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Abstract American options are priced and hedged in a general discrete market
in the presence of arbitrary proportional transaction costs inherent in trading
the underlying asset, modelled as bid-ask spreads. Pricing, hedging and opti-
mal stopping algorithms are established for a short position (seller’s position) in
an American option with an arbitrary payoff settled by physical delivery. The
seller’s price representation as the expectation of the stopped payoff under an
approximate martingale measure is also considered. The algorithms cover and
extend the various special cases considered in the literature to-date. Any spe-
cific restrictions that were imposed on the form of the payoff, the magnitude of
transaction costs or the discrete market model itself are relaxed. The pricing
algorithm under transaction costs can be viewed as a natural generalisation of
the iterative Snell envelope construction.

1 Introduction

This paper studies no-arbitrage pricing and hedging of the seller’s position in
American options when trading in the underlying asset is subject to proportional
transaction costs. The results apply to options with arbitrary payoffs in any
discrete market model and proportional transaction costs of any magnitude. We
shall be concerned with computing the seller’s price of an American option, also
known as the upper hedging price or the ask price of the option. Apart from
pricing, we put forward algorithms for computing the least expensive strategy
superhedging the option seller’s position, the optimal stopping time - generally
a mixed (randomised) stopping time rather than an ordinary one - and the
expectation representation for the seller’s price.
The first to examine American options under proportional transaction costs

in a similar setting and level of generality to the present paper were Chalasani
and Jha [CJ01]. They established expectation representations for options with
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cash settlement, subject to the simplifying assumption that transaction costs
apply at any time, except at any particular stopping time chosen by the buyer to
exercise the option. An important feature that emerged in Chalasani and Jha’s
representation for the option seller’s price was the role played by mixed stopping
times (also known as randomised stopping times) in place of pure (ordinary)
stopping times. Chalasani and Jha also pointed out the non-trivial nature of
computing the option prices in their representations and the need to develop
algorithms approximating these prices. Our algorithm solves this problem by
providing the exact values of the prices.
Bouchard and Temam [BT05] established a dual representation for the set

of initial endowments allowing to superhedge an American option in a discrete
time market model with proportional transaction costs in the setting of Kabanov,
Rásonyi and Stricker [KRS03] and Schachermayer [Sch04]. In particular, they
reproduced Chalasani and Jha’s [CJ01] expectation representation of the seller’s
price.
Papers concerned with various special cases involving the hedging prices of

American options under proportional transaction costs include Kociński [Koc99],
[Koc01], who studied sufficient conditions for the existence of perfectly replicat-
ing strategies for American options, Perrakis and Lefoll [PL00], [PL04], who
investigated American calls and puts in the binomial model, and Tokarz and
Zastawniak [TZ05], who worked with general American payoffs in the binomial
model under small proportional transaction costs.
Another group of papers, using preference-based or risk minimisation ap-

proaches rather than superhedging for American options under proportional
transaction costs, includes Davis and Zariphopoulou [DZ95], Mercurio and Vorst
[MV97], Constantinides and Zariphopoulou [CZ01], and Constantinides and Per-
rakis [CP04]. The work by Levental and Skorohod [LS97], and Jakubenas, Lev-
ental and Ryznar [JLR03] shows that superhedging in continuous time leads to
unrealistic results for American options under proportional transaction costs,
thus providing motivation for the need to explore discrete time approaches.
The present paper complements and extends the results obtained by Cha-

lasani and Jha [CJ01] and Bouchard and Temam [BT05] by providing efficient
pricing, hedging and optimal stopping algorithms for arbitrary American op-
tions under proportional transaction costs in a general discrete setting. It also
extends the work on hedging prices by the other authors listed above, removing
any restrictions imposed in the various special cases that have been considered.
As a by-product, we establish by a very different method the same expectation
representation for the seller’s price of an American option involving mixed (ran-
domised) stopping times as in [CJ01] or [BT05]. Our constructions provide a
geometric insight into the origin of mixed stopping times at each time step. A
‘clinical’ example is provided to further elucidate this very important and inter-
esting aspect of pricing and hedging American options under transaction costs.
Numerical examples show the flexibility and efficiency of the pricing algorithm
in a realistic market model approximation.
Our seller’s price algorithm under transaction costs bears a close resemblance

to the Snell envelope construction in the standard friction-free setting. As is well
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known, the Snell envelope Zt can be constructed by backward induction using
the recursive relationships

Zt = max{Vt, Yt}, (1.1)

Vt = E(Zt+1|Ft), (1.2)

where Vt is the continuation value and Yt is the payoff at time t. The analogy
with the pricing algorithm under transaction costs is self-evident: Zt, Yt and
Vt are replaced by polyhedral concave functions denoted by the same symbols
in Algorithm 3.1, the maximum in (1.1) corresponds to taking the concave cap
of Vt and Yt, whereas the expectation in (1.2) is replaced by the restriction to
the bid-ask spread interval of the concave cap of the functions Zt+1 over all
successor nodes. Because of this correspondence, Algorithm 3.1 can be regarded
as a natural extension of the Snell envelope construction.
Similar results, algorithms and representations have been established for Eu-

ropean options in the general discrete setting by Roux, Tokarz and Zastawniak
[RTZ06], and for American options under small transaction costs in the binomial
tree model by Tokarz and Zastawniak [TZ05]. The case of American options in
an arbitrary discrete market model subject to arbitrary transaction costs turns
out to be significantly more challenging due to the appearance of mixed stop-
ping times. Nevertheless, the underlying idea is similar to that in the European
options paper [RTZ06].
Consider the concave function x 7→ Zx

t such that

Zx
t = inf(αt + xβt), (1.3)

the infimum being taken over all portfolios (αt, βt) of cash (or bonds) and stock
held at time t that allow to superhedge a given American option at any time
from t to the expiry time. In the discrete model the infimum is attained whenever
it is finite, and each Zt is a polyhedral concave function. At time 0, in order to
be able to hedge his or her position in the American option, a seller holding no
initial position in stock needs to receive at least a cash amount

α0 = max
x∈R

Zx
0 .

This value is the seller’s price of the option. In effect, to find the seller’s price,
one needs to compute the function Z0, which amounts to solving a large convex
optimisation problem over the set of all superhedging self-financing strategies.
In Algorithm 3.1 this is achieved by means of a dynamic programming type
backward iterative procedure for computing Zt, given Zt+1 and the option payoff
at time t.
Similarly as for European options [RTZ06], this pricing algorithm offers con-

siderable efficiency. In the case of path-independent stock prices and American
options with path-independent payoff, the polyhedral concave functions Zt are
also path-independent. Moreover, in recombinant trees the number of extreme
points of each of these functions grows at most polynomially with the number
of time steps to expiry. As a result, the complexity of the pricing algorithm also
grows at most polynomially.
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The position of the seller versus the buyer of an American option is asym-
metric. In the presence of transaction costs, in the buyer’s case one is no longer
dealing with a convex optimisation problem, see Remark 3.1. The algorithms
put forward in this paper, which depend on convex duality between the set of
portfolios (αt, βt) in (1.3) and the concave functions Zt, do not readily extend to
computing the buyer’s price or hedging strategy. In a forthcoming paper we shall
present a solution for the buyer’s case, circumventing this difficulty by way of
certain new ideas involving duality without convexity. In particular, the Z’s are
no longer concave functions in this new approach, but become self-intersecting
polygonal lines with monotone gradient. A precursor of this solution under small
transaction costs can be found in Tokarz and Zastawniak [TZ05].
The contents of this paper are organised as follows. In Section 2 we fix the

notation, specify the market model with transaction costs, and present the neces-
sary information on mixed stopping times, approximate martingale probabilities
and concave functions. Section 3 is the main part of the paper. Following some
definitions, three algorithms are presented here, namely the pricing, optimal
hedging and optimal stopping algorithms for the seller of an American option in
the presence of proportional transaction costs. The last algorithm also produces
the optimal approximate martingale measure featuring in the expectation rep-
resentation of the seller’s price. This is followed by Theorem 3.2, which proves
the correctness of the algorithms by establishing a number of representations for
the seller’s price. An illustrative example showing all three algorithms in action,
simple enough to be re-computed by hand, concludes this section. In Section 4
we produce numerical examples with a more realistic flavour. Finally, Section 5
serves as an appendix containing some technical results.

2 Preliminaries

We shall use similar notational conventions and model assumptions as in Roux,
Tokarz and Zastawniak [RTZ06].
Let Ω be a finite probability space equipped with the sigma-field 2Ω consisting

of all subsets of Ω and a probability measure Q on F such that Q{ω} > 0 for each
ω ∈ Ω. We shall consider discrete time t = 0, 1, . . . , T , where T is a positive
integer, and assume that a filtration {∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ FT = 2Ω is
given. For any t = 0, 1, . . . , T we denote by Ωt the set of atoms of Ft, and
identify Ft-measurable random variables with functions defined on Ωt.
The filtration can be identified with a tree, the atoms of Ft corresponding to

the nodes of the tree at time t. For nodes µ ∈ Ωt and ν ∈ Ωt+1 such that ν ⊂ µ
we say that ν is a successor node of µ, and we denote by

succµ = {ν ∈ Ωt+1 | ν ⊂ µ}

the set of successor nodes of µ ∈ Ωt.
If P is a probability measure on F , it can be identified with the family of

probability measures Pt on Ft for t = 0, 1, . . . , T such that Pt(µ) = P (µ) for any
µ ∈ Ωt.
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2.1 Market Model

The market model consists of a risk-free bond, a stock, and an American option
written on the stock. Trading in stock is subject to proportional transaction
costs: At any time t = 0, . . . , T shares can be bought at the ask price Sat or sold
at the bid price Sbt . The processes Sa and Sb are adapted to the filtration and
satisfy Sat ≥ Sbt > 0 for each t. Without loss of generality, we assume that the
bond price is 1 for all t = 0, 1, . . . , T , that is, the interest rate is nil. A trader’s
position in bonds can therefore be identified with cash holdings, and all prices
with discounted prices.
The liquidation value of a portfolio (γ, δ) of cash (or bonds) and stock at

time t is given by
ϑt(γ, δ) = γ + δ+Sbt − δ−Sat .

This can be obtained by selling stock for Sbt per share to close a long position
δ ≥ 0, or buying stock for Sat per share to close a short position δ < 0. A self-
financing strategy is a pair (α, β) of predictable processes αt, βt representing
positions in cash (or bonds) and stock at t = 0, . . . , T such that β0 = 0 and

ϑt(αt − αt+1, βt − βt+1) ≥ 0 (2.1)

for each t = 0, . . . , T−1. The set of such strategies will be denoted by Φ(Sa, Sb).
An arbitrage opportunity is a self-financing strategy (α, β) ∈ Φ(Sa, Sb) such that

α0 ≤ 0, ϑT (αT , βT ) ≥ 0, Q {ϑT (αT , βT ) > 0} > 0.

The following result, originally established by Jouini and Kallal [JK95] and
Ortu [Ort01] in slightly different models, also holds in the case in hand, as was
demonstrated by Tokarz [Tok04].

Theorem 2.1 There is no arbitrage opportunity if and only if there exist a
probability measure P on Ω equivalent to Q and a martingale S under P such
that Sbt ≤ St ≤ Sat for each t = 0, . . . , T .

Form now on we shall assume that the market model admits no arbitrage
opportunities.

2.2 Pure and Mixed Stopping Times

We denote by T the set of stopping times with values in {0, 1, . . . , T}. Recall
that a stopping time τ ∈ T is a random variable such that for each t = 0, 1, . . . , T

{τ = t} ∈ Ft.

We shall sometimes refer to such τ ’s as pure stopping times to distinguish them
from mixed stopping times, defined below.
By a mixed stopping time (also called a randomised stopping time as in, for

example, Chow, Robins and Siegmund [CRS71], Baxter and Chacon [BC77] or
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Chalasani and Jha [CJ01]) we understand any non-negative adapted process χ
such that

T∑
t=0

χt = 1,

and denote the set of mixed stopping times by X .
Each pure stopping time τ can be identified with a mixed stopping time χτ

such that for any t = 0, 1, . . . , T

χτ
t = 1{τ=t}.

The set X of mixed stopping times is convex, with χτ for τ ∈ T as its extreme
points. Each χ ∈ X can therefore be expressed as

χ =
∑
τ∈T

στχτ , (2.2)

where στ ≥ 0 for each τ ∈ T and
∑

τ∈T στ = 1.
For any adapted process Z and any mixed stopping time χ the time-χ value

of Z is defined as the random variable

Zχ =
T∑

t=0

χtZt.

If τ is a pure stopping time, then Zχτ is the familiar random variable

Zχτ =
T∑

t=0

1{τ=t}Zt = Zτ .

Moreover, if χ is a convex combination (2.2) of pure stopping times, then

Zχ =
T∑

t=0

∑
τ∈T

στχτ
t Zt =

∑
τ∈T

στZτ .

With every mixed stopping time χ ∈ X we associate a predictable non-
increasing process χ∗ such that for each t = 0, 1, . . . , T

χ∗t =
T∑

s=t

χs,

and for any adapted process Z we put

Zχ∗

t =
T∑

s=t

χsZs.

Moreover, it will prove convenient to define

χ∗T+1 = 0, Zχ∗

T+1 = 0.
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2.3 Approximate Martingale Probabilities

The family of pairs (P, S) consisting of a probability measure P on Ω equivalent
to Q and a martingale S under P such that for each t = 0, 1, . . . , T

Sbt ≤ St ≤ Sat ,

which feature in Theorem 2.1, will be denoted by P. Probability measures P of
this kind will be called martingale probabilities. This family of pairs (P, S) can
be used to represent the prices of European options under transaction costs, see
Jouini and Kallal [JK95] or Roux, Tokarz and Zastawniak [RTZ06]. To represent
the prices of American options we need certain larger families than P.
For any mixed stopping time χ we denote by P(χ) the family of pairs (P, S)

consisting of a probability measure P on Ω equivalent to Q and an adapted
process S such that for each t = 0, 1, . . . , T

Sbt ≤ St ≤ Sat ,

χ∗t+1S
b
t ≤ EP (S

χ∗

t+1|Ft) ≤ χ∗t+1S
a
t , (2.3)

where EP denotes the expectation under P . We call such a P a χ-approximate
equivalent martingale probability, and say that S is a χ-approximate martingale
under P . If the assumption that P should be equivalent to Q is dropped, the
corresponding family of pairs (P, S) will be denoted by P̄(χ), and P will be
called a χ-approximate martingale probability. This notation and terminology is
similar to that in Chalasani and Jha [CJ01].

Lemma 2.2 For each mixed stopping time χ ∈ X

P ⊂ P(χ) ⊂ P̄(χ).

Proof The second inclusion is obvious. To prove the first one, take any (P, S) ∈
P and any χ ∈ X . Because Sbt ≤ St ≤ Sat , it is sufficient to show that for each
t = 0, 1, . . . , T

χ∗t+1St = EP (S
χ∗

t+1|Ft). (2.4)

We proceed by backward induction. For t = T both sides of (2.4) are equal
to zero. Suppose that (2.4) holds for some t = 1, . . . , T . Then, since χ∗ is a
predictable process and S is a martingale under P ,

EP (S
χ∗

t |Ft−1) = EP (χtSt + Sχ∗

t+1|Ft−1) = EP (χtSt + EP (S
χ∗

t+1|Ft)|Ft−1)

= EP (χtSt + χ∗t+1St|Ft−1) = EP (χ
∗
t St|Ft−1) = χ∗t EP (St|Ft−1)

= χ∗t St−1,

which completes the proof.

It follows from Lemma 2.2 and Theorem 2.1 that the families P and P(χ),
P̄(χ) for any χ ∈ X are non-empty in an arbitrage-free market model.
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2.4 Concave Functions

In this section we collect some information and fix notation concerned with
concave functions. More details can be found in Rockafellar [Roc97].
A proper concave function is any function f : R → R ∪ {−∞} such that for

any x ≤ y ≤ z
(z − x)f(y) ≥ (z − y)f(x) + (y − x)f(z)

and f(x) > −∞ for some x ∈ R. The effective domain of such a function f is
defined as

dom f = {x ∈ R | f(x) > −∞}.
Moreover, f is a polyhedral proper concave function if dom f is closed and there
exist real numbers a1, . . . , an and b1, . . . , bn such that for each x ∈ dom f

f(x) = min
i=1,...,n

(aix+ bi).

Definition 2.1 The concave cap cap{f1, . . . , fn} of functions f1, . . . , fn :
R → R ∪ {−∞} is defined as the smallest concave function h such that

h ≥ max{f1, . . . , fn}.

Lemma 2.3 Suppose that f1, . . . , fn are polyhedral proper concave functions
on R with bounded effective domains. Then cap{f1, . . . , fn} is also a polyhe-
dral proper concave function with bounded effective domain, such that for any
x ∈ dom(cap{f1, . . . , fn})

cap{f1, . . . , fn}(x) = max
n∑

i=1

λifi(xi), (2.5)

where the maximum is taken over all λ1, . . . , λn ≥ 0 and x1 ∈ dom f1, . . . , xn ∈
dom fn satisfying

n∑
i=1

λi = 1,
n∑

i=1

λixi = x.

For an outline of the proof of this lemma, see Roux, Tokarz and Zastaw-
niak [RTZ06]. For details we refer to Rockafellar [Roc97].

Remark 2.1 Carathéodory’s theorem allows a stronger assertion, namely that
the maximum in (2.5) is attained for some λ1, . . . , λn and x1, . . . , xn as above
such that all except at most two of the λi’s are zero.

For any proper concave function f and any x ∈ dom f we denote by D−f(x)
and D+f(x) the left and right derivatives of f at x, adopting the convention
that

D−f(x) = +∞ if f(y) = −∞ for all y < x,

D+f(x) = −∞ if f(y) = −∞ for all y > x.

Because f is concave, D−f(x) ≥ D+f(x) for each x ∈ dom f .
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3 American Options under Transaction Costs:
Seller’s Case

We consider an American option with an adapted payoff process (ξ, ζ) and expiry
time T . The option is exercised by the delivery of a portfolio (ξτ , ζτ ) of cash (or
bonds) and stock at a stopping time τ ∈ T chosen by the buyer.
An option seller’s superhedging strategy (α, β) ∈ Φ(Sa, Sb) is characterised

by the property that a seller who adopts this strategy will be left with a solvent
portfolio (ατ − ξτ , βτ − ζτ ), that is, a portfolio such that

ϑτ (ατ − ξτ , βτ − ζτ ) ≥ 0

upon delivering the payoff (ξτ , ζτ ) at any stopping time τ ∈ T that the buyer
may select. The smallest possible initial value α0 among all strategies (α, β) of
this kind is called the seller’s price (ask price, upper hedging price) of the option
and denoted by πa(ξ, ζ). The precise definition is

πa(ξ, ζ) = min{α0 | (α, β) ∈ Φ(Sa, Sb),∀τ ∈ T : ϑτ (ατ − ξτ , βτ − ζτ ) ≥ 0}.

In a discrete arbitrage-free market model the minimum is attained for some
strategy (α, β) ∈ Φ(Sa, Sb). Such a strategy will be called a seller’s optimal
superhedging strategy.
In the following sections we present three constructions: Algorithm 3.1 for

computing the seller’s price πa(ξ, ζ), Algorithm 3.2 for a seller’s optimal su-
perhedging strategy (α̂, β̂), and Algorithm 3.3 to find an optimal mixed stop-
ping time χ̂ and risk-neutral representation of the sellers price of the form
πa(ξ, ζ) = EP̂ ((ξ + Ŝζ)χ̂), where (P̂ , Ŝ) ∈ P̄(χ̂). In Theorem 3.2 we shall es-
tablish a number of representations for πa(ξ, ζ) and prove the correctness of the
algorithms.

Remark 3.1 In this paper we are concerned only with the seller’s price πa(ξ, ζ)
and seller’s optimal superhedging strategy for an American option (ξ, ζ) under
transaction costs. One could also consider an option buyer’s superhedging strat-
egy (α, β) ∈ Φ(Sa, Sb) such that a buyer who follows it will be left with a solvent
portfolio (ατ + ξτ , βτ + ζτ ), that is, a portfolio such that

ϑτ (ατ + ξτ , βτ + ζτ ) ≥ 0

upon receiving the payoff (ξτ , ζτ ) at some stopping time τ ∈ T chosen by
him/herself. This leads to the definition of the buyer’s price (bid price, lower
hedging price)

πb(ξ, ζ) = max{−α0 | (α, β) ∈ Φ(Sa, Sb),∃τ ∈ T : ϑτ (ατ + ξτ , βτ + ζτ ) ≥ 0},

and a buyer’s optimal superhedging strategy (α, β), that is, one for which the
maximum is attained. The two prices πa(ξ, ζ) and πb(ξ, ζ) are the upper and,
respectively, lower bounds of the no-arbitrage interval of option prices.
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The algorithms presented below do not readily extend to the buyer’s case.
This is because the seller’s algorithms amount, essentially, to solving a convex
linear optimisation problem, whereas this is no longer so for the buyer. In
particular, while the set of seller’s superhedging strategies is convex, the set of
buyer’s superhedging strategies is not, in general. The buyer’s case requires an
essentially different approach and will be studied in forthcoming work.

3.1 Pricing

Algorithm 3.1 Given an American option with payoff process (ξ, ζ) and expiry
time T , for each t = 0, 1, . . . , T define

Y x
t =

{
ξt + xζt if Sbt ≤ x ≤ Sat ,
−∞ otherwise,

and construct by backward induction three adapted processes V , Ṽ , Z with val-
ues among polyhedral proper concave functions with bounded effective domain:

• Put
ZT = VT = ṼT = YT .

This defines functions x 7→ Zx
T (µ) and x 7→ V x

T (µ) at each node µ ∈ ΩT .

• For any t = 0, 1, . . . , T − 1 put

Ṽt(µ) = cap{Zt+1(ν) | ν ∈ Ωt+1 is a successor node of µ}

at each node µ ∈ Ωt, and

Zt = cap{Vt, Yt},

where

V x
t =

{
Ṽ x

t if Sbt ≤ x ≤ Sat ,
−∞ otherwise.

The algorithm returns
max
x∈R

Zx
0 ,

shown in Theorem 3.2 to be the ask price πa(ξ, ζ) of the American option.

All functions Zt, Vt and Ṽt for t = 0, 1, . . . , T have non-empty effective do-
mains. This is because, by Theorem 2.1, in an arbitrage-free model there exists a
measure P equivalent to Q and a martingale S under P such that Sbt ≤ St ≤ Sat
for each t = 0, 1, . . . , T . For any such P and S we have ZSt

t > −∞, V St
t > −∞

and Ṽ St
t > −∞ for each t = 0, 1, . . . , T .
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3.2 Hedging

Lemma 3.1 Let t = 0, 1, . . . , T − 1 and let γ, δ be Ft-measurable random vari-
ables such that

γ + xδ ≥ Zx
t (3.1)

for each x ∈ R. Then there are Ft-measurable random variables ρ, σ such that

ρ+ xσ ≥ Zx
t+1 (3.2)

for each x ∈ R, and
ϑt(γ − ρ, δ − σ) ≥ 0. (3.3)

Proof By the construction of Zt in Algorithm 3.1,

γ + xδ ≥ Zx
t ≥ V x

t

for each x ∈ R. From now on the proof is exactly the same as that of Lemma 4.1
in Roux, Tokarz and Zastawniak [RTZ06], and is presented here for completeness.
The only change required involves replacing Zt and Z̃t in [RTZ06] by Vt and,
respectively, Ṽt. Let y be an Ft-measurable random variable such that

V y
t − yδ = max{V x

t − xδ |x ∈ R}. (3.4)

Because Vt is a polyhedral proper concave function with bounded effective do-
main, the maximum is attained. In particular, it follows that

y ∈ [Sbt , Sat ], Ṽ y
t = V y

t > −∞.

If we can find σ and ρ such that (3.3) holds and

D−Ṽ y
t ≥ σ ≥ D+Ṽ y

t , ρ+ yσ = Ṽ y
t , (3.5)

then it will follow by the concavity and the construction of Ṽt that for any x ∈ R

ρ+ xσ ≥ Ṽ x
t ≥ Zx

t+1,

proving (3.2).
To see that we can indeed find such σ and ρ, we consider the following four

cases, covering all possibilities:

1. Sbt < y < Sat . Then D−V y
t = D−Ṽ y

t , D
+V y

t = D+Ṽ y
t , and (3.4) implies

that D−V y
t ≥ δ ≥ D+V y

t . We put

σ = δ, ρ = V y
t − yσ.

As a result, (3.5) holds. Observe that

ρ+ yσ = V y
t ≤ γ + yδ,

σ = δ,

which implies (3.3).
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2. Sbt = y < Sat . Then D+V y
t = D+Ṽ y

t and (3.4) implies that δ ≥ D+V y
t .

We put
σ = min{δ,D−Ṽ y

t }, ρ = V y
t − yσ.

As a result, (3.5) holds. Moreover,

ρ+ yσ = V y
t ≤ γ + yδ,

σ ≤ δ.

Since y = Sbt , this implies (3.3).

3. Sbt < y = Sat . In this case we put

σ = max{δ,D+Ṽ y
t }, ρ = V y

t − yσ,

and follow a similar argument as in case 2.

4. Sbt = y = Sat . We take any finite σ such that

D−Ṽ y
t ≥ σ ≥ D+Ṽ y

t

and put
ρ = V y

t − yσ.

Clearly, (3.5) holds. It also follows that

ρ+ yσ = V y
t ≤ γ + yδ,

and since Sbt = y = Sat , (3.3) is satisfied.

This completes the proof of Lemma 3.1.

The lemma can be used to construct a seller’s superhedging strategy. Observe
that the proof of Lemma 4.1 in [RTZ06] can provide concrete formulae for ρ
and σ, leading to the following algorithm.

Algorithm 3.2 We construct a strategy (α̂, β̂) by induction as follows:

• Put
α̂0 = max

x∈R
Zx
0 , β̂0 = 0.

Then α̂0, β̂0 are F0-measurable, and for each x ∈ R

α̂0 + xβ̂0 ≥ Zx
0 .

• For any t = 1, . . . , T , if Ft−1-measurable random variables α̂t−1, β̂t−1 such
that for each x ∈ R

α̂t−1 + xβ̂t−1 ≥ Zx
t−1

have already been constructed, then Lemma 3.1 provides Ft−1-measurable
random variables α̂t, β̂t such that

ϑt(α̂t−1 − α̂t, β̂t−1 − β̂t) ≥ 0

and for each x ∈ R
α̂t + xβ̂t ≥ Zx

t .

12



Since α̂t, β̂t are Ft−1-measurable, they are also Ft-measurable, which makes it
possible to iterate the last step.

As a result, we obtain a self-financing strategy (α̂, β̂) ∈ Φ(Sa, Sb) such that
for each τ ∈ T and for each x ∈ [Sbτ , Saτ ]

α̂τ + xβ̂τ ≥ Zx
τ ≥ Y x

τ = ξτ + xζτ ,

implying that for each τ ∈ T

ϑτ (α̂τ − ξτ , β̂τ − ζτ ) ≥ 0.

This means that (α̂, β̂) is a seller’s superhedging strategy, so that

πa(ξ, ζ) ≤ α̂0 = max
x∈R

Zx
0 . (3.6)

In Theorem 3.2 we shall prove that (α̂, β̂) is in fact a seller’s optimal super-
hedging strategy, that is, πa(ξ, ζ) = α̂0.

3.3 Stopping Time and Risk-Neutral Expectation

We construct a mixed stopping time χ̂, a probability measure P̂ and an adapted
process Ŝ such that (P̂ , Ŝ) ∈ P̄(χ̂) and

max
x∈R

Zx
0 = EP̂ ((ξ + Ŝζ)χ̂).

In Theorem 3.2 we show that πa(ξ, ζ) = EP̂ ((ξ + Ŝζ)χ̂).

Algorithm 3.3 Construct by induction a mixed stopping time χ̂, a probability
measure P̂ , an adapted process Ŝ and auxiliary adapted processes Û , Ẑ, X̂, V̂ , Ŷ
as follows:

• For t = 0 there is a Û0 ∈ domZ0 such that

ZÛ0
0 = max

x∈R
Zx
0 .

By Lemma 2.3, since Z0 = cap{V0, Y0}, there exist X̂0 ∈ domV0, Ŝ0 ∈
domY0 and λ ∈ [0, 1] such that

Û0 = (1− λ)X̂0 + λŜ0,

ZÛ0
0 = (1− λ)V X̂0

0 + λY Ŝ0
0 .

Put
Ẑ0 = ZÛ0

0 , V̂0 = V X̂0
0 , Ŷ0 = Y Ŝ0

0 .

Also put
χ̂0 = λ

and
P̂0 = 1.

13



• For any t = 1, . . . , T suppose that χ̂s, P̂s, , Ŝs and Ûs, Ẑs, X̂s, V̂s, Ŷs have
already been constructed for each s = 0, 1, . . . , t − 1. Take any node µ ∈
Ωt−1. By Lemma 2.3, since X̂t−1(µ) ∈ domVt−1(µ) ⊂ dom Ṽt−1(µ) and
Ṽt−1(µ) = cap{Zt(ν) | ν ∈ succµ}, it follows that

X̂t−1(µ) =
∑

ν∈succµ

pνÛt(ν),

V̂t−1(µ) = V
X̂t−1(µ)
t−1 (µ) =

∑
ν∈succµ

pνZ
Ût(ν)
t (ν)

for some pν ≥ 0 and Ût(ν) ∈ domZt(ν), where ν ∈ succµ, such that

1 =
∑

ν∈succµ

pν .

Consider two cases:

– If t < T , for each ν ∈ succµ use Lemma 2.3 again to deduce from
Zt(ν) = cap{Vt(ν), Yt(ν)} and Ût(ν) ∈ domZt(ν) that there exist
X̂t(ν) ∈ domVt(ν), Ŝt(ν) ∈ domYt(ν) and λν ∈ [0, 1] such that

Ût(ν) = (1− λν)X̂t(ν) + λν Ŝt(ν),

Z
Ût(ν)
t (ν) = (1− λν)V

X̂t(ν)
t (ν) + λνY

Ŝt(ν)
t (ν).

– If t = T , then for each ν ∈ succµ put

X̂T (ν) = ŜT (ν) = Ût(ν), λν = 1.

Next put

Ẑt(ν) = Z
Ût(ν)
t (ν), V̂t(ν) = V

X̂t(ν)
t (ν), Ŷt(ν) = Y

Ŝt(ν)
t (ν).

Also put

χ̂t(ν) = λν

(
1−

t−1∑
s=0

χ̂s(ν)

)
and

P̂t(ν) = pν P̂t−1(µ),

concluding the inductive step.

The objects constructed in Algorithm 3.3 are by no means unique, and we can
choose any χ̂, P̂ , Ŝ, Û , Ẑ, X̂, V̂ , Ŷ satisfying the above conditions.
It follows from the construction that

χ̂∗t Ût = χ̂∗t+1X̂t + χ̂tŜt, (3.7)

χ̂∗t Ẑt = χ̂∗t+1V̂t + χ̂tŶt (3.8)
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for each t = 0, 1, . . . , T , and

X̂t−1 = EP̂ (Ût|Ft−1), (3.9)

V̂t−1 = EP̂ (Ẑt|Ft−1), (3.10)

for each t = 1, . . . , T .
The last two equalities, in turn, imply that

χ̂∗t+1X̂t = EP̂ (Ŝ
χ̂∗

t+1|Ft), (3.11)

χ̂∗t+1V̂t = EP̂ (Ŷ
χ̂∗

t+1|Ft) (3.12)

for each t = 0, 1, . . . , T . We give a proof of (3.11) by backward induction. That
of (3.12) is similar and will be omitted. For t = T both sides of (3.11) are equal
to zero. Suppose that (3.11) holds for some t = 1, . . . , T . Then by (3.7) and
(3.9)

χ̂∗t X̂t−1 = EP̂ (χ̂
∗
t Ût|Ft−1)

= EP̂ (χ̂
∗
t+1X̂t + χ̂tŜt|Ft−1)

= EP̂ (EP̂ (Ŝ
χ̂∗

t+1|Ft) + χ̂tŜt|Ft−1)

= EP̂ (Ŝ
χ̂∗

t+1 + χ̂tŜt|Ft−1)

= EP̂ (Ŝ
χ̂∗

t |Ft−1),

completing the proof of (3.11).
Combining (3.11) with the fact that Ŝt ∈ domYt = [Sbt , Sat ] and X̂t ∈

domVt ⊂ [Sbt , Sat ], we obtain

Sbt ≤ Ŝt ≤ Sat ,

χ̂∗t+1S
b
t ≤ χ̂∗t+1X̂t = EP̂ (Ŝ

χ̂∗

t+1|Ft) ≤ χ̂∗t+1S
a
t

for each t = 0, 1, . . . , T , concluding that

(P̂ , Ŝ) ∈ P̄(χ̂). (3.13)

Moreover, by (3.8) and (3.12),

max
x∈R

Zx
0 = Ẑ0 = χ∗0Ẑ0 = χ̂∗1V̂0 + χ̂0Ŷ0 = EP̂ (Ŷ

χ̂∗

1 ) + χ̂0Ŷ0

= EP̂ (Ŷ
χ̂∗

1 + χ̂0Ŷ0) = EP̂ (Ŷ
χ̂∗

0 ) = EP̂ (Ŷχ̂) = EP̂ ((ξ + Ŝζ)χ̂). (3.14)

Remark 3.2 By Remark 2.1 the above construction can be carried out in such
a way that P̂ is concentrated on a binomial subtree.
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3.4 Seller’s Price Representations

Theorem 3.2 The seller’s price of an American option with payoff process (ξ, ζ)
and exercise time T can be represented as

πa(ξ, ζ) = α̂0 = max
x∈R

Zx
0 = EP̂ ((ξ + Ŝζ)χ̂)

= max
χ∈X

max
(P,S)∈P̄(χ)

EP ((ξ + Sζ)χ) = max
χ∈X

sup
(P,S)∈P(χ)

EP ((ξ + Sζ)χ),

where α̂0 is the initial value of the seller’s hedging strategy (α̂, β̂) constructed in
Algorithm 3.2, Z0 is the polyhedral proper concave function in Algorithm 3.1, χ̂ is
the mixed stopping time, P̂ the probability measure and Ŝ the adapted process
in Algorithm 3.3, the sets P(χ) and P̄(χ) are defined in Section 2.3, and EP

denotes the expectation under probability measure P .

Proof The equalities follow immediately by (3.6), (3.13), (3.14), and Lem-
mas 5.1 and 5.2.

3.5 Example

Example 3.1 Consider a two-period binary tree model and an American option
with the following ask and bid stock prices Sa, Sb and payoff process (ξ, ζ):

Sa0 = 10 ξ0 = 0
Sb0 = 10 ζ0 = 0

↗
↘

Sa1 = 14 ξ1 = 3
Sb1 = 8 ζ1 = 0

Sa1 = 6 ξ1 = 0
Sb1 = 6 ζ1 = 0

↗
↘

↗
↘

Sa1 = 15 ξ2 = 9
Sb1 = 15 ζ2 = 0

Sa1 = 12 ξ2 = 0
Sb1 = 12 ζ2 = 0

Sa1 = 4 ξ2 = 0
Sb1 = 4 ζ2 = 0

The risk-free rate is equal to zero (all bond prices are 1). The nodes in the tree
at time 1 will be referred to as u and d, and those at time 2 as uu, ud, du and dd.
The ask and bid stock prices as well as the payoffs are taken to be the same at
nodes ud and du (they are path-independent). The option is settled in cash,
that is, ζ ≡ 0.
In Figure 1 we present the construction in Algorithm 3.1 for two of the nodes,

namely u and the root node, which are the interesting ones in this example;
the construction at any of the remaining nodes is straightforward. Looking at
function Z0 (which takes only one finite value), we find the seller’s price of the
option to be

πa(ξ, ζ) = max
x∈R

Zx
0 = Z100 = 4.

Figure 1 also shows the values of the processes Û , Ẑ, X̂, V̂ , Ŝ, Ŷ from Algo-
rithm 3.3 at the root node and at node u. An optimal mixed stopping time χ̂
and pair (P̂ , Ŝ) ∈ P̄(χ̂) satisfying

πa(ξ, ζ) = EP̂ ((ξ + Ŝζ)χ̂) = 4
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can be computed using Algorithm 3.3:

χ̂0 = 0
P̂0 = 1
Ŝ0 = 10

↗

↘

χ̂1(u) = 2
3

P̂1(u) = 1
Ŝ1(u) = 8

χ̂1(u) = 0
P̂1(d) = 0
Ŝ1(d) = 6

↗
↘

↗
↘

χ̂2(uu) = 1
3

P̂2(uu) = 2
3

Ŝ2(uu) = 15

χ̂2(ud) = 1
3

P̂2(ud) = 1
3

Ŝ2(ud) = 12

χ̂2(du) = 1
P̂2(du) = 0
Ŝ2(du) = 12

χ̂2(dd) = 1
P̂2(dd) = 0
Ŝ2(dd) = 4

It is interesting to trace the mixed stopping time values χ̂0 = 0 and χ̂1(u) = 2
3

to the diagrams in Figure 1, where we can see that

Z100 = 1V
10
0 + 0Y

10
0 ,

Z101 (u) =
1
3
V 141 (u) +

2
3
Y 81 (u).

In Figure 1 we can also see how the probabilities P̂1(u) = 1 and P̂2(uu) = 2
3 ,

P̂2(ud) = 1
3 arise. They follow from

V 100 = 1Z
10
1 (u) + 0Z

6
1 (d),

V 141 (u) =
2
3
Z152 (uu) +

1
3
Z122 (ud).

An optimal superhedging strategy can be found by means of Algorithm 3.2:

(α̂0, β̂0) = (4, 0),

(α̂1, β̂1) = (−1, 12 ),

(α̂2(u), β̂2(u)) = (−36, 3), (α̂2(d), β̂2(d)) = (2, 0).

Last but not least, the example serves to show that mixed stopping times
play an essential role in representing the seller’s price, and cannot be replaced
by pure stopping times: The highest possible value of EP (ξτ +Sτζτ ) that can be
obtained for any pure stopping time τ ∈ T and any (P, S) ∈ P̄(χτ ) is 3, which
falls short of πa(ξ, ζ) = 4.

4 Numerical Results

The results of this paper may be used to price American options with various
payoffs under transaction costs. We present two numerical examples. The first
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Figure 1: Seller’s algorithm at node u and the root node in Example 3.1

is based on a binomial tree model, and the second involves a trinomial tree.
The binomial tree example overlaps with earlier numerical work by Perrakis and
Lefoll [PL04], Table 1, which we extend to more time steps.
In friction-free models, where cash and shares are freely exchangeable, it is

self-evident that exercising an American option is of benefit to its owner when-
ever the cash equivalent payoff of the option is non-negative. In the presence
of transaction costs, the case is no longer as clear-cut, as the desirability of the
payoff (and hence the exercise decision) may also depend on the current position
in stock and bonds of the owner at the time that the payoff becomes available.
Motivated by the work of Perrakis and Lefoll [PL04], we alleviate this problem
by awarding the buyer the right to not exercise the option at all, formally by
adding an extra time step T + 1 to the model and setting the option payoff at
that time to be zero.

Example 4.1 Consider a binomial tree model. The stock price process S sat-
isfies

St = εtSt−1

for t = 1, . . . , T , where S0 = 100 is given, and where ε1, ε2, . . . is a sequence of
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independent identically distributed random variables that take only two values

e−σ
√

h, eσ
√

h,

both with positive probability. Here σ = 0.2 is the stock volatility, and h =
1
4T , where 4T is the number of time steps per annum. We assume given a
continuously compounded interest rate 10% and a transaction cost rate k ∈ [0, 1)
so that, for t = 1, . . . , T , the bid and ask stock prices are

Sbt = (1− k)St, Sat = (1 + k)St.

To be consistent with [PL04] we also assume that there are no transaction costs
at time 0, i.e.

Sbt = Sa0 = S0.

Table 1 contains the ask prices of an American put option with strike price K
exercised at time Th = 0.25 by the delivery of a portfolio (K,−1) of cash and
stock at any exercise time of the buyer’s choosing. For T = 20 and T = 40, our
results corresponds exactly to those of Perrakis and Lefoll [PL04], Table 1.

Table 1 Seller’s prices of American put options in the binomial model

Strike Number of time steps (T )
(K) 20 40 52a 250a

85 0.295 0.374 0.424a 0.904a

90 0.849 1.009 1.088a 1.835a

95 1.954 2.218 2.320a 3.310a

100 3.867 4.155 4.286a 5.413a

105 6.689 6.964 7.078a 8.178a

110 10.416 10.601 10.698a 11.585a

115 15.000 15.028 15.063a 15.580a

aNot considered in Perrakis and Lefoll [PL04].

Example 4.2 Consider now a trinomial tree model. We assume that the stock
price process S satisfies

St = εtSt−1

for t = 1, . . . , T , where S0 = 100 is given, and where ε1, ε2, . . . is a sequence of
independent identically distributed random variables taking only the values

e−σ
√

h, 1, eσ
√

h,

all with positive probability. Here σ = 0.2 is the stock volatility, and h = 1
T ,

where T is the number of time steps per annum. Also given is a continuously
compounded interest rate of 10% and a transaction cost rate k ∈ [0, 1). For
t = 0, . . . , T , the bid and ask stock prices are

Sbt = (1− k)St, Sat = (1 + k)St.
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In Table 2 we give the ask prices of a call option and a bull spread with one year
to expiry. The call option with strike price 100 may be exercised by acceptance
of the portfolio (−100, 1) by the buyer at any time. The bull spread is a basket
with cash settlement consisting of one long call with strike price 95 and one short
call with strike price 105, i.e. the payoff of the spread is

(St − 95)1{St>95} − (St − 105)1{St>105}

in cash at any time t = 0, . . . , T .

Table 2 Seller’s prices of American options in the trinomial model

Transaction Number of time steps (T )
cost rate (k) 12 24 52 250

Call option
0% 13.098 13.183 13.230 13.261
1% 15.036 15.489 16.130 18.195
2% 16.822 17.557 18.630 21.100
3% 18.503 19.472 20.893 25.280

Bull spread
0% 8.896 8.881 9.215 9.450
1% 9.502 9.375 9.651 9.699
2% 9.824 9.592 9.847 9.895
3% 9.917 9.786 9.962 9.984

5 Appendix: Technical Results

Lemma 5.1 For an American option with payoff process (ξ, ζ)

sup
χ∈X

sup
(P,S)∈P̄(χ)

EP ((ξ + Sζ)χ) ≤ πa(ξ, ζ).

Proof We need to show that

EP ((ξ + Sζ)χ) ≤ α0

for any χ ∈ X , any (P, S) ∈ P̄(χ) and any (α, β) ∈ Φ(Sa, Sb) such that for each
τ ∈ T

ϑτ (ατ − ξτ , βτ − ζτ ) ≥ 0. (5.1)

The self-financing condition (2.1), which is satisfied by (α, β), together with
inequalities (2.3) from the definition of P̄(χ) imply that

χ∗t+1αt + EP (S
χ∗

t+1|Ft)βt ≥ χ∗t+1αt+1 + EP (S
χ∗

t+1|Ft)βt+1 (5.2)

for each t = 0, 1, . . . , T . We shall prove by backward induction that for each
t = 0, 1, . . . , T

χ∗t+1αt + EP (S
χ∗

t+1|Ft)βt ≥ EP ((α+ Sβ)χ
∗

t+1|Ft). (5.3)
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Inequality (5.3) holds for t = T since both sides are equal to zero. Suppose that
(5.3) holds for some t = 1, . . . , T . Then by (5.2)

χ∗t αt−1 + EP (S
χ∗

t |Ft−1)βt−1 ≥ χ∗t αt + EP (S
χ∗

t |Ft−1)βt

= EP (χ
∗
t αt + Sχ∗

t βt|Ft−1)

= EP (χt (αt + Stβt) + χ∗t+1αt + Sχ∗

t+1βt|Ft−1)

= EP (χt (αt + Stβt) + χ∗t+1αt + EP (S
χ∗

t+1|Ft)βt|Ft−1)

≥ EP (χt (αt + Stβt) + EP ((α+ Sβ)χ
∗

t+1|Ft)|Ft−1)

= EP (χt (αt + Stβt) + (α+ Sβ)χ
∗

t+1|Ft−1)

= EP ((α+ Sβ)χ
∗

t |Ft−1),

completing the proof of (5.3). In particular, for t = 0 inequality (5.3) implies
that χ∗1α0 ≥ EP ((α+ Sβ)χ

∗

1 ). Since, in addition, χ0α0 = EP (χ0(α0 + S0β0)), it
follows that

α0 = χ0α0 + χ∗1α0 ≥ EP (χ0(α0 + S0β0) + (α+ Sβ)χ
∗

1 )

= EP ((α+ Sβ)χ
∗

0 ) = EP ((α+ Sβ)χ).

For each τ ∈ T the superhedging condition (5.1) and Sbτ ≤ Sτ ≤ Sbτ give

ατ + Sτβτ ≥ ξτ + Sτζτ .

Representing χ as a convex combination (2.2) of pure stopping times, we there-
fore obtain

α0 ≥ EP ((α+ Sβ)χ) =
∑
τ∈T

στEP (ατ + Sτβτ )

≥
∑
τ∈T

στEP (ξτ + Sτζτ ) = EP ((ξ + Sζ)χ),

as required.

Lemma 5.2 For any mixed stopping time χ ∈ X and any American option
payoff process (ξ, ζ)

max
(P,S)∈P̄(χ)

EP ((ξ + Sζ)χ) = sup
(P,S)∈P(χ)

EP ((ξ + Sζ)χ).

Proof Since P̄(χ) is bounded and closed, the maximum is attained. It is
sufficient to show that for any δ > 0 and any (P̄ , S̄) ∈ P̄(χ) there exists a pair
(P δ, Sδ) ∈ P(χ) such that∣∣EP̄ ((ξ + S̄ζ)χ)− EP δ((ξ + Sδζ)χ)

∣∣ < δ. (5.4)
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Due to the lack of arbitrage, by Theorem 2.1 there exists some (P, S) ∈ P. If
EP ((ξ+Sζ)χ) = EP̄ ((ξ+ S̄ζ)χ), then (5.4) is trivial. If this is not the case, take
any

ε ∈

(
0,min

{
1,

δ∣∣EP ((ξ + Sζ)χ)− EP̄

(
(ξ + S̄ζ)χ

)∣∣
})

,

and put

P δ = (1− ε)P̄ + εP,

Sδ
t = EP δ

(
(1− ε)S̄t

dP̄

dP δ
+ εSt

dP

dP δ

∣∣∣∣Ft

)
for each t = 0, 1, . . . , T . It follows that P δ is a probability measure equivalent
to Q. It also follows that

Sδ
t = EP δ

(
(1− ε)S̄t

dP̄

dP δ
+ εSt

dP

dP δ

∣∣∣∣Ft

)
≤ Sat EP δ

(
(1− ε)

dP̄

dP δ
+ ε

dP

dP δ

∣∣∣∣Ft

)
= Sat

and, in a similar way, that
Sbt ≤ Sδ

t

for any t = 0, 1, . . . , T . Next,

EP δ((Sδ)χ
∗

t+1|Ft) = (1− ε)EP̄ (S̄
χ∗

t+1|Ft) + εEP (S
χ∗

t+1|Ft)

≤ (1− ε)χ∗t+1S
a
t + εχ∗t+1S

a
t = χ∗t+1S

a
t

and, similarly,
χ∗t+1S

b
t ≤ EP δ((Sδ)χ

∗

t+1|Ft)

for any t = 0, 1, . . . , T . As a result, (P δ, Sδ) ∈ P(χ). Moreover,

EP δ((ξ + Sδζ)χ) = EP δ(ξχ) + EP δ((Sδζ)χ)

= (1− ε)EP̄ (ξχ)+εEP (ξχ) + (1− ε)EP̄ ((S̄ζ)χ) + εEP ((Sζ)χ)

= (1− ε)EP̄ ((ξ + S̄ζ)χ) + εEP ((ξ + Sζ)χ),

which implies that∣∣EP̄ ((ξ + S̄ζ)χ)− EP δ((ξ + Sδζ)χ)
∣∣ = ε

∣∣EP ((ξ + Sζ)χ)− EP̄ ((ξ + S̄ζ)χ)
∣∣ < δ.
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