysed our data by splitting the PPA region halfway
along its posterior–anterior extent and repeating the pattern analyses
within each division. Responses in the posterior PPA regionwere signif-
icantly predicted by both the category (β=0.19, p b .001) and filter re-
gressors (β=0.63, p b .001),with significantlymore variance explained
by the filter regressor (t = 5.90, p b .001). Representations in the ante-
rior PPA appeared more similar to the overall PPA region, with re-
sponses significantly predicted by both the category (β = 0.75,
p b .001) and filter regressors (β=0.31, p b .001), but with significantly
more variance explained by the category regressor (t = 8.51, p b .001).
These results are shown in Fig. 10. Our results therefore show a change
in selectivity within the PPA, with a shift from more image-based to
more category-based representations along a posterior-to-anterior axis.

Behavioural experiment

In order to ensure that thefiltering process did not disrupt the ability
of participants to perceive the scenes categorically, we conducted an ad-
ditional behavioural experiment. Participants were presented with the
images from the fMRI experiments plus their unfiltered equivalents
whilst performing a scene categorisation task. Percentage accuracy
scores and median RTs were calculated for each condition within each
participant (Table 4). Mean accuracy across all conditions was
95.63 ± 1.34% (range 89.17–97.92%). Mean RT across all conditions
was 598 ± 26 msec (range: 566–611). These results show that partici-
pants were able to categorise all stimulus conditions well above chance
levels.

Discussion

The aim of this study was to compare the relative effect of low-level
image properties and high-level categorical factors on the patterns of
fMRI response in scene-selective regions. Participants viewed images
from indoor and natural scene categories that were filtered by orienta-
tion and spatial frequency. These manipulations had a marked effect on
the low level image properties. Nevertheless, a behavioural experiment
using stimulus presentation parameters matched to those of the fMRI
experiments revealed that these manipulations preserved the ability
to accurately categorise the images. We then measured the patterns of
response in scene-selective regions. We found that orientation filtering
had a significantly smaller effect on patterns of response than category.
In contrast, spatial frequency filtering had a significantly greater effect
on patterns of response compared to category. These results show that
patterns of neural response in scene-selective cortices revealed by
fMRI are sensitive to low-level properties of the image, particularly
the spatial frequency content.

Previous studies have established that distinct patterns of neural re-
sponse are elicited by viewing different categories of scene (Walther
et al., 2009, 2011). These findings have been taken to suggest a categor-
ical organisation of scene-selective cortices in which response proper-
ties are linked to the semantic properties of the image. It has also been
shown that the semantic content of scene images can be used to predict
neural responses during viewing of natural scenes (Huth et al., 2012;
Stansbury et al., 2013) and to reconstruct scene images from neural



Fig. 7. Group patterns of response to conditions in Experiment 2. Patterns are restricted to regions defined by the response of mixed scenes N scrambled scenes. Red and blue colours in-
dicate normalised values above and below the mean respectively.
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responses in higher visual areas (Naselaris et al., 2009). However, other
studies suggest that categorical factors may not provide a complete ac-
count of the organisation of scene-selective regions. For instance, re-
ports by both Kravitz et al. (2011) and Park et al. (2011) suggest that
responses in PPA are better predicted by image properties (open versus
closed) than by the categorical content (indoor versus natural) of
scenes. It has also been shown that visual properties can be used to dis-
criminate between different categories of scenes (Torralba and Oliva,
2003). These findings suggest that a fuller understanding of the princi-
ples governing organisation of ventral visual cortex will hinge on deter-
mining the way in which patterns of brain activity reflecting semantic,
spatial and functional properties of scenes are derived from their
lower level visual properties.

Recently, we showed that the statistical properties of visual images
can be used to predict patterns of response in high-level visual cortex
(Andrews et al., 2015; Rice et al., 2014;Watson et al., 2014). These results
provide an alternative framework for understanding the topographic or-
ganisation of the ventral visual pathway in which the appearance of
category-selective patterns of response may emerge from the combina-
tions of low-level image properties that typically co-occur in different
image categories (see also Hanson et al., 2004; Op de Beeck et al., 2008).
To directly test the role of image properties, we measured the effect of
low-level image manipulations on patterns of response in scene-
selective regions. We found a significant effect of spatial frequency filter
on patterns of response in scene-selective cortex. For example, indoor
low-pass images generated similar patterns of response to natural low-
pass images. Similarly, indoor high-pass images generated similar pat-
terns to natural high-pass images. These results show that patterns of re-
sponse to scenes are sensitive to the low-level properties of the image.
Previous univariate fMRI studies have shown that there are biases in the
magnitude of the response to different spatial frequencies in scene-
selective regions (Kauffmann et al., 2014; Rajimehr et al., 2011). However,
changes in the amplitude of response can occur without a change in the
pattern of response. Our findings fundamentally extend these earlier
studies by showing that the spatial frequency of the image can also influ-
ence the pattern of response in scene-selective regions. This suggests that
this property of the image is a key feature underlying the functional orga-
nisation of scene-selective regions.

How do we explain the category-specific patterns of response found
in scene-selective regions (Walther et al., 2009, 2011)? Rather than
reflecting an organisation based on categorical properties of the stimu-
lus, we propose that scene-selective regions have a topographic organi-
sation that is based on image properties (Andrews et al., 2015). We
suggest that the appearance of category selectivitymay reflect the char-
acteristic combinations of low-level image properties that co-occur in
different types of scenes. Because images from different scene catego-
ries have distinct image properties (Watson et al., 2014), images from
a particular scene category will activate spatially-selective patterns of
response. Although patterns of response in scene-selective regions
may be dominated by the features characteristic of specific natural cat-
egories, they may remain sensitive to low-level manipulations.

Our findings appear to contrast with a previous study that reported
scene category can be decoded from photographs and line drawings of
scenes, and that decoding generalises between these visual representa-
tions (Walther et al., 2011). As line drawings represent a visually
impoverished version of photographic images, it is argued that these re-
sults are indicative of image-invariant, categorical representations in
scene-selective regions. Our results suggest that such effects could alter-
natively be understood in terms of the low-level visual properties of im-
ages, such as spatial frequency. Line-drawings reduce an image to a
subsample of its edge boundaries, and thus represent an extreme
high-pass representation of the original image. Consequently, despite
being visually impoverished line drawings will nevertheless maintain
similar high spatial frequency content to their original images. Thus,



Fig. 8. Experiment 2 analysis. Condition labels: indoor high-pass (IHi), natural high-pass (NHi), indoor low-pass (ILo), natural low-pass (NLo). Binary models were defined representing
the cases where the patterns of response are entirely predicted by either the category (a) or the filter type (b). These were entered into amultiple regression analysis as regressors, whilst
the fMRI MVPA correlations (c) were entered as outcomes. The resulting regression coefficients are shown in (d). Error bars represent 1 SEM (* p b .05, ** p b .01, *** p b .001).
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generalisation between each visual representation could reflect sensi-
tivity within the neural patterns to the high spatial frequency content
of the image.
Fig. 9. Experiment 2: standard scene-selective regions. (a) MVPA correlation matrices. (b) The
multiple regression analysis; resulting beta coefficients are shown for each regressor. Error bar
Despite showing that manipulations of spatial frequency did affect
the patterns of response in scene-selective regions, we also found a
smaller but significant effect of scene category across the whole scene-
se matrices were compared against binary regressors of category and filter effects using a
s represent 1 SEM (* p b .05, ** p b .01, *** p b .001).



Table 3
Experiment 2: t-statistics and significance of post-hoc pairwise t-tests for standard scene
selective regions (PPA, RSC, OPA) and V1 (* p b .05, ** p b .01, *** p b .001).

PPA RSC OPA V1

IHi/NHi N IHi/ILo −3.42** 2.48(ns) 6.12*** 18.23***
IHi/NHi N NHi/NLo −5.55*** 1.06(ns) 1.63(ns) 17.33***
ILo/NLo N IHi/ILo −0.80(ns) 4.10** 7.89*** 17.94***
ILo/NLo N NHi/NLo −2.89* 1.89(ns) 5.49*** 16.79***

Table 4
Behavioural experiment: average accuracy and response times (±1 SEM).

Category Filter Accuracy (% correct) Response time (ms)

Indoor Horizontal-pass 95.83 ± 1.28 597 ± 18
Vertical-pass 95.42 ± 1.41 611 ± 19
High-pass 97.08 ± 1.09 569 ± 16
Low-pass 94.58 ± 1.51 611 ± 18
Unfiltered 95.42 ± 1.54 566 ± 17

Natural Horizontal-pass 97.50 ± 1.06 604 ± 23
Vertical-pass 95.83 ± 1.54 595 ± 21
High-pass 97.50 ± 1.06 589 ± 16
Low-pass 89.17 ± 2.10 664 ± 24
Unfiltered 97.92 ± 0.83 581 ± 20
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selective ROI. When the scene-selective ROI was subdivided into differ-
ent sub-divisions (PPA, RSC, TOS/OPA), we found that, although filter
and category influenced the patterns of response, the relative contribu-
tion of category and filter varied between regions. For instance, the ef-
fect of the spatial frequency filter was greater than that of the
category in both the OPA and RSC, whilst in the PPA the effect of catego-
ry was greater than filter. This suggests that whilst all scene-selective
regions remain sensitive to the low-level visual properties of scenes,
there may be a shift towards a more categorical representation in
some regions. Presumably, these differences in selectivity reflect the dif-
ferent computational processes that are thought to occur in different
scene-selective regions. For instance, it has been proposed that the
PPA and RSC may form distinct but complimentary roles within the
scene processing network, with the PPA primarily focussed on
representing the spatial components of the immediately visible scene,
whilst the RSC is more concerned with representing the scene within
the wider spatial environment (Epstein and Higgins, 2007; Epstein,
2008; Epstein et al., 2007; Park and Chun, 2009). Meanwhile, the
more posterior OPA has been proposed to be a lower-level component
of a hierarchical scene processing network (Dilks et al., 2013), perhaps
analogous to proposed roles for the occipital face area within the face
processing network (Haxby et al., 2002). We additionally observed a
shift from more image-based to more category-based representations
along a posterior-to-anterior axis within the PPA. This suggests an orga-
nisation in which representations become less dependent on the indi-
vidual visual components of images in more anterior regions of
parahippocampal cortex, consistent with previous studies suggesting a
division of labour along this axis (Baldassano et al., 2013; Epstein, 2008).

In contrast to spatial frequency, we found that manipulating the ori-
entation content of the image had amuch smaller effect on the patterns
of response across scene-selective cortex. For example, indoor vertical-
pass images generated similar patterns of response to indoor
horizontal-pass images and natural vertical-pass images generated sim-
ilar patterns to natural horizontal-pass images. Our results suggest that
not all low level properties exert the same degree of influence on large
scale patterns of response in scene-selective cortex. This result may
seem at odds with a previous study that reported orientation biases in
Fig. 10. Experiment 2: Analysis of anterior and posterior PPA divisions. The PPA region was div
tional analyses repeated for each division separately. The resulting regression coefficients are d
scene-selective regions (Nasr and Tootell, 2012). However, this study
differed from our study in two important ways. First, our filters only in-
cluded the cardinal orientations (horizontal and vertical) and so did not
coincide with the cardinal versus oblique orientation bias shown by
Nasr and Tootell (2012). Indeed, they did not report any significant dif-
ferences between cardinal orientations. Second, they used a univariate
analysis in which the magnitude of response to cardinal orientations
was compared to oblique orientations. In contrast, we investigated the
pattern of response across the cortical surface. It is possible to find over-
all differences in the magnitude of the response between conditions
that are not reflected in the pattern of response. So, the finding that
the current analyses did not show a significant effect of orientation fil-
tering upon the pattern of response should not be taken as meaning
that the regions do not have low-level orientation biases. Rather, it sim-
ply means that (horizontal vs. vertical) orientation biases are not found
in the pattern of response detected by fMRI.

To understand how the neural representation of scenes changes
through the processing hierarchy, we measured the patterns of response
in V1. We found that the pattern of response in V1 showed some differ-
ences to the patterns found in the scene-selective regions. For instance,
whilst the orientation filters had little effect on the responses in the
scene selective regions, a significant effect of both orientation filter and
category was found in V1. Furthermore, although a significant effect of
both spatial frequency filters and category was observed in scene-
selective regions, there was only an effect of spatial frequency filters on
the pattern of response in V1. It is important to note, however, that al-
though image filtering techniques do preserve categorical information,
they also preserve other visual dimensions that are not influenced by
thefilteringmanipulation. So, the observed effects of the categorymanip-
ulation may be attributable not only to categorical factors, but also to vi-
sual properties that were not affected by the filtering. For example, the
effect of category in V1 in Experiment 1 is unlikely to reflect a higher-
level representation of scenes in this region, but it is more likely to be
ided halfway along its posterior–anterior extent, and the pattern analyses and representa-
isplayed above. Error bars represent 1 SEM (* p b .05, ** p b .01, *** p b .001).
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driven by differences in the remaining non-orientation-sensitive visual
information (such as spatial frequency). Nevertheless, our results indicate
a gradual transition in responses to low-level properties such that later
processing regions (e.g., PPA) are increasingly sensitive to those features
which serve to distinguish behaviourally distinct environments.

In conclusion, in this study we directly determined the effect of low-
level imagemanipulations on the patterns of neural response to different
scene categories. We found clear evidence that scene-selective regions
were sensitive to the low-level visual content of the image, and that spa-
tial frequencywasmore influential than orientation content in determin-
ing the coarse-scale patterns measured by the MVPA. The sensitivity to
image properties shown in this study fundamentally extends previous
univariate reports of image biases in the magnitude of response in
scene-selective regions. By showing that the pattern of response to scenes
can be influenced by the spatial frequency content of the image, our re-
sults suggest that this image property is an important organising factor
in the topographic organisation of scene-selective regions of the brain.
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