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Abstract The paper is devoted to optimal superreplication of European options
in the discrete setting under proportional transaction costs on the underlying
asset. In particular, general pricing and hedging algorithms are developed. This
extends previous work by many authors, which has been focused on the binomial
tree model and options with specific payoffs such as calls or puts, often under
certain bounds on the magnitude of transaction costs. All such restrictions
are hereby removed. The results apply to options with arbitrary payoffs in
the general discrete market model with arbitrary proportional transaction costs.
Numerical examples are presented to illustrate the results and their relationships
to the earlier work on pricing options under transaction costs.

1 Introduction

The question of pricing and hedging of European options in the presence of
proportional transaction costs has been examined by many authors. The first
to consider the problem was Merton [Mer89], [Mer90], followed by Dermody
and Rockafellar [DR91], Boyle and Vorst [BV92], Bensaid, Lesne, Pagès and
Scheinkman [BLPS92], Edirisinghe, Naik and Uppal [ENU93], Jouini and Kallal
[JK95], Kusuoka [Kus95], Koehl, Pham and Touzi [KPT96], [KPT99], [KPT01],
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Stettner [Ste97], [Ste00], Perrakis and Lefoll [PL97], Rutkowski [Rut98], Touzi
[Tou99], Jouini [Jou00], Palmer [Pal01b], [Pal01a], Kociński [Koc04], Chen,
Palmer and Sheu [CPS05], and others.

The above papers are concerned with the upper and lower hedging prices
that constitute the bounds of the no-arbitrage interval of option prices under
transaction costs. These prices will also be referred to as the ask and bid option
prices, see Definition 3.1. The significance of the ask and bid option prices is
not only in determining the no-arbitrage interval, but also in that they are the
liquidity prices. Namely, the option can be bought or sold on demand at the
ask price or, respectively, at the bid price. Liquidity is important, in particular,
when an option is used as part of a strategy to hedge another derivative security,
as is often the case in practice.

In contrast, preference-based approaches lead to intermediate option prices
within the no-arbitrage interval. They include pricing based on expected utility
maximisation, see Hodges and Neuberger [HN89], Mercurio and Vorst [MV97],
Constantinides and Perrakis [CP02], Davis, Panas and Zariphopoulou [DPZ93],
Constantinides and Zariphopoulou [CZ99], [CZ01], Monoyios [Mon03], [Mon04],
as well as risk minimisation as in Mercurio and Vorst [MV97] or Lamberton,
Pham and Schweizer [LPS98].

The present work follows the former group of papers in studying the ask and
bid option prices that determine the no-arbitrage interval. The main new con-
tribution is an algorithm for computing the ask and bid prices of options with
arbitrary payoffs in an arbitrary discrete model under proportional transaction
costs of any magnitude. This significantly extends the techniques in the earlier
papers. Another important contribution is an optimal hedging algorithm, which
also applies to arbitrary option payoffs and arbitrary discrete models under pro-
portional transaction costs of any magnitude.

To explain the idea behind the pricing algorithm, let us consider the concave
function x 7→ Zx

0 such that

Zx
0 = inf(α + xβ)

for each x ∈ R, where the infimum is taken over all portfolios (α, β) of cash and
stock held at time 0 that are sufficient to hedge the option writer’s position, in
the sense that there is a self-financing strategy starting with (α, β) that super-
replicates the option payoff. In the discrete setting the infimum can in fact be
replaced by a minimum for any x such that the infimum is finite, and Z0 turns
out to be a polyhedral (piecewise linear) concave function. A portfolio (α, β)
held at time 0 is sufficient to hedge the option writer’s position if and only if for
each x ∈ R

α + xβ ≥ Zx
0 .

Pricing the option can therefore be reduced to computing the polyhedral concave
function Z0. Namely, to be able to hedge his/her position, a writer without any
initial stock holdings would need to receive a cash amount α such that α ≥ Zx

0
for each x ∈ R. The smallest such amount

α = max
x∈R

Zx
0
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will be the ask price of the option.
Algorithm 4.1 is essentially a dynamic programming procedure on the tree

representing the discrete stock price model. It proceeds by backward induction
to compute a polyhedral concave function Zt(µ) with similar properties to those
mentioned above for each time t node µ of the tree, starting with the nodes
at the expiry time T of the option. The function Z0 is thus obtained at the
root node of the tree, and the option price computed as the maximum of Z0.
The convex optimisation problem for Z0 is thereby reduced to a series of much
simpler local optimisation problems at each node, resulting in an efficient and
general algorithm.

Algorithm 4.2 for computing the writer’s hedging strategy is closely related
to the above and based on the following property, which will be formalised in
Lemma 4.1: If a portfolio (γ, δ) satisfying γ + xδ ≥ Zx

t (µ) for each x ∈ R is held
at a node µ of the tree, then a new portfolio (ρ, σ) can be constructed from (γ, δ)
in a self-financing manner such that ρ + xσ ≥ Zx

t+1(ν) for each x ∈ R and each
successor node ν of µ. This makes it possible to string such portfolios together
to construct a self-financing strategy hedging the option writer’s position.

Thanks to a simple transformation between long and short positions in a
European option, the same algorithms can be used to compute the bid price and
to hedge the option buyer’s position.

In Theorem 4.2 we establish the correctness of both algorithms and, as a by-
product, re-prove (by a very different method) a version of Joinini and Kallal’s
[JK95] representation of the ask option price in terms of the optimal risk-neutral
probability measure under proportional transaction costs.

Three numerical examples are presented. The first two are based on the
results computed by Boyle and Vorst [BV92], Edirisinghe, Naik and Uppal
[ENU93] and Palmer [Pal01a] for the binomial tree model. The examples serve
to show that the new algorithm extends all such approaches to a much wider
class of options and parameter ranges in a general and efficient manner. The
third example involves a trinomial tree and a basket option to illustrate the
claim that the method is capable of dealing with arbitrary discrete models and
arbitrary option payoffs.

Option pricing procedures based on minimising the cost of supperreplica-
tion, such as those in [BLPS92] or [ENU93], or maximising the risk-neutral
expectation of the payoff, as in the representations in [JK95] or [Jou00], grow
exponentially as the trading frequency increases. This is because the optimal
superreplicating strategy and the optimal risk-neutral probability measure that
give the option price are, in general, path-dependent, even for options with
path-independent payoff. Meanwhile, the polyhedral concave functions Zt(µ) in
Algorithm 4.1 are path-independent, resulting in only polynomial growth. This
accounts for the efficiency of the pricing algorithm.
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2 Model Specifications and Notation

We consider asset models with discrete time t = 0, 1, . . . , T and finite probability
space Ω equipped with a probability measure Q on the sigma-field F of all
subsets of Ω such that Q{ω} > 0 for each ω ∈ Ω. In addition, a filtration
{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ FT = F is given. For any t = 0, 1, . . . , T we denote
by Ωt the set of atoms of Ft, and identify Ft-measurable random variables with
functions defined on Ωt.

The filtration can be thought of in terms of a tree, the atoms of Ft being
identified with the nodes of the tree at time t. For nodes µ ∈ Ωt and ν ∈ Ωt+1

such that ν ⊂ µ we say that ν is a successor node of µ. We denote by

succ µ = {ν ∈ Ωt+1 | ν ⊂ µ}

the set of successor nodes of µ ∈ Ωt.
The market model will consist of a risk-free and a risky security, a bond (or

cash) and a stock. Trading in stock is subject to proportional transaction costs:
at any time t = 0, . . . , T a share can be bought for the ask price Sat or sold for
the bid price Sbt , where Sat ≥ Sbt > 0. The processes Sa and Sb are adapted to
the filtration.

Without loss of generality, we assume the bond to be a risk-free security with
zero interest rate, the bond price being 1 for all t = 0, 1, . . . , T . Equivalently, all
prices can be regarded as discounted prices.

2.1 Self-Financing Strategies, Arbitrage and Risk-Neutral
Measures

We define the time t = 0, . . . , T liquidation value ϑt of a portfolio (ξ, ζ) of cash
and stock as

ϑt(ξ, ζ) = ξ + ζ+Sbt − ζ−Sat .

Definition 2.1 A self-financing strategy is a pair (α, β) of predictable pro-
cesses αt, βt representing positions in cash and stock at t = 0, . . . , T such that
β0 = 0 and

ϑt(αt − αt+1, βt − βt+1) ≥ 0 (2.1)

for each t = 0, . . . , T−1. The set of such strategies will be denoted by Φ(Sa, Sb).

Definition 2.2 An arbitrage opportunity is a strategy (α, β) ∈ Φ(Sa, Sb) such
that α0 ≤ 0, ϑT (αT , βT ) ≥ 0 and Q {ϑT (αT , βT ) > 0} > 0.

Definition 2.3 We say that P is a risk-neutral probability if P is a probability
measure on Ω equivalent to Q and there is a martingale S under P such that
Sbt ≤ St ≤ Sat for each t = 0, . . . , T .

In what follows we shall denote by P the set of pairs (P, S) such that P
and S satisfy the conditions in Definition 2.3. We shall also use the larger set
P̄ of pairs (P, S) such that P is a probability measure on Ω (not necessarily
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equivalent to Q) and S is a martingale under P that satisfies Sbt ≤ St ≤ Sat for
each t = 0, . . . , T .

The following result, obtained by Jouini and Kallal [JK95], who used a
slightly different notion of arbitrage, referred to as ‘free lunch’ in their work,
is also valid under the above definition of an arbitrage opportunity, as shown in
Tokarz [Tok04]. See also Ortu [Ort01].

Theorem 2.1 (Jouini and Kallal [JK95]) There is no arbitrage opportunity
if and only if P 6= ∅.

2.2 Concave Functions

Here we collect some information about concave functions which will be used in
this paper, referring to Rockafellar [Roc97] for more details.

By a proper concave function we mean any function f : R → R ∪ {−∞} such
that for any x ≤ y ≤ z

(z − x)f(y) ≥ (z − y)f(x) + (y − x)f(z)

and f(x) > −∞ for some x ∈ R. The effective domain of such a function f is
defined as

dom f = {x ∈ R | f(x) > −∞}.
Moreover, we say that f is a polyhedral proper concave function if dom f is
closed and there exist real numbers a1, . . . , an and b1, . . . , bn such that for each
x ∈ dom f

f(x) = min
i=1,...,n

(aix + bi).

Definition 2.4 The concave cap cap{f1, . . . , fn} of functions f1, . . . , fn :
R → R ∪ {−∞} is defined as the smallest concave function h such that

h ≥ max{f1, . . . , fn}.

Lemma 2.2 Suppose that f1, . . . , fn are polyhedral proper concave functions
on R with bounded effective domains. Then cap{f1, . . . , fn} is also a polyhe-
dral proper concave function with bounded effective domain, such that for any x
in the effective domain of cap{f1, . . . , fn}

cap{f1, . . . , fn}(x) = max
n∑

i=1

λifi(xi), (2.2)

where the maximum is taken over all λ1, . . . , λn ≥ 0 and x1 ∈ dom f1, . . . , xn ∈
dom fn satisfying

n∑
i=1

λi = 1,
n∑

i=1

λixi = x.

Remark 2.1 Carathéodory’s theorem allows a stronger assertion, namely that
the maximum in (2.2) is attained for some λ1, . . . , λn and x1, . . . , xn as above
such that all except at most two of the λi’s are zero.
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Proof outline of Lemma 2.2 The lemma follows from results in Rockafel-
lar [Roc97]. The representation for cap {f1, . . . , fn} is a direct consequence of
Theorem 5.6 in combination with Corollary 9.8.3. Corollary 17.2.1 and Theo-
rem 7.1 ensure that cap{f1, . . . , fn} is polyhedral.

Let f be a proper concave function. For any x ∈ dom f we denote by D−f(x)
and D+f(x) the left and right derivatives of f at x, adopting the convention that

D−f(x) = +∞ if f(y) = −∞ for all y < x,

D+f(x) = −∞ if f(y) = −∞ for all y > x.

Since f is concave, for each x ∈ dom f

D−f(x) ≥ D+f(x).

3 Option Prices

We shall consider a European option to be exercised at time T by the delivery
of a portfolio (ξ, ζ) of cash and stock. Here ξ and ζ are FT -measurable random
variables. The portfolio (ξ, ζ) will be referred to as the option payoff.

Definition 3.1 The ask price (upper hedging price) and the bid price (lower
hedging price) of a European option with payoff (ξ, ζ) and exercise time T are
defined, respectively, by

πa(ξ, ζ) = min{α0 | (α, β) ∈ Φ(Sa, Sb), ϑT (αT − ξ, βT − ζ) ≥ 0},
πb(ξ, ζ) = max{−α0 | (α, β) ∈ Φ(Sa, Sb), ϑT (αT + ξ, βT + ζ) ≥ 0}.

The minimum and maximum are attained because the corresponding sets are
closed and, respectively, bounded below and above in the discrete setting. Any
strategy realising the minimum or maximum will be called an optimal hedging
strategy for the writer and, respectively, for the buyer of the option.

The inequality ϑT (αT − ξ, βT − ζ) ≥ 0 in Definition 3.1 is a superreplication
condition, ensuring that the option writer who follows the self-financing strategy
(α, β) and delivers the payoff (ξ, ζ) at time T will end up holding a solvent
portfolio (αT − ξ, βT − ζ). Similarly, ϑT (αT + ξ, βT + ζ) ≥ 0 means that the
option buyer who follows strategy (α, β) will end up holding a solvent portfolio
(αT + ξ, βT + ζ), having received the option payoff (ξ, ζ).

It is enough to develop algorithms to compute the ask price and writer’s
optimal hedging strategy for an arbitrary European option. This is because the
bid and ask option prices are connected by

πb(ξ, ζ) = −πa(−ξ,−ζ),

and the optimal hedging strategy for the buyer of an option with payoff (−ξ,−ζ)
is the same as the optimal hedging strategy for the writer of an option with payoff
(ξ, ζ).
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4 Ask Price Algorithm

Algorithm 4.1 For a European option exercised by the delivery of a portfolio
(ξ, ζ) of cash and stock at time T we construct adapted processes Zt and Z̃t

for t = 0, 1, . . . , T with values among polyhedral proper concave functions with
bounded domain as follows:

• We put

Zx
T = Z̃x

T =

{
ξ + xζ if x ∈ [SbT , SaT ],
−∞ if x /∈ [SbT , SaT ].

This defines a function x 7→ Zx
T (µ) at each node µ ∈ ΩT .

• For any t = 0, 1, . . . , T − 1 we take

Z̃t(µ) = cap {Zt+1(ν) | ν ∈ Ωt+1 is a successor node of µ} ,

at each node µ ∈ Ωt, and put

Zx
t =

{
Z̃x

t if x ∈ [Sbt , Sat ],
−∞ if x /∈ [Sbt , Sat ].

• The algorithm returns
max
x∈R

Zx
0 ,

shown in Theorem 4.2 to be the ask price πa(ξ, ζ) of the option.

Observe that the lack of arbitrage guarantees that each function Zt(µ) for
t = 0, 1, . . . , T and µ ∈ Ωt takes at least one finite value. In particular, this
means that the algorithm returns a finite value maxx∈R Zx

0 . This is so because
P 6= ∅ by Theorem 2.1, and for any (P, S) ∈ P we clearly have ZSt

t > −∞ for
each t = 0, 1, . . . , T .

This algorithm can readily be implemented on a computer. We present some
numerical examples in Section 5. Observe that each of the polyhedral proper
concave functions featuring in the algorithm can be uniquely characterised by
the finite set of the extreme points of its endograph. This provides a natural
way of encoding such functions in computer memory. Computing the concave
cap is then a straightforward discrete optimisation procedure, as is evaluating
the maximum in the final step.

4.1 Hedging Strategy

Lemma 4.1 Let t = 0, 1, . . . , T − 1 and let γ, δ be Ft-measurable random vari-
ables such that for each x ∈ R

γ + xδ ≥ Zx
t . (4.1)

Then there are Ft-measurable random variables ρ, σ such that for each x ∈ R

ρ + xσ ≥ Zx
t+1 (4.2)
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and
ϑt(γ − ρ, δ − σ) ≥ 0. (4.3)

Proof Let y be an Ft-measurable random variable such that

Zy
t − yδ = max{Zx

t − xδ |x ∈ R}. (4.4)

Because Zt is a polyhedral proper concave function with bounded domain, the
maximum is attained. In particular, it follows that

y ∈ [Sbt , Sat ], Z̃y
t = Zy

t > −∞.

If we can find σ and ρ such that (4.3) holds and

D−Z̃y
t ≥ σ ≥ D+Z̃y

t , ρ + yσ = Z̃y
t , (4.5)

then it will follow by the concavity and the construction of Z̃t that for any x ∈ R

ρ + xσ ≥ Z̃x
t ≥ Zx

t+1,

proving (4.2).
To prove that we can indeed find such σ and ρ, we consider the following

four cases, covering all possibilities:

1. Sbt < y < Sat . Then D−Zy
t = D−Z̃y

t , D+Zy
t = D+Z̃y

t , and (4.4) implies
that D−Zy

t ≥ δ ≥ D+Zy
t . We put

σ = δ, ρ = Zy
t − yσ.

As a result, (4.5) holds. Observe that

ρ + yσ = Zy
t ≤ γ + yδ,

σ = δ,

which implies (4.3).

2. Sbt = y < Sat . Then D+Zy
t = D+Z̃y

t and (4.4) implies that δ ≥ D+Zy
t .

We put
σ = min{δ,D−Z̃y

t }, ρ = Zy
t − yσ.

As a result, (4.5) holds. Moreover,

ρ + yσ = Zy
t ≤ γ + yδ,

σ ≤ δ.

Since y = Sbt , this implies (4.3).

3. Sbt < y = Sat . In this case we put

σ = max{δ,D+Z̃y
t }, ρ = Zy

t − yσ,

and follow a similar argument as in case 2.

8



4. Sbt = y = Sat . We take any finite σ such that

D−Z̃y
t ≥ σ ≥ D+Z̃y

t

and put
ρ = Zy

t − yσ.

Clearly, (4.5) holds. It also follows that

ρ + yσ = Zy
t ≤ γ + yδ,

and since Sbt = y = Sat , (4.3) is satisfied.

This completes the proof of Lemma 4.1.

Observe that this proof of Lemma 4.1 provides concrete formulae for σ and δ.
We can therefore construct a strategy (α, β) hedging the position of the writer
of a European option with payoff (ξ, ζ), as in the following algorithm.

Algorithm 4.2 We construct a self financing strategy (α, β) by induction as
follows:

• Put
α0 = max

x∈R
Zx
0 , β0 = 0.

Then α0, β0 are F0-measurable and for each x ∈ R

α0 + xβ0 ≥ Zx
0 .

• For any t = 1, . . . , T , if Ft−1-measurable random variables αt−1, βt−1 such
that for each x ∈ R

αt−1 + xβt−1 ≥ Zx
t−1

have already been constructed, then Lemma 4.1 provides Ft−1-measurable
random variables αt, βt such that for each x ∈ R

αt + xβt ≥ Zx
t

and
ϑt(αt−1 − αt, βt−1 − βt) ≥ 0.

Since αt, βt are Ft−1-measurable, they are also Ft-measurable, which makes it
possible to iterate the last step.

As a result, we obtain a strategy (α, β) ∈ Φ(Sa, Sb) such that for each
x ∈ [SbT , SaT ]

αT + xβT ≥ Zx
T = ξ + xζ,

implying that
ϑT (αT − ξ, βT − ζ) ≥ 0.

By Definition 3.1 it follows that

πa(ξ, ζ) ≤ α0 = max
x∈R

Zx
0 . (4.6)

In Theorem 4.2 we shall prove that (α, β) is in fact an optimal hedging strategy
for the writer, that is, πa(ξ, ζ) = α0.
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4.2 Representations for Ask Price

The theorem below establishes various representations for the ask price πa(ξ, ζ),
namely in terms of the writer’s hedging strategy, the pricing algorithm, and
the expectations under (possibly degenerate) risk-neutral probabilities. The last
representation in terms of non-degenerate (equivalent to Q) risk neutral proba-
bilities is known, see Jouini and Kallal [JK95], but here it is obtained by a very
different technique.

In particular, the theorem proves the correctness of Algorithms 4.1 and 4.2
for computing the option ask price and writer’s optimal hedging strategy under
proportional transaction costs.

Theorem 4.2 The ask price of a European option with payoff (ξ, ζ) and exercise
time T can be represented as

πa(ξ, ζ) = α0

= max
x∈R

Zx
0

= max
(P,S)∈P̄

EP (ξT + ST ζT )

= sup
(P,S)∈P

EP (ξT + ST ζT ),

where α0 is the initial value of the writer’s hedging strategy (α, β) constructed
in Algorithm 4.2, Z0 is the polyhedral proper concave function constructed in
Algorithm 4.1, the sets P and P̄ are defined in Section 2.1, and EP denotes the
expectation under probability measure P .

Proof By Lemma 2.2, for any t = 1, . . . , T , any node µ ∈ Ωt−1 and any
x ∈ dom Zt−1(µ) there are numbers y(ν) ∈ dom Zt(ν) and λ(ν) ≥ 0 for each
node ν ∈ succ µ such that

1 =
∑

ν∈succµ

λ(ν),

x =
∑

ν∈succµ

λ(ν)y(ν),

Zx
t−1(µ) =

∑
ν∈succµ

λ(ν)Zy(ν)
t (ν).

Using this property, we can construct by induction adapted processes Ŝ, Ẑ and
a probability measure P̂ on Ω such that:

•
Ẑ0 = max

x∈R
Zx
0 = ZŜ0

0 ;
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• For each t = 1, . . . , T and each µ ∈ Ωt−1 there are numbers λ(ν) ≥ 0 for
each node ν ∈ succ µ satisfying

P̂ (ν|µ) = λ(ν),

Ŝt−1(µ) =
∑

ν∈succµ

λ(ν)Ŝt(ν),

Ẑt−1(µ) =
∑

ν∈succµ

λ(ν)Ẑt(ν);

• For each t = 0, 1, . . . , T

Sbt ≤ Ŝt ≤ Sat ,

Ẑt = ZŜt
t .

Such processes Ŝ, Ẑ and probability measure P̂ may not be unique, in which
case we choose any Ŝ, Ẑ, P̂ satisfying the above conditions.

It follows that Ŝ and Ẑ are martingales under P̂ . As a result, (P̂ , Ŝ) ∈ P̄
and

EP̂ (ξ + ŜT ζ) = EP̂ (ẐT ) = Ẑ0 = max
x∈R

Zx
0 .

This proves that
max
x∈R

Zx
0 ≤ max

(P,S)∈P̄
EP (ξ + ST ζ). (4.7)

Now, by Definition 3.1, we can take a strategy (γ, δ) ∈ Φ(Sa, Sb) such that
γ0 = πa(ξ, ζ) and ϑT (γT − ξ, δT − ζ) ≥ 0. Then ξ + xζ ≤ γT + xδT for each
x ∈ [SbT , SaT ]. Also take an arbitrary pair (P, S) ∈ P̄. Because SbT ≤ ST ≤ SaT ,
it follows that ξ + ST ζ ≤ γT + ST δT . By Lemma 7.1 the process γ + Sδ is a
supermartingale under P . As a result,

EP (ξ + ST ζ) ≤ EP (γT + ST δT ) ≤ γ0 = πa(ξ, ζ)

for any (P, S) ∈ P̄. It follows that

max
(P,S)∈P̄

EP (ξ + ST ζ) ≤ γ0 = πa(ξ, ζ). (4.8)

Inequalities (4.7), (4.8) and (4.6) imply that

πa(ξ, ζ) = α0 = max
x∈R

Zx
0 = max

(P,S)∈P̄
EP (ξ + ST ζ).

To complete the proof it remains to observe that

max
(P,S)∈P̄

EP (ξ + ST ζ) = sup
(P,S)∈P

EP (ξ + ST ζ)

by Lemma 7.2.

Remark 4.1 By Remark 2.1, max(P,S)∈P̄ EP (ξT + ST ζT ) is attained at some
(P, S) ∈ P̄ such that P is concentrated on a binomial subtree.
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5 Numerical Results

We can apply the results of this paper to price European options with various
payoffs under transaction costs. This includes not only calls or puts with either
cash settlement or physical delivery, but also option baskets, such as a straddle or
a butterfly. Under transaction costs, option baskets are by no means equivalent
to linear combinations of the constituent options, so the results are non-trivial,
illustrating the flexibility of the pricing algorithm, which is indeed applicable to
arbitrary payoffs.

The first two numerical examples are based on the binomial tree model. We
also provide one involving a trinomial tree model under proportional transaction
costs to illustrate the point that the algorithm can deal not only with arbitrary
payoffs, but also with arbitrary discrete models, and is by no means limited to
complete ones.

The binomial tree examples overlap with the numerical work in earlier pa-
pers on proportional transaction costs, in particular, Boyle and Vorst [BV92],
Edirsinghe, Naik and Uppal [ENU93], and Palmer [Pal01a]. In each case we
extend the results to parameter ranges (particularly, to large transaction costs)
not covered by these earlier papers, and also to cases theoretically covered, but
for which the earlier computational procedures failed to produce satisfactory
results due to lack of accuracy or excessive demand for computing time and re-
sources. This serves to show that the method proposed in the present paper is
not only general enough to cover all such cases, but also that it is computation-
ally more efficient than the previous approaches. It can also be noted that the
implementation of our algorithm is straightforward.

Example 5.1 We consider the binomial tree model as in Boyle and
Vorst [BV92] and Palmer [Pal01a]. The stock price process satisfies

St = εtSt−1

for t = 1, 2, . . . , T with S0 > 0, where ε1, ε2, . . . is a sequence of independent
identically distributed random variables that take only two values

e−σ
√

h, eσ
√

h,

both with positive probability, with h = 1
T , T being the number of time steps

per annum, and with σ > 0 the stock volatility per annum. We assume given
an effective (annually compounded) interest rate re > 0 and a transaction cost
rate k ∈ [0, 1). For each t = 1, . . . , T the bid and ask stock prices are

Sbt = (1− k)St, Sat = (1 + k)St.

To ensure consistency with [BV92], we also assume that there are no transaction
costs at time 0, so that

Sb0 = Sa0 = S0.

In Table 1 we present the ask and bid prices of a European call option with
strike price K exercised at time Th = 1 year by the delivery of a portfolio

(−K1ST >K , 1ST >K)

12



of cash and stock. The option prices, computed by means of Algorithm 4.1 for
a range of parameter values of T,K, k, given the volatility σ = 20%, effective
rate re = 10% and initial stock price S0 = 100, can be compared with those in
Boyle and Vorst [BV92], Tables I and IV, and Palmer [Pal01a], Table 2.1. Apart
from a few self-evident typographical or rounding errors, marked by superscipts
a and c, the main differences can be seen in the bid option prices for k = 2%
and T = 52 or 250, indicated by superscript b. In these cases the assumptions
in Boyle and Vorst [BV92] do not hold and their method provides no results,
Palmer [Pal01a] gives the cost of a strictly replicating strategy, whereas here we
compute the (negative of the) cost of the optimal superreplicating strategy for
the call buyer.

Table 1 Bid and ask prices of European calls with physical delivery under
transaction costs after Boyle and Vorst [BV92] and Palmer [Pal01a]

Strike Number of time steps (T )
Price 6 6 13 13 52 52 250 250
(K) bid ask bid ask bid ask bid ask

k = 0%
80 27.703 27.703 27.701 27.701 27.665 27.665 27.675 27.675
90 19.821 19.821 19.740 19.740 19.667 19.667 19.674 19.674
100 12.655 12.655 13.093 13.093 12.953 12.953 12.984 12.984
110 8.129 8.129 8.026 8.026 7.972 7.792 7.965 7.965
120 4.216 4.216 4.427 4.427 4.548 4.548 4.551 4.551

k = 0.125%
80 27.671 27.735 27.656 27.747 27.582 27.753 27.502 27.876
90 19.749 19.894 19.638 19.842 19.469 19.865 19.246 20.103
100 12.538 12.770 12.935 13.248 12.637 13.256 12.286 13.630
110 8.003 8.254 7.843 8.205 7.604 8.324 7.136 8.715
120 4.102 4.329 4.256 4.595 4.202 4.882 3.773 5.269

k = 0.5%
80 27.582 27.837 27.534 27.894 27.383 28.047 27.273 28.574
90 19.531a 20.113 19.333 20.149 18.889 20.453 18.221 21.346
100 12.168a 13.106 12.445 13.699 11.597 14.111 9.684 15.339
110 7.614 8.618 7.269 8.721 6.374 9.300 3.647 10.649
120 3.754 4.663 3.726 5.084 3.077 5.820 0.879 7.161

k = 2%
80 27.327 28.297 27.276 28.563 27.273b 29.409 26.683b 31.568
90 18.697 20.983 18.281 21.346 17.521b 22.643 18.182b 25.524
100 10.323 14.358 10.115 15.333 7.697b 16.966 7.485b 20.413
110 5.845 9.965 4.311 10.554c 0.865b 12.469 -0.038b 16.192
120 2.266 5.926 1.266 6.859 0.000b 8.950 -0.012b 12.750

aAgrees with [Pal01a], but differs from [BV92].
bThe cost of the optimal superreplicating strategy differs from that of the strictly
replicating strategy in [Pal01a]; the method in [BV92] does not apply here.
cDiffers from [BV92].
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Remark 5.1 The two negative bid option prices in Table 1 mean that a long
position in the option can only be hedged upon receiving a positive amount
of cash. This is due to the fact that the physical delivery method with payoff
(−K1ST >K , 1ST >K) forces the holder to exercise the option at nodes where
(1−k)ST < K < ST , when it may not necessarily be beneficial to exercise. This
anomaly is discussed and resolved in Perrakis and Lefoll [PL04] in the context
of American puts, but their argument is also applicable to European call and
put options.

Example 5.2 Next we apply our pricing algorithm to options with various pay-
offs, namely a call, a bear spread and a butterfly, and compare the numerical
results with those in Edirsinghe, Naik and Uppal [ENU93]. The computations
are based on a binomial model with transaction costs similar to that in Exam-
ple 5.1, except that we follow [ENU93] in assuming that transaction costs are
absent not only at time 0 but also at the option expiry time,

SbT = SaT = ST .

We can therefore restrict our attention without loss of generality to options with
cash delivery. The call option will have strike price 100. The bull spread can be
regarded as a basket consisting of a long call with strike price 97.5 and a short
call with strike price 102.5. The butterfly is a basket of one long call with strike
price 97.5 and one with strike price 102.5, and two short calls with strike price
100. We take volatility σ = 10%, effective rate re = 0%, and the time to expiry
to be one year for each of the options.

Table 2 Ask prices of European options with various payoffs under transaction
costs compared with Edirsinghe, Naik and Uppal [ENU93]

Transaction Number of time steps (T )
cost rate (k) 8 19 52 250 1000

Call
0.0% 3.865 4.040a 3.969c 3.984c 3.987c

2.5% 6.092d 7.130a 8.535c 11.861c 16.244c

5.0% 7.736 9.240a 11.389c 16.247c 22.486c

Bull spread
0.0% 2.403 2.409a 2.401c 2.402c 2.403c

2.5% 3.270 4.273b 4.425c 4.602c 4.690c

5.0% 3.567 4.370a 4.541c 4.688c 4.756c

Butterfly
0.0% 0.683 0.072a 0.275c 0.249c 0.249c

2.5% 2.134 0.212a 2.500c 2.500c 2.500c

5.0% 2.500 0.216a 2.500c 2.500c 2.500c

aComputed in [ENU93] by an approximate algorithm, but not by an exact algorithm.
bUnable to compute in [ENU93].
cNot covered in [ENU93].
dDiffers from the value in [ENU93].
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The results are presented in Table 2 for a range of values of the transaction
cost rate k and the number of time steps T . With two exceptions, one most
likely a transcription mistake and one option price which could not be obtained
by the algorithms in [ENU93], they agree to within a rounding or approximation
error with the values in [ENU93] computed by an exact linear programming
algorithm for T = 8 and an approximate algorithm for T = 19. We also present
results computed with the aid of Algorithm 4.1 for larger values of T not covered
in [ENU93], namely T = 52, 250 and 1000 time steps.

Example 5.3 Consider the trinomial model such that for t = 1, 2, . . . , T the
stock price process satisfies

St = εtSt−1

with S0 > 0, where ε1, ε2, . . . is a sequence of independent identically distributed
random variables that take only three possible values

e−σ
√

h, 1, e−σ
√

h,

each with positive probability, where h = 1
T , T being the number of time steps

per annum, and where σ > 0 is the stock volatility. Also given is the effective
(annually compounded) interest rate re > 0 and transaction cost rate k ∈ [0, 1).
The bid and ask stock prices are

Sbt = (1− k)St, Sat = (1 + k)St

for each t = 0, 1, . . . , T .
In Table 3 we give the bid and ask prices of a call option and a bull spread

with cash settlement and one year to expiry, computed by Algorithm 4.1 for a
range of values of k and T . The call payoff is (ST −K) 1ST >K with strike price
K = 100. The bull spread is a basket consisting of one long call with strike
price K = 95 and one short call with strike price K = 105. We take S0 = 100,
re = 10% and σ = 20%.

Table 3 Bid and ask prices of options in the trinomial model

Transaction Number of time steps (T )
cost rate 12 12 52 52 250 250

(k) ask bid ask bid ask bid
Call

0% 12.822 9.091 12.953 9.091 12.984 9.091
1% 15.330 7.111 16.515 7.111 18.622 7.111
2% 17.751 5.169 19.699 5.169 23.141 5.169
3% 20.102 3.266 22.681 3.266 27.163 3.266

Bull spread
0% 8.398 4.897 8.764 4.823 9.007 4.688
1% 8.918 3.668 9.091 3.106 9.091 2.385
2% 9.090 2.705 9.091 2.120 9.091 1.531
3% 9.091 1.965 9.091 1.496 9.091 1.029
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6 Concluding Remarks

In this paper we have established algorithms for computing the ask and bid prices
and optimal superreplicating strategies for European options under proportional
transaction costs on the underlying asset. The results apply to options with
general payoffs, exercised by the delivery of a portfolio of cash and stock, in any
discrete market model, and with no restrictions on the model or the transaction
costs other than the lack of arbitrage. This general setting covers the earlier
partial results by various authors, referred to in the introduction.

We put forward a dynamic programming procedure, in which the local op-
timisation problem at each tree node amounts to computing the concave cap
of certain functions. This offers an elegant geometric picture behind the pric-
ing and hedging algorithms, and hence has the potential to facilitate further
generalisations.

For brevity and simplicity we assume no friction on the risk free security
and only a single underlying stock. Nevertheless, the algorithms and results
can be extended in a straightforward manner to different deposit and credit
interest rates, as well as several underlying stocks, each with its own bid-ask
spread. An extension to American options is also possible, and will be reported
in forthcoming work.

Numerical examples are presented here which have been produced by means
of the pricing algorithm. These extend existing numerical work in various direc-
tions simultaneously: much wider parameter ranges, arbitrary option payoffs,
including option baskets, a wider range of models with transaction costs, includ-
ing the standard binomial and trinomial approximations to the Black-Scholes
model, and, importantly, no restrictions on the magnitude of transaction costs.

7 Appendix

Here we give two technical lemmas used in the paper.

Lemma 7.1 If (α, β) ∈ Φ(Sa, Sb) and (P, S) ∈ P̄, then α + βS is a super-
martingale under P .

Proof Since Sbt ≤ St ≤ Sat , the self-financing condition (2.1) implies that

αt − αt+1 ≥ (βt − βt+1)
−Sat − (βt − βt+1)

+Sbt ≥ −(βt − βt+1)St.

As a result, for each t = 0, . . . , T − 1

EP (αt+1 + βt+1St+1|Ft) = αt+1 + βt+1St ≤ αt + βtSt,

where EP denotes the expectation under P .

Lemma 7.2 For any option payoff (ξ, ζ), any (P̄ , S̄) ∈ P̄ and any δ > 0 there
exists a pair

(
P δ, Sδ

)
∈ P such that∣∣EP̄

(
ξ + ζS̄T

)
− EP δ

(
ξ + ζSδ

T

)∣∣ < δ.
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Proof Due to the lack of arbitrage, there exists some (P, S) ∈ P. If

EP̄

(
ξ + ζS̄T

)
= EP (ξ + ζST ) ,

then the result is trivial. Assume that this is not the case, and choose

ε ∈

(
0, min

{
1,

δ∣∣EP̄

(
ξ + ζS̄T

)
− EP (ξ + ζST )

∣∣
})

.

If we now define
P δ = (1− ε)P̄ + εP,

then P δ is a probability measure equivalent to Q. Also let

Sδ
t = EP δ

(
(1− ε)S̄T

dP̄

dP δ
+ εST

dP

dP δ

∣∣∣∣Ft

)
for t = 0, 1, . . . , T , which is clearly a martingale under P δ. It follows that

EP δ (ξ + ζSδ
T ) = EP δ (ξ) + EP δ (ζSδ

T )

= (1− ε)EP̄ (ξ) + εEP (ξ) + (1− ε)EP̄ (ζS̄T ) + εEP (ζST )

= (1− ε)EP̄ (ξ + ζS̄T ) + εEP (ξ + ζS̄T ).

As a result,∣∣EP̄ (ξ + ζS̄T )− EP δ (ξ + ζSδ
T )
∣∣ = ε

∣∣EP̄ (ξ + ζS̄T )− EP (ξ + ζST )
∣∣ < δ.

To show that (P δ, Sδ) ∈ P it remains to verify the inequalities Sbt ≤ Sδ
t ≤ Sat for

each t = 0, 1, . . . , T . Take any such t and any Ft-measurable random variable
η ≥ 0. Then

EP δ (Sδ
t η) = EP δ (Sδ

T η)

= (1− ε)EP̄ (S̄T η) + εEP (ST η)

= (1− ε)EP̄ (S̄tη) + εEP (Stη)

≤ (1− ε)EP̄ (Sat η) + εEP (Sat η)

= EP δ (Sat η).

This proves that Sδ
t ≤ Sat . In a similar way we can show that Sbt ≤ Sδ

t , complet-
ing the proof.
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