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Models of face processing suggest that the neural response in different face regions is

selective for higher-level attributes of the face, such as identity and expression. However, it

remains unclear to what extent the response in these regions can also be explained by

more basic organizing principles. Here, we used functional magnetic resonance imaging

multivariate pattern analysis (fMRI-MVPA) to ask whether spatial patterns of response in

the core face regions (occipital face area e OFA, fusiform face area e FFA, superior tem-

poral sulcus e STS) can be predicted across different participants by lower level properties

of the stimulus. First, we compared the neural response to face identity and viewpoint, by

showing images of different identities from different viewpoints. The patterns of neural

response in the core face regions were predicted by the viewpoint, but not the identity of

the face. Next, we compared the neural response to viewpoint and expression, by showing

images with different expressions from different viewpoints. Again, viewpoint, but not

expression, predicted patterns of response in face regions. Finally, we show that the effect

of viewpoint in both experiments could be explained by changes in low-level image

properties. Our results suggest that a key determinant of the neural representation in these

core face regions involves lower-level image properties rather than an explicit represen-

tation of higher-level attributes in the face. The advantage of a relatively image-based

representation is that it can be used flexibly in the perception of faces.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Recognising the identity or expression of a face is a simple and

relatively effortless process for most human observers. How-

ever, the size and shape of a face image on the retina changes

frequently in natural conditions as the face is seen from

different viewpoints. The visual system must ignore these

sources of variation due to change in viewpoint to facilitate
hology and York Neuroim
c.uk (T.J. Andrews).

rved.
the recognition of identity or expression, yet at the same time

be able to process the implications of these viewpoint changes

because of their role in social communication. Understanding

the way that information about faces is represented in the

brain is central to understanding the processes involved in

face perception (Quiroga, 2017).

Neural models of face perception propose that different

brain regions are involved in processing different information
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from the face (Andrews & Ewbank, 2004; Bruce & Young, 2012;

Davies-Thompson & Andrews, 2012; Duchaine & Yovel, 2015;

Gobbini & Haxby, 2007; Haxby, Hoffman, & Gobbini, 2000;

Ishai, 2008). The widely used model of Haxby et al. (2000)

proposes a core system comprising regions in the occipital

and temporal lobes; the occipital face area (OFA), the fusiform

face area (FFA), and the superior temporal sulcus (STS). The

OFA is proposed to have feedforward projections to both the

STS and the FFA. The connection between the OFA and STS is

thought to be important in processing dynamic changes in the

face (such as expression) that are important for social in-

teractions, whereas the connection between the OFA and FFA

is important for the representation of invariant facial char-

acteristics that are used for the recognition of identity.

Patterns of response in the core face regions to identity and

expression provide some support for Haxby et al.'s (2000)

model. The role of the FFA in the neural representation of

identity is evident in studies that have shown distinct spatial

patterns of response for faces from different identities

(Anzellotti, Fairhall,&Caramazza, 2013; Axelrod&Yovel, 2015;

Guntupalli, Wheeler, & Gobbini, 2017; Verosky, Todorov, &

Turk-Browne, 2013; Zhang et al., 2016). Conversely, distinct

spatial patterns of response in the STS have been related to

different facial expressions of emotion (Said, Moore, Engell,

Todorov, & Haxby, 2010; Sormaz, Watson, Smith, Young, &

Andrews, 2016; Wegrzyn et al., 2015; Zhang et al., 2016). A key

feature of some of these studies is that the discrimination of

identity or expression is evident despite changes in the view-

point of the image, implying some degree of view-invariance.

Other studies, however, have shown that the neural

response to faces is sensitive to changes in the image,

particularly to changes in viewpoint. Electrophysiological

studies have shown that sensitivity to the view of a face varies

across regions, with more posterior face regions being view-

selective and more anterior face regions being more view-

invariant (Dubois, de Berker, & Tsao, 2015; Freiwald & Tsao,

2010; Perrett et al., 1991). A similar pattern of results is

evident from human neuroimaging studies. View-dependent

spatial patterns of response have been found in the core

face regions (OFA, FFA and STS), whereas more anterior re-

gions have a more invariant representation (Axelrod & Yovel,

2012; Carlin, Calder, Kriegeskorte, Nili, & Rowe, 2011;

Guntupalli et al., 2017; Kietzmann, Swisher, K€onig, & Tong,

2012; Ramirez, Cichy, Allefeld, & Haynes, 2014).

Although previous studies have shown distinct patterns of

response in the core face-selective regions to the relatively

high-level facial characteristics of identity and expression, it

is unclear to what extent more basic image properties might

explain the topographic organization of these regions. Recent

studies have suggested that patterns of response to images

from different object categories can be predicted by the low-

level properties of the image (Andrews, Watson, Rice, &

Hartley, 2015; Bracci & de Beeck, 2016; Coggan, Liu, Baker, &

Andrews, 2016; Rice, Watson, Hartley, & Andrews, 2014;

Watson, Hartley, & Andrews, 2017; Watson, Young, &

Andrews, 2016). Here, we ask whether the neural represen-

tation in core face-selective regions might also involve

simpler organizing principles that are grounded in the statis-

tical properties of the image. To achieve this, we investigated

patterns of neural response in core regions that were
consistent across different participants and evaluated the

extent to which these consistent patterns of response were

driven by high-level characteristics such as identity and

expression or by relatively low-level image properties. We

show that for face images with varying viewpoints, such as

are commonly encountered in everyday life, much of the

pattern of response in face regions of the human brain can be

predicted from image properties without requiring an explicit

representation of high-level characteristics such as identity

and expression. We argue that this relatively image-based

representation may provide a more flexible code for the

perception and recognition of faces (see Chang & Tsao, 2017).
2. Methods

2.1. Participants

For Experiment 1, data were collected from 19 participants (7

males,meanage¼22.8±1.0years). ForExperiment2,datawere

collected from 24 participants (9 males, mean age 23.5 ± 2.5

years). All participants were right-handed with normal or cor-

rected to normal vision. Written informed consent was ob-

tained from all participants. The study was approved by the

York Neuroimaging Centre Ethics Committee. Images were

placed onto a 1/f amplitude noise mask to ensure all images

stimulated the same amount of the visual fielddespite changes

in orientation. Face images were back-projected onto a screen,

approximately 57 cm from the participant at a height of ~8�.
Stimuli were presented using PsychoPy2 (Peirce, 2007).

2.2. Experiment 1

Experiment 1 compared the effects of identity and viewpoint

in face-selective regions, using an ambient images approach

(Burton, Jenkins, & Schweinberger, 2011; Jenkins, White, Van

Montfort, & Burton, 2011) in which images of each identity

across each viewpoint could themselves be different in the

many other ways encountered in everyday life. Many behav-

ioural studies have shown that the ability to recognise identity

across such image changes is a key characteristic of familiar

face recognition (Burton, 2013; Kramer, Young,& Burton, 2018;

Young & Burton, 2017). Image-invariant face recognition is

also evident in event related potential (ERP) studies (Johnston,

Overell, Kaufman, Robinson, & Young, 2016; Schweinberger,

Pickering, Jentzsch, Burton, & Kaufmann, 2002), yet is less

commonly investigated with functional magnetic resonance

imaging (fMRI) (Davies-Thompson, Gouws & Andrews, 2009;

Davies-Thompson, Newling & Andrews, 2013).

Fig. 1a shows the nine conditions from Experiment 1. These

were based around a block design that included three different

face identities (Brad Pitt (BP), David Beckham (DB), and Justin

Timberlake (JT)) shown from three different viewpoints; left

three-quarters (which we term �45�), front (0�), and right

three-quarters (45�). Ambient image stimuli were taken from a

variety of internet sources. Importantly, the use of famous

identities well-known in the UK ensured participants could

easily recognise the faces across different viewpoints (Davies-

Thompson, Gouws, & Andrews, 2009; Young & Burton, 2017).

This allowed us to select different images for each

https://doi.org/10.1016/j.cortex.2018.03.009
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Fig. 1 e Image conditions used to create trial blocks in Experiments 1 and 2. (a) Experiment 1: There were three familiar

identities (Brad Pitt (BP), David Beckham (DB), Justin Timberlake (JT)) shown at three viewpoints (left ¾, frontal, right ¾)

giving a total of 9 conditions. Within each block images had the same identity and viewpoint, but varied in appearance. The

images used for DB are shown on the right. (b) Experiment 2: There were three facial expressions (happy, disgust, fear)

shown at three viewpoints (left ¾, frontal, right ¾) giving a total of 9 conditions. Within each block images had the same

expression and viewpoint, but varied in identity. The images used for disgust are shown on the right.

c o r t e x 1 0 3 ( 2 0 1 8 ) 1 9 9e2 1 0 201
combination of identity and viewpoint, so that any effects of

identity could not be attributed to a specific image

(Supplementary Fig. 1). It also allowed us to choose from awide

range of potential images, so we could match the selected

images in appearance and in low-level properties (Table 1). The

general appearance (e.g., hairstyle) of images from each iden-

tity/viewpoint combination was comparable across condi-

tions. For example, in Supplementary Fig. 1, image 1 in each

condition (row) has facial hair and styled hair. Image 2 is clean

shaven with cropped hair. Images across viewpoint were also

controlled. For example, compare Image 1 of JT for left, frontal

and right views. [It is important to note that the order of the

images within each block (condition) was randomized e the

ordering here is just to highlight the way inwhich imageswere

selected]. Finally, it was also important that the images within
Table 1 e Mean image statistics (SD) of images in each
condition in Experiment 1.

Left Frontal Right

Grey value intensity BP 147.17 (6.96) 149.98 (7.09) 148.00 (5.15)

DB 148.61 (11.90) 146.73 (5.53) 148.03 (11.09)

JT 150.63 (9.07) 148.83 (3.68) 146.99 (3.24)

RMS contrast BP 54.60 (4.97) 49.58 (4.04) 52.75 (2.89)

DB 48.53 (4.65) 50.97 (4.54) 49.73 (4.64)

JT 52.08 (9.28) 55.11 (5.47) 53.90 (5.47)
each condition varied in appearance. This ensures that any

representation of identity is not image-dependent.

Prior to scanning we ensured that participants were

familiar with our stimuli. Using different images from those

employed in themain experiment, we found that participants

could name all identities. After scanning, we also checked that

participants could recognise the identities from the images

used in our experiment. Participants performed an identity

matching task on the images used during the scan. On each

trial they were shown two images, sequentially, and asked

whether they depicted the same identity or different identi-

ties. Performance was close to ceiling (mean accuracy: 94%,

±3.2%) implying that participants were familiar with the

identities shown, as this type of matching task leads to rela-

tively poor performance with unfamiliar faces (Burton, White,

& McNeill, 2010; Hancock, Bruce, & Burton, 2001).

In the fMRI experiment, five different face images were

used for each condition. The five images were presented using

a blocked design. Each stimulus block contained 6 images (5

unique images, 1 repeated) in quasi-random order. During the

scan, a one-back task was used to maintain attention, where

participants responded with a button press every time an

identical image was directly repeated (one target per block).

Performance was at ceiling (mean accuracy: 98.0% ± .01%).

Within each stimulus block, each image was presented for

https://doi.org/10.1016/j.cortex.2018.03.009
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800 ms followed by a 200 ms blank screen. So, each stimulus

block lasted 6s. Blocks were separated by a 9s fixation screen

(a white fixation cross on a black background). Experiment 1

consisted of two runs, each with 4 repetitions of each of the

nine conditions (total of 36 blocks per run) presented in a

counterbalanced order.

2.3. Experiment 2

Experiment 2 compared neural responses in core face regions

to facial expression and viewpoint across images that varied

in identity, using relatively controlled images of unfamiliar

faces. Face images were taken from the Radboud Faces Data-

base (Langner et al., 2010) and depicted different people posing

three different expressions (happiness, disgust, and fear)

taken from three different viewpoints. Fig. 1b and

Supplementary Fig. 2 show images from the nine stimulus

conditions. Each stimulus block contained 5 images that var-

ied in face identity. Each image was presented for 1000 ms

followed by a 200 ms blank screen, leading to a 6s block

duration. Each condition was repeated 6 times (total of 54

blocks) presented in a counterbalanced order. To maintain

attention throughout the scan, participants responded with a

button press every time a red spot appeared (one target per

block). The red dot could appear at any location on the face.

Performance was at ceiling (mean accuracy: 99.0% ± 1.9%).

2.4. fMRI analysis

Data from both fMRI experiments were collected using a GE 3

Tesla HD Excite MRI scanner at the York Neuroimaging Centre

at the University of York. Functional data were collected using

a gradient-echo echo planar imaging (EPI) sequence with a

radio-frequency coil tuned to 127.4MHzwasused to acquire 38

axial slices (TR¼ 3s, TE¼ 33ms, flip angle¼ 90�, FOV¼ 288mm,

matrix size ¼ 128 � 128, slice thickness ¼ 3 mm, voxel size:

2.25 � 2.25 � 3 mm). A T1-weighted structural MRI

(TR ¼ 7.96 ms, TE ¼ 3.05 ms, FOV ¼ 290 � 290 mm, matrix

size ¼ 256 � 256, voxel dimensions ¼ 1.13 � 1.13 mm, slice

thickness ¼ 1 mm, flip angle ¼ 20�) was also collected for each

participant.

First, we examined the magnitude of brain response to

each condition in voxels within the region of interest (ROI).

Statistical analysis of the fMRI data was carried out using

FEAT version 5.0 in the FMRIB software library (FSL) toolbox

(http://www.fmrib.ox.ac.uk/fsl). The first 3 volumes (9s) of

each scan were removed to minimize the effects of magnetic

saturation, and slice-timing correction was applied. Mo-

tion correction was followed by temporal high-pass filtering

(cut-off, .01 Hz). Spatial smoothing (Gaussian) was applied

at 6 mm full width at half maximum (FWHM), in line with

previous studies employing smoothing in conjunction with

multivariate pattern analysis (MVPA) (Op de Beeck, 2010;

Watson, Hartley, & Andrews, 2014). Separately for each run,

parameter estimates for each condition in the general linear

model (GLM)were generated by regressing the haemodynamic

response of each voxel against a box-car regressor convolved

with a single-gamma haemodynamic response function. In

Experiment 1, a fixed-effects analysis was used to determine

the average parameter estimate for each condition across the
two runs in each individual. Parameter estimates were nor-

malised by subtracting themean response per voxel across all

experimental conditions.

The analysis was restricted to the core face-selective re-

gions (FFA, OFA and STS). There were three important prin-

ciples underlying the way in which we defined the face-

selective ROIs. The first principle was that ROIs should be

based on independent data. Given that we were investigating

the reliability of patterns of response across individuals, it was

desirable that this came from independent participants. The

second principle was that the same ROIs could be used in both

experiments, so that any differences in the pattern of findings

across the experiments could not be due to subtle differences

in the ROIs themselves. The third principle was that ROIs

must be of the same size (number of voxels), to allow the

MVPA analyses to have comparable potential power to detect

underlying patterns of response in each region.

Face-selectivemasks (Supplementary Fig. 3) were therefore

based on an independent localizer scan using different par-

ticipants (n ¼ 83), in which the response to faces (varying in

identity, viewpoint and expression) was compared to the

response to scrambled faces (Sormaz et al., 2016). The

advantage of using a large group is that it allows us to define

genuine population-level ROIs with high statistical validity.

Masks in each region comprised the most significant 500

voxels (Montreal Neurological Institute e MNI space). This

allowed us to compare patterns of response across the two

experiments using the same ROIs based on face-selectivity

determined from independent data.

The reliability of response patterns in each ROI was tested

using a leave-one-participant-out (LOPO) cross-validation

paradigm. First, parameter estimates were determined for

each condition using a group analysis of all participants

except one. This LOPO process was repeated such that every

participant was left out of a group analysis once. These data

were then submitted to correlation-based pattern analyses

implemented using the PyMVPA toolbox (http://www.

pymvpa.org/; Hanke et al., 2009). For each iteration of the

LOPO cross-validation, the normalised patterns of response to

each stimulus condition were correlated between the group

and the left-out participant. The final correlation matrix pro-

vides a measure of the mean similarity in the pattern of

response across different combinations of conditions. Prior to

statistical analysis, a Fisher's Z-transform was applied.

To assess the relative contributions of identity, viewpoint,

and expression to the neural response patterns a binary re-

gressor was generated for each dimension. A value of one

(yellow)was given to those elementswhere the relevant factor

was shared and zero (red) on all other elements of the corre-

lation matrix (Figs. 3a and 4a). Within-condition elements

(white) were not included. A multiple regression was then

applied to the fMRI data across participants (seeWatson et al.,

2016). This yielded a beta value for each regressor, which

would be expected to differ significantly from zero if that re-

gressor were able to explain a significant amount of the vari-

ance in the neural correlations. A t-contrast was used to

assess the significance of the differences between the

regression coefficients for each model.

To investigate the effects of low-level image properties

on patterns of neural response in face-selective regions, the

http://www.fmrib.ox.ac.uk/fsl
http://www.pymvpa.org/
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Fig. 2 e Image analysis using the GIST descriptor. (a) Schematic illustration of the GIST descriptor for an example image. A

series of Gabor filters across eight orientations and four spatial frequencies are applied to the image. Each of the resulting 32

filtered images is thenwindowed along an 8£ 8 grid to give a final GIST descriptor of 2048 values (right). (b) To assess image

similarities between conditions, the GIST descriptor of an image from one condition was correlated with the average GIST

descriptor from a different condition.
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image statistics of each object were computed using the

GIST descriptor (http://people.csail.mit.edu/torralba/code/

spatialenvelope/) (Oliva & Torralba, 2001). For each image,

a vector of 2048 values was obtained by passing the image

through a series of 32 Gabor filters (eight orientations at

four spatial frequencies), and windowing the filtered images

along a 8 � 8 grid or 64 spatial locations (Fig. 2). Each vector

represents the image in terms of the output of each gabor

filter at each position across the image (Rice et al., 2014;

Watson et al., 2014; Watson et al., 2016). Image similarities

between conditions were measured by correlating the GIST-

descriptors for all 25 combinations of images. The similarity

matrix of the correlation values for the GIST descriptor

across all pairwise combinations of conditions was then

used as a regressor in a regression analysis with the fMRI
data. Again, only between-condition elements were

included in the regression analysis.
3. Results

3.1. Experiment 1: identity versus viewpoint

To determine the relative role of identity and viewpoint on

patterns of response in face-selective regions, we compared

patterns of response to images of the three familiar faces

shown at three different viewpoints. For each ROI, a correla-

tion based MVPA was used to measure the similarity in the

pattern of response. Fig. 3b shows the similarity in response

across all combinations of the 9 conditions.

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Fig. 3 e Experiment 1 e MVPA analysis of the fMRI response patterns to identity and viewpoint. (a) Idealised identity and

viewpoint models used for the regression analysis of the fMRI response patterns. Binary models were defined representing

the cases where the patterns of response are entirely predicted by either identity (BP ¼ Brad Pitt, DB ¼ David Beckham, and

JT ¼ Justin Timberlake) or viewpoint (left, frontal, or right). (b) Correlation matrix showing the similarity of fMRI response

patterns within face-selective regions. (c) These matrices were compared against binary regressors for identity and

viewpoint using a multiple regression analysis. The resulting beta coefficients for each regressor show that the patterns of

response were explained by viewpoint, but not identity. Error bars represent 1 SE (***p < .001).

c o r t e x 1 0 3 ( 2 0 1 8 ) 1 9 9e2 1 0204
First, we asked whether there were distinct patterns of

response to each condition by comparing the within-

condition and between-condition correlations. There was a

significant effect for each region (OFA: t(43) ¼ 4.85, p < .001,

d ¼ 1.81; FFA: t(43) ¼ 4.13, p < .001, d ¼ 1.54; STS: t(43) ¼ 4.53,

p < .001, d ¼ 1.69). Although this implies that there are distinct

patterns of response to each combination of identity and

viewpoint, a stronger test is to compare within-identity cor-

relations with corresponding between-identity correlations at

the same viewpoint. We found significantly greater within-

identity correlations in STS (t(8) ¼ 3.15, p ¼ .014, d ¼ .658)

and marginally different in the OFA (t(8) ¼ 2.29, p ¼ .051,

d ¼ .625) and FFA (t(8) ¼ 2.03, p ¼ .077, d ¼ .658).
To compare the roles of identity and viewpoint in the brain

responses, we used a representational similarity analysis

(Kriegeskorte, Mur, & Bandettini, 2008). Model correlation

matrices were generated where the patterns of brain response

would be entirely predicted by identity or by viewpoint

(Fig. 3a). Thesemodelswere then used in amultiple regression

analysis of the fMRI data (Fig. 3c). This analysis was restricted

to the off-diagonal elements in the matrix. Identity did not

predict patterns of response in any face-selective region (OFA:

b ¼ �.01, p ¼ .791; FFA: b ¼ �.03, p ¼ .119; and STS: b ¼ �.01,

p¼ .425). In contrast, viewpoint predicted patterns of response

in all face-selective regions (OFA: b ¼ .32, p < .001; FFA: b ¼ .15,

p < .001; and STS: b ¼ .17, p < .001). Moreover, the effect of

https://doi.org/10.1016/j.cortex.2018.03.009
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Fig. 4 e Experiment 2 e MVPA analysis of the fMRI response patterns to expression and viewpoint. (a) Idealised expression

and viewpoint models used for the regression analysis of the fMRI response patterns. Binary models were defined

representing the cases where the patterns of response are entirely predicted by either expression (happy, disgust, fear) or

viewpoint (left, frontal, or right). (b) Correlation matrix showing the similarity of fMRI response patterns within face-

selective regions. (c) These matrices were compared against binary regressors for expression and viewpoint using a

multiple regression analysis. The resulting beta coefficients for each regressor show that the patterns of response were

explained by viewpoint, but not expression. Error bars represent 1 SE (***p < .001).
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viewpoint was significantly greater than identity for all face-

selective regions (OFA: t (18) ¼ 13.98, p < .001; FFA: t

(18) ¼ 8.02, p < .001; and STS: t (18) ¼ 9.35, p < .001).

3.2. Experiment 2: expression versus viewpoint

To determine the relative role of expression and viewpoint on

patterns of response in face-selective regions, we compared

patterns of response to faces with three different expressions

shown at three different viewpoints. For each ROI, a correla-

tion based MVPA was used to measure the similarity in the

pattern of response. Fig. 4b shows the similarity in response to

each condition.

First, we asked whether there were distinct patterns of

response to each condition by comparing the within-condition
and between-condition correlations. There was a significant

effect for each region [OFA: t(43) ¼ 7.95, p < .001, d¼ �1.90; FFA:

t(43) ¼ 4.44, p < .001, d ¼ �1.66; STS: t(43) ¼ 6.90, p < .001,

d¼�1.63]. Although this implies that there are distinct patterns

of response to each combination of expression and viewpoint, a

stronger test is to compare within-expression correlationswith

corresponding between-expression correlations at the same

viewpoint. We found significantly greater within-expression

correlations in OFA [t(8) ¼ 2.53, p ¼ .035, d ¼ .497], but no dif-

ferences in the FFA [t(8) ¼ 1.15, p ¼ .282, d ¼ .531] and STS

[t(8) ¼ .00, p ¼ 1.00, d ¼ .00].

To compare the roles of expression and viewpoint in the

brain responses, we used a representational similarity anal-

ysis. Model correlation matrices were generated based on

patterns of response that could be entirely predicted by

https://doi.org/10.1016/j.cortex.2018.03.009
https://doi.org/10.1016/j.cortex.2018.03.009
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expression or by viewpoint (Fig. 4a). These models were then

used in amultiple regression analysis of the fMRI data (Fig. 4c).

Expression did not predict patterns of response in any face-

selective region (OFA: b ¼ .00, p ¼ .897; FFA: b ¼ .01, p ¼ .825;

and STS: b ¼ .01, p ¼ .853). However, just as in Experiment 1,

viewpoint was a significant predictor of patterns of response

in all face-selective regions (OFA: b ¼ .30, p < .001; FFA: b ¼ .13,

p < .001; STS: b¼ .32, p < .001). The effect of viewpoint was also

significantly greater than expression in each core region [OFA:

t(23) ¼ 14.93, p < .001; FFA: t(23) ¼ 5.71, p < .001; STS:

t(23) ¼ 15.35, p < .001].

3.3. Can low-level image properties explain patterns of
response?

Next, we asked whether the brain responses within face-

selective regions could be explained by the lower-level prop-

erties of the images. To address this question, we measured

the lower-level image properties of each image using the GIST
Fig. 5 e Patterns of response in face-selective regions can be pr

Correlation of the GIST descriptors (see Fig. 2) across all conditio

the GIST similarity matrix to predict brain response in each face

(Fig. 4). The resulting beta coefficients show that image properti

Error bars represent 1 SEM (***p < .001).
descriptor (Oliva & Torralba, 2001). We compared the images

within and between conditions by correlating their GIST using

a Leave-One-Image-Out (LOIO) analysis separately for each

experiment. This yielded two average GIST similarity matrices

(one for the stimuli from each experiment; see Fig. 5a and c).

Next, we used this GIST similarity matrix as a regressor to

predict brain response similarity within face-selective regions.

The GIST analysis predicted brain response similarity within

all face-selective regions in Experiment 1 (OFA: b ¼ 1.46,

p < .001; FFA: b ¼ .89, p < .001; STS: b ¼ 1.00, p < .001) and in

Experiment 2 (OFA: b ¼ 1.19, p < .001; FFA: b ¼ .53, p < .001;

b ¼ 1.29, p < .001) (Fig. 5b and d). The observed beta values

were about five times higher for GIST compared to viewpoint.
4. Discussion

The aim of this study was to investigate the organizing prin-

ciples underlying the topography of face-selective regions in
edicted by the lower-level properties of the stimulus. (a), (c)

ns in Experiment 1 and 2. (b), (d) Regression analysis using

-selective region in Experiment 1 (Fig. 3) and Experiment 2

es were a strong predictor of the patterns of fMRI response.
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https://doi.org/10.1016/j.cortex.2018.03.009


c o r t e x 1 0 3 ( 2 0 1 8 ) 1 9 9e2 1 0 207
the human brain. We compared the relative contributions of

identity, expression and viewpoint to spatial patterns of

neural response that were consistent across participants in

the core face-selective regions. Despite the fact that infor-

mation about the identity or expression of the face was clearly

evident in each stimulus condition, we found that only

viewpoint significantly predicted the spatial patterns of

response.

The dominant influence of viewpoint was found across

contrasting paradigms involving ambient images of highly

familiar faces (Experiment 1) and relatively controlled images

of unfamiliar faces (Experiment 2). The use of ambient or

controlled images offers complementary perspectives

(Sutherland, Rhodes, & Young, 2017; Sutherland, Young, &

Rhodes, 2017) that allow us to conclude that this dominance

of viewpoint is a general phenomenon that is not limited to a

particular combination of stimulus conditions.

To account for this, we noted that changes in viewpoint

typically result in larger changes in the image than changes in

identity or expression. So, it is possible that the effect of

viewpoint might largely be explained by view-contingent

changes in the images themselves. Our results are consis-

tent with this suggestion, since they show that low-level

image properties were able to predict the spatial patterns of

responses in all face-selective regions.

An important feature of our findings is that the spatial

patterns of response to viewpoint generalized across partici-

pants. Neuroimaging studies have shown that the locations of

face-selective regions in the ventral visual pathway are

broadly consistent across individuals (Davies-Thompson &

Andrews, 2012; Kanwisher, McDermott, & Chun, 1997). This

implies that common principles may well underpin the or-

ganization of these regions. In our analysis, we compared the

pattern of response in individual participants with the pattern

from a group analysis in which that participant was left out

(Coggan et al., 2016; Poldrack, Halchenko,&Hanson, 2009; Rice

et al., 2014; Watson et al., 2014). The success of this approach

shows that much of the topographic pattern of response to

faces is consistent across individuals. These observations are

significant in that they suggest that our findings reflect the

operation of large-scale organizing principles that are

consistent across different individuals.

The inability to detect patterns of response specific to

identity or expression may reflect the possibility that the

neural representation of these facial attributes is based on

more idiosyncratic representations. Previous studies have

reported distinct spatial patterns of response for faces from

different identities in face-selective regions such as the FFA

(Anzellotti et al., 2013; Axelrod& Yovel, 2015; Guntupalli et al.,

2017; Nestor, Plaut, & Behrmann, 2011; Verosky et al., 2013;

Zhang et al., 2016). However, other studies have not been

able to demonstrate consistent patterns of response to iden-

tity in the FFA, but have found identity-specific patterns in

more anterior regions of the temporal lobe (Kriegeskorte,

Formisano, Sorger, & Goebel, 2007; Natu et al., 2010). Spatial

patterns of response in the STS have also been related to

particular facial expressions (Said et al., 2010; Wegrzyn et al.,

2015; Zhang et al., 2016). However a more recent study did

not find patterns of response for particular expressions, but

did find spatial patterns that correspond to the action units
from which facial expressions are derived (Srinivasan,

Golomb, & Martinez, 2016). Viewpoint-dependent spatial

patterns of response have been found in the core face regions

(Axelrod & Yovel, 2012; Carlin et al., 2011; Guntupalli et al.,

2017, Kietzmann et al., 2012; Ramirez et al., 2014).

In all these previous studies, the analysis was performed at

the individual participant level. This approach is often

grounded in an assumption of substantial differences be-

tween individual brains and contrasts with the across

participant analysis used in the current study. Our results

show that patterns of response to viewpoint, but not identity

and expression are consistent across participants. While this

demonstrates the important point that there is some consis-

tent organization across the brains of different individuals, it

doesn't of course rule out the likely presence of more subtle

differences. Interestingly, we did find that distinct patterns of

response to identity were evident when we restricted our

analysis to specific viewpoints. However, a consistent pattern

of response to different identities was not evident across

viewpoint. These different findings can be reconciled by sug-

gesting that, while global organizing principles underlie the

spatial representation of viewpoint (as we have demonstrated

here), more idiosyncratic and perhaps finer-grained repre-

sentations may underly the spatial representation of identity

and expression.

These results have important implications for under-

standing how face regions are organized. A dominant

perspective on the organization of face-selective regions is

that they might represent higher-level properties of the face,

such as identity or expression (Duchaine& Yovel, 2015; Haxby

et al., 2000; Kanwisher, 2010). However, this hypothesized

organization contrasts markedly with the continuous, topo-

graphicmaps found in early stages of visual processing, which

are tightly linked to low-level properties of the image. Until

now, it has proved difficult to explain how selectivity for these

higher-level properties of faces suddenly emerges from these

low-level representations. The strong linear relationship we

observed between low-level image properties and the spatial

patterns of response suggests instead that the topographic

organization of face regions can also be in large part explained

by low-level properties of the image.

Our results are consistent with a number of recent studies

that have shown that lower-level image properties can be

used to predict patterns of response to different object cate-

gories in the ventral visual pathway (Andrews et al., 2015;

Bracci & de Beeck, 2016; Coggan et al., 2016; O'Toole, Jiang,
Abdi, & Haxby, 2005; Rice et al., 2014; Watson et al., 2014,

2016, 2017). For example, the spatial pattern of response of

different object categories can be predicted by the image

properties of exemplars from that category (Rice et al., 2014;

Watson et al., 2014, 2016, 2017). The importance of low-level

properties is further supported by studies in which the

pattern of neural response is minimally affected by scram-

bling manipulations that impair semantic properties, but

preserve many of the low-level image properties of objects

(Coggan et al., 2016; Watson et al., 2017). Conversely, spatial

patterns of response to objects can be significantly affected by

manipulations (such as changes in size) that affect the low-

level image properties, but do not affect the semantic prop-

erties (Watson et al., 2016, 2017).

https://doi.org/10.1016/j.cortex.2018.03.009
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Our findings do not, however, imply that the representa-

tion of image properties in face-selective regions is identical to

the way information is represented in early visual regions.We

used a measure of visual properties (GIST e Oliva & Torralba,

2001) that was designed to capture the low-level properties of

the image. Similar, image-based models such as Gabor-jet

models have also been successful in explaining the percep-

tion and neural representation of faces (Lades et al., 1993; Xu,

Yue, Lescroart, Biederman, & Kim, 2009; Yue, Biederman,

Mangini, von der Malsburg, & Amir, 2012). However, an

important property of natural images is that they contain

strong statistical dependencies, such as location-specific

combinations of orientation and spatial frequency corre-

sponding to image features such as edges. Indeed, the char-

acter and extent of these statistical dependencies are likely to

be diagnostic for different classes of objects (Coggan et al.,

2017). Recent studies have shown that patterns of response

to features of the face (mouth, eyes) are strongly dependent on

the typical visual field position (de Haas et al., 2016;

Henriksson, Mur, & Kriegeskorte, 2015). So, it seems likely

that core face regionswill represent combinations of low-level

properties that are more commonly found in face images.

Evidence for this is apparent in studies that show biased re-

sponses in face regions to low-level properties associatedwith

faces, such as curvature (Wilkinson et al., 2000), horizontal

information (Goffaux, Duecker, Hausfeld, Schiltz, & Goebel,

2016), and visual field position (Levy, Hasson, Avidan,

Hendler, & Malach, 2001). In this study, we show that pat-

terns of response are linked to the viewpoint of the face,

which will necessarily contain combinations of low-level

features that are diagnostic of different facial viewpoints.

Variation in these low-level properties can be captured in

Principal Components Analysis (PCA) of the shape and

surface properties of faces (Burton, Kramer, Ritchie,& Jenkins,

2016; Calder, Burton, Miller, Young, & Akamatsu, 2001).

Recent studies suggest that the neural representation of faces

may reflect an underlying sensitivity to these shape and sur-

face properties (Andrews, Baseler, Jenkins, Burton, & Young,

2016; Chang & Tsao, 2017; Harris, Young, & Andrews, 2014;

Sormaz et al., 2016).

Although facial identity and expression are important for

social interactions, faces conveymany other cues to a range of

characteristics that are equally as important in guiding

behaviour, such as gender, race, trustworthiness and attrac-

tiveness (Bruce & Young, 2012; Todorov, 2017; Young, 2018).

The interpretation of such characteristics is critically depen-

dent on particular and often task-specific combinations of

different cues (Santos & Young, 2011; Sutherland, Young,

et al., 2017; Todorov, 2017; Vernon, Sutherland, Young, &

Hartley, 2014; Young, 2018). In consequence, an advantage of

a relatively image-based representation in core face regions

may be that it can be used more flexibly in the perception of

faces (Chang & Tsao, 2017; Quiroga, 2017). For example, a

recent neuroimaging study has found that it is possible to read

out many different attributes of the face in a task-dependent

manner (Harel, Kravitz, & Baker, 2014). In this respect it is

worth noting that our data do not rule out the idea that FFA

contributes to the perception of invariant and STS to the

perception of changeable facial properties (Haxby et al., 2000);

rather, they suggest that the underlying mechanism is based
on representations of the important low-level properties that

underpin the perception of these attributes.

In conclusion, these results show that consistent pat-

terns of response in core face-selective regions are domi-

nated by changes in the viewpoint of the face rather than

changes in identity or expression, and that these patterns of

response are readily predicted by lower-level image prop-

erties. These findings suggest that topographic response

patterns within face-selective regions involve image prop-

erties that typically co-occur with different facial cues,

rather than higher level properties per se. We suggest that

this relatively image-based representation in core face re-

gions may have the advantage that it can support flexibility

in the perception and recognition of different facial

characteristics.
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