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Abstract American options are considered in the binary tree model under small
proportional transaction costs. Dynamic programming type algorithms, which
extend the Snell envelope construction, are developed for computing the ask and
bid prices (also known as the upper and lower hedging prices) of such options
together with the corresponding optimal hedging strategies for the writer and for
the seller of the option. Representations of the ask and bid prices of American
options in terms risk-neutral expectations of stopped option payoffs are also
established in this setting.

1 Introduction

In the presence of small proportional transaction costs in the form of a bid-
ask spread of the underlying stock prices we shall consider American options
exercised by the physical delivery of a portfolio of cash and stock.

For example, when a call option with strike price K is exercised by physical
delivery, the holder of the option pays K and receives 1 share, that is, the option
is exercised by the delivery of a portfolio (−K, 1) of cash and stock. If buying
or selling stock incurs transaction costs, then physical delivery is not equivalent
to cash settlement.

Chalasani and Jha [CJ01] investigated American options with cash settle-
ment only under (not necessarily small) proportional transaction costs. They
obtained general representations involving so-called randomised stopping times
for the ask and bid prices of American contingent claims. However, no algorith-
mic procedure for computing the prices was proposed. Indeed, Chalasani and
Jha commented that “The computation of the expressions for the upper and
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lower hedging prices appears non-trivial. It would be useful to design efficient
algorithms for approximating the values of these expressions.” ([CJ01], p. 72.)

Here we put forward two algorithms extending the Snell envelope construc-
tion, one for computing the ask price (the upper hedging price) and one for the
bid price (the lower hedging price) of an arbitrary American contingent claim
under small proportional transaction costs in the binary tree model. We also
construct optimal hedging strategies for the option writer as well as for the
seller, and establish representations of the ask and bid option prices in terms
of risk-neutral expectations of stopped payoffs. In contrast to Chalasani and
Jha [CJ01], our results involve ordinary rather than randomised stopping times,
and we consider American options with physical delivery rather than ones with
cash settlement only.

Numerical examples demonstrating the applicability of the pricing algorithms
are provided, and certain novel and interesting features are noted, such as the
non-equality of bid prices for American and European calls, or different opti-
mal stopping times for the writer and the holder of an American option under
transaction costs.

Other papers devoted to American options under proportional transac-
tion costs include Davis and Zariphopoulou [DZ95], Levental and Skoro-
hod [LS97], Mercurio and Vorst [MV97], Kociński [Koc99], [Koc01], Perrakis
and Lefoll [PL00], [PL04], Constantinides and Zariphopoulou [CZ01], Jakube-
nas, Levental and Ryznar [JLR03], and Constantinides and Perrakis [CP04].

For a wider context we refer to the extensive literature concerned with pricing
and hedging European options under proportional transaction costs. This prob-
lem was studied by Merton [Mer90], Dermody and Rockafellar [DR91], Boyle
and Vorst [BV92], Bensaid, Lesne, Pagès and Scheinkman [BLPS92], Edirs-
inghe, Naik and Uppal [ENU93], Jouini and Kallal [JK95], Kusuoka [Kus95],
Naik [Nai95], Shirakawa and Konno [SK95], Soner, Shreve and Cvitanić [SSC95],
Cvitanić and Karatzas [CK96], Koehl, Pham and Touzi [KPT96], [KPT99],
[KPT01], Cvitanić, Pham and Touzi [CPT99], Levental and Skorohod [LS97],
Perrakis and Lefoll [PL97], Stettner [Ste97], [Ste00], Rutkowski [Rut98],
Touzi [Tou99], Jouini [Jou00], Ortu [Ort01], Palmer [Pal01a], [Pal01b], Kociński
[Koc04], and many others.

In the majority of these papers the authors assume a stock price process St

under no-arbitrage conditions, and introduce transaction costs by multiplying
St by constant factors 1 + λ and 1 − µ for some λ, µ ≥ 0. Here we follow the
more general approach of Jouini and Kallal [JK95] involving bid-ask spreads
Sb

t ≤ Sa
t for the stock price. As pointed out by Jouini [Jou00], the spreads can

be interpreted as proportional transaction costs in the above sense, but can also
be explained by the buying and selling of limit orders. Accordingly, Sa

t and Sb
t

can be thought of as the prices ensuring liquidity in the stock market, that is,
at which stock can be bought or, respectively, sold on demand. The spreads,
therefore, include proportional transaction costs, but are not limited to them.

The lack of arbitrage in a model with bid-ask spreads was characterised by
Jouini and Kallal [JK95] in terms of the existence of suitably defined risk-neutral
measures and associated stock price processes, see Theorem 2.1 below. We use
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their results here as our starting point. See also Ortu [Ort01].
Small proportional transactions costs similar to those considered in the

present paper have been studied by a number authors in various contexts,
for example, by Bensaid, Lesne, Pagès and Scheinkman [BLPS92], Koehl,
Pham and Touzi [KPT99], Kociński [Koc99], [Koc01], and Melnikov and Pe-
trachenko [MP05]. The definitions of small transaction costs differ slightly be-
tween these various approaches, but there is a substantial overlap, also with that
adopted in the present paper.

Even in the relatively simple case of small proportional transaction costs
within the binary tree model the results for American options give rise to in-
teresting and perhaps unexpected effects such as, for example, the non-equality
of bid prices of American and European calls. The algorithms developed can
inform further research aiming to extend the results to American options under
general proportional transaction costs and to more general market models.

Small transaction costs can be considered as perturbations of the friction-
free model. From a practical point of view the assumption of small proportional
transaction costs might become a limitation if the time step is chosen to be
very short, since transaction costs would then need to scale down to nil asymp-
totically. The difficulties inherent in continuous time models under transaction
costs, which are known to lead to unrealistic option prices and trivial hedging
strategies (see Soner, Shreve and Cvitanić [SSC95], and Cvitanić, Pham and
Touzi [CPT99] for European options, and Levental and Skorohod [LS97] for
American options), indicate that asymptotically short time steps may in fact be
incompatible with proportional transaction costs.

Leland [Lel85] and Hoggard, Whalley and Wilmott [HWW94] have sought
a compromise solution by combining the continuous time model under propor-
tional transaction costs with hedging portfolios rebalanced only at discrete time
instances, with a fixed finite time interval h between them. Leland type ap-

proaches are limited by the condition
√
2
π
2k

σ
√

h
< 1, the expression on the left

known as the Leland number, where 2k is the round-trip transaction cost rate
(expressed as a percentage of the stock price) and σ is the volatility of the un-
derlying asset, see Avellaneda and Parás [AP94]. (Observe that the round-trip
transaction cost rate k in [AP94] is the same as 2k in our notation.) None of
these Leland type approaches have been extended to American options, inviting
further research in this area of great practical importance. It will be demon-
strated in Section 4 that our small transaction costs assumption asymptotically
yields a very similar restriction, 2k

σ
√

h
< 1. The results of the present paper can

thus be regarded as a discrete version of Leland type approaches as applied to
American options.

The paper is organised as follows: In Section 2 we describe the model, intro-
duce some notation, basic notions and facts, and specify the small proportional
transaction costs assumption. The main results are presented in Section 3, with
proofs in the Appendix. Numerical examples demonstrating an application of
the pricing algorithms are discussed in Section 4. This section also touches upon
the relationship between American and European call prices under transaction
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costs. Section 5 concludes.

2 Model Specifications

We adopt the binary tree model with trading times t = 0, . . . , T for some fixed
positive integer T . The corresponding probability space Ω consists of sequences
ω1ω2 · · ·ωT with ω1, . . . , ωT ∈ {u, d}, where u and d stand for up and
down. We take F to be the σ-field consisting of all subsets of Ω, and Q to be a
probability measure on F such that Q {ω} > 0 for each ω ∈ Ω.

For each t = 1, . . . , T we define a random variable ηt : Ω 3 ω1ω2 · · ·ωT 7→
ωt ∈ {u, d}. A node ωt = ω1ω2 · · ·ωt of the tree at time t = 0, . . . , T , with
ω1, . . . , ωt ∈ {u, d}, will be identified with the event {ω ∈ Ω : η1 = ω1, . . . , ηt =
ωt}. In particular, node ω0 will be identified with Ω. The family of all nodes ωt

at time t will be denoted by Ωt. We take a filtration {∅, Ω} = F0 ⊂ F1 ⊂
· · · ⊂ FT = F , where Ft is the σ-field generated by the family Ωt for each
t = 0, . . . , T . We shall often identify Ft-measurable random variables on Ω with
functions defined on Ωt.

The market model will consist of a risk-free and a risky security, a bond (or
cash) and a stock. Trading in stock is subject to proportional transaction costs.
At any time t = 0, . . . , T a share can be bought for the ask price Sa

t or sold for
the bid price Sb

t , where Sa
t ≥ Sb

t > 0. The price processes Sa and Sb are adapted
to the filtration.

Without loss of generality we can assume the bond to be a risk-free security
with zero interest rate, the bond price being 1 for all t = 0, . . . , T . Equivalently,
all prices can be regarded as discounted prices.

2.1 Self-Financing Strategies, Arbitrage, Risk-Neutral
Measures

The time t = 0, . . . , T liquidation value ϑt of a portfolio (ξ, ζ) of cash and stock
can be defined by

ϑt(ξ, ζ) = ξ + ζ+Sb
t − ζ−Sa

t .

Definition 2.1 By a self-financing strategy we shall understand a pair (α, β)
of predictable processes αt, βt representing positions in cash and stock for t =
0, . . . , T such that β0 = 0 and

ϑt(αt − αt+1, βt − βt+1) ≥ 0 (2.1)

for each t = 0, . . . , T−1. The set of such strategies will be denoted by Φ(Sa, Sb).

Observe that the self-financing condition (2.1) holds if and only if for each
u ∈ {a, b}

αt + βtS
u
t ≥ αt+1 + βt+1S

u
t .

Definition 2.2 By an arbitrage opportunity we understand a strategy (α, β) ∈
Φ(Sa, Sb) such that α0 ≤ 0, ϑT (αT , βT ) ≥ 0 and Q {ϑT (αT , βT ) > 0} > 0.
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Definition 2.3 We say that a probability measure P equivalent to Q is a risk-
neutral measure if there is a martingale S under P such that Sb

t ≤ St ≤ Sa
t for

each t = 0, . . . , T . By S we shall denote the set of such martingales S, and by P
the set of the corresponding risk-neutral measures P.

The following result, obtained by Jouini and Kallal [JK95], who used a
slightly different notion of arbitrage, referred to as ‘free lunch’ in their work, is
also valid under the above definition of an arbitrage opportunity in the present
setting, as shown in Tokarz [Tok04]. See also Ortu [Ort01].

Theorem 2.1 (Jouini and Kallal [JK95]) There is no arbitrage opportunity
if and only if P is non-empty or, equivalently, S is non-empty.

2.2 Small Proportional Transaction Costs

For any t = 0, . . . , T − 1 and any node ωt ∈ Ωt the corresponding single-step
subtree of stock prices can be depicted as

Sa
t+1(ωtu)

Sb
t+1(ωtu)

Sa
t (ωt) ↗

Sb
t (ωt) ↘

Sa
t+1(ωtd)

Sb
t+1(ωtd)

Throughout this paper we shall work under the following assumption, which
means that the bid-ask spreads do not overlap in any single-step tree fragment
as above.

Assumption (small proportional transaction costs) For each t =
0, . . . , T − 1 and each ωt ∈ Ωt

Sb
t+1(ωtd) ≤ Sa

t+1(ωtd) < Sb
t (ωt) ≤ Sa

t (ωt) < Sb
t+1(ωtu) ≤ Sa

t+1(ωtu). (2.2)

It follows that S is non-empty. In particular, Sa, Sb ∈ S. Consequently, the
set of risk-neutral measures P is also non-empty, and no arbitrage opportunity
exists under the small transaction costs assumption (2.2).

2.3 Notation

Here we introduce some notation, which will be used throughout this paper. For
any u, v, w ∈ {a, b}, any t = 0, . . . , T − 1 and ωt ∈ Ωt, and any Ft+1-measurable
R2-valued random variables G = (Ga, Gb) and H = (Ha,Hb) we put

Euvw
t (G;H|ωt) = puvw

t (ωt)G
v(ωtu) + (1− puvw

t (ωt))H
w(ωtd),

where

puvw
t (ωt) =

Su
t (ωt)− Sw

t+1(ωtd)

Sv
t+1(ωtu)− Sw

t+1(ωtd)
. (2.3)
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We shall write Euvw
t (G;H) to denote the Ft-measurable random variable ωt 7→

Euvw
t (G;H|ωt).

This notation is slightly more complicated than necessary in the case of
the writer of an American option, for which we shall always have G = H in
Euvw

t (G;H|ωt). However we need to allow G 6= H when discussing the buyer’s
case for an American option.

It will sometimes prove convenient to write St = (Sa
t , Sb

t ) for any t = 0, . . . , T .
Observe that

Su
t = Euvw

t (St+1;St+1)

for each u, v, w ∈ {a, b} and each t = 0, . . . , T − 1.
If G is an Ft+1-measurable random variable for some t = 0, . . . , T − 1, then

we shall write G(u) and G(d) to denote the Ft-measurable random variables
ωt 7→ G(ωtu) and ωt 7→ G(ωtd), respectively.

3 Ask and Bid Prices of American Options

We shall consider an American option to be exercised by the delivery of a port-
folio (ξτ , ζτ ) of cash and stock at a stopping time τ chosen by the option buyer
such that 0 ≤ τ ≤ T , where (ξ, ζ) is an R2-valued adapted process. By T we
denote the family of stopping times τ such that 0 ≤ τ ≤ T . We shall refer to
(ξ, ζ) as the payoff process and to T as the expiry time.

Definition 3.1 The ask price (upper hedging price) and the bid price (lower
hedging price) of an American option with payoff process (ξ, ζ) and expiry time T
are defined, respectively, by

πa(ξ, ζ) = min{α0 | (α, β) ∈ Φ(Sa, Sb),∀τ ∈ T : ϑτ (ατ − ξτ , βτ − ζτ ) ≥ 0},
πb(ξ, ζ) = max{−α0 | (α, β) ∈ Φ(Sa, Sb),∃τ ∈ T : ϑτ (ατ + ξτ , βτ + ζτ ) ≥ 0}.

The minimum and maximum are attained because the corresponding sets are
closed and, respectively, bounded below and above in the discrete setting.

The ask and bid prices of options have important implications. First of all,
they provide arbitrage bounds on the price at which options are traded under
transaction costs: A writer who could sell an option (ξ, ζ) for more than the
ask price πa(ξ, ζ) would be able to achieve arbitrage, as would a buyer who
paid less than the bid price πb(ξ, ζ). Indeed πa(ξ, ζ) and πb(ξ, ζ) are the lowest
and, respectively, the highest prices with this property. Moreover, πa(ξ, ζ) and
πb(ξ, ζ) ensure liquidity in the options market. An option (ξ, ζ) can be purchased
on demand for πa(ξ, ζ) because any option writer who receives this amount will
be able to hedge a short position in the option. Similarly, the option can be sold
on demand for πb(ξ, ζ) because any option buyer will be able to hedge a shorted
amount πb(ξ, ζ) against a long position in the option. As a result, πa(ξ, ζ) and
πb(ξ, ζ) play a similar role in ensuring liquidity of options as the ask and bid
prices Sa and Sb for stock.
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In what follows it will prove convenient to use processes Xa, Xb such that
for each u ∈ {a, b} and each t = 0, . . . , T

Xu
t = ξt + ζtS

u
t . (3.1)

Note that the condition ϑτ (ατ −ξτ , βτ −ζτ ) ≥ 0 in Definition 3.1 is equivalent to
ατ + βτSu

τ ≥ Xu
τ for each u ∈ {a, b}, and ϑτ (ατ + ξτ , βτ + ζτ ) ≥ 0 is equivalent

to ατ + βτSu
τ ≥ −Xu

τ for each u ∈ {a, b}.

3.1 Ask Price Algorithm

Algorithm 3.1 Given an American option with payoff process (ξ, ζ) and expiry
time T we construct an R2-valued process Z = (Za, Zb) by backward induction:

• For each u ∈ {a, b} we put

Zu
T = V u

T = Xu
T .

• For each t = 1, . . . , T and each u ∈ {a, b} we put

Zu
t−1 = max{Xu

t−1, V
u
t−1},

where
V u

t−1 = max
v,w∈{a,b}

Euvw
t−1 (Zt;Zt). (3.2)

• The algorithm returns
max{Za

0 , Z
b
0},

shown in Theorem 3.2 to be the ask price πa(ξ, ζ) of the option.

The processes V a, V b correspond to the value of continuation in the standard
Snell envelope construction, whereas Za, Zb correspond to the Snell envelope
itself.

3.2 Writer’s Hedging Strategy

Lemma 3.1 Let t = 1, . . . , T and let γ, δ be Ft−1-measurable random variables
such that for each u ∈ {a, b}

γ + δSu
t−1 ≥ V u

t−1.

Then there are Ft−1-measurable random variables ρ, σ such that for each u ∈
{a, b}

γ + δSu
t−1 ≥ ρ + σSu

t−1,

ρ + σSu
t ≥ Zu

t .

Observe that the proof of this lemma in Appendix A.2 provides concrete
formulae for ρ and σ. With the aid of the lemma, we can construct by induction
a strategy hedging the position of the writer of an American option (ξ, ζ):
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• Put α0 = max{Za
0 , Z

b
0} and β0 = 0. Then α0, β0 are F0-measurable and

for each u ∈ {a, b}
α0 + β0S

u
0 ≥ Zu

0 ≥ V u
0 .

• For any t = 1, . . . , T , if Ft−1-measurable random variables αt−1, βt−1 such
that for each u ∈ {a, b}

αt−1 + βt−1S
u
t−1 ≥ V u

t−1

have already been constructed, then Lemma 3.1 provides Ft−1-measurable
random variables αt, βt such that for each u ∈ {a, b}

αt−1 + βt−1S
u
t−1 ≥ αt + βtS

u
t−1,

αt + βtS
u
t ≥ Zu

t ≥ Xu
t = ξt + ζtS

u
t .

Since the random variables αt, βt are Ft−1-measurable, they are also
Ft-measurable, and for t < T we also have αt + βtS

u
t ≥ Zu

t ≥ V u
t for

each u ∈ {a, b}, which makes it possible to iterate the last step.

As a result, we obtain a strategy (α, β) ∈ Φ(Sa, Sb) such that ϑτ (ατ − ξτ , βτ −
ζτ ) ≥ 0 for each τ ∈ T , that is, a hedging strategy for the option writer. By
Definition 3.1, it follows that

πa(ξ, ζ) ≤ α0 = max{Za
0 , Z

b
0}. (3.3)

In Theorem 3.2 we shall prove that (α, β) is in fact an optimal hedging strategy
for the writer, that is, πa(ξ, ζ) = α0.

3.3 Representations for Ask Price

The following theorem establishes three representations for the ask price of an
American option: in terms of the writer’s hedging strategy, the pricing algo-
rithm, and the risk-neutral expectations of stopped payoffs. The latter repre-
sentation resembles that proved by Cvitanić and Karatzas [CK96] in continuous
time setting.

Theorem 3.2 Under the small transaction costs assumption (2.2) the ask price
of an American option (ξ, ζ) can be represented as

πa(ξ, ζ) = α0

= max{Za
0 , Z

b
0}

= max
τ∈T

max
S∈S

E(ξτ + ζτSτ ),

where α0 is the initial value of the writer’s hedging strategy (α, β) constructed
in Section 3.2, Za, Zb are constructed in Algorithm 3.1, and E is the expectation
under the probability measure P that turns S into a martingale.

The proof of this theorem can be found in Appendix A.2.
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3.4 Bid Price Algorithm

Algorithm 3.2 Given an American option with payoff process (ξ, ζ) and ex-
piry time T we consider the R2-valued process X = (Xa, Xb) with Xa, Xb given
by (3.1), and construct an R2-valued process U = (Ua, U b) by backward induc-
tion as follows:

• For each u ∈ {a, b} we put
Uu

T = Xu
T .

• For each t = 1, . . . , T and each u ∈ {a, b} we put

Uu
t−1 = max

V,W∈{Xt,Ut}
min

v,w∈{a,b}
Euvw

t−1 (V;W).

• The algorithm returns

max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
,

shown in Theorem 3.4 to be the bid price πb(ξ, ζ) of the option.

The processes Ua, U b correspond to the value of continuation in the standard
Snell envelope construction.

3.5 Buyer’s Hedging Strategy

Let us define a stopping time τ̌ ∈ T by putting

τ̌ = t on At \ (A0 ∪ · · · ∪At−1)

for t = 0, . . . , T , where

A0 = {min{Xa
0 , X

b
0} ≥ min{Ua

0 , U b
0}}

and

At = {ηt = u,∃W ∈ {Xt,Ut} : Uu
t−1 = min

v,w∈{a,b}
Euvw

t−1 (Xt;W)}

∪ {ηt = d,∃W ∈ {Xt,Ut} : Uu
t−1 = min

v,w∈{a,b}
Euvw

t−1 (W;Xt)}

for t = 1, . . . , T . These sets satisfy Ω = A0 ∪ · · · ∪ AT and, by Proposition A.1,
are in fact independent of u ∈ {a, b}.

Lemma 3.3 Let t = 1, . . . , T and let γ, δ be Ft−1-measurable random variables
such that for each u ∈ {a, b}

γ + δSu
t−1 ≥ −Uu

t−1 on {τ̌ > t− 1} .

Then there are Ft−1-measurable random variables ρ, σ such that for each u ∈
{a, b}

γ + δSu
t−1 ≥ ρ + σSu

t−1,

ρ + σSu
t ≥ −Xu

t on {τ̌ = t} ,

ρ + σSu
t ≥ −Uu

t on {τ̌ > t} .
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The proof of this lemma in Appendix A.3 provides concrete formulae for ρ
and σ. With the aid of the lemma, we can construct a strategy hedging the
position of the buyer of an American option (ξ, ζ) as follows:

• We put α0 = −max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
and β0 = 0. Then for

each u ∈ {a, b}
α0 + β0S

u
0 ≥ −Uu

0 on {τ̌ > 0} .

• For any t = 1, . . . , T , if Ft−1-measurable random variables αt−1, βt−1 such
that for each u ∈ {a, b}

αt−1 + βt−1S
u
t−1 ≥ −Uu

t−1 on {τ̌ > t− 1}

have already been constructed, then Lemma 3.3 provides Ft−1-measurable
random variables αt, βt such that for each u ∈ {a, b}

αt−1 + βt−1S
u
t−1 ≥ αt + βtS

u
t−1,

αt + βtS
u
t ≥ −Xu

t on {τ̌ = t} ,

αt + βtS
u
t ≥ −Uu

t on {τ̌ > t} .

Since the random variables αt, βt are Ft−1-measurable, they are also
Ft-measurable. As a result, the last step can be iterated.

We have thus constructed a strategy (α, β) ∈ Φ(Sa, Sb) such that ϑτ̌ (ατ̌ +ξτ̌ , βτ̌ +
ζτ̌ ) ≥ 0, that is, a hedging strategy for the option buyer. By Definition 3.1, it
follows that

πb(ξ, ζ) ≥ −α0 = max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
. (3.4)

In Theorem 3.4 we shall prove that (α, β) is in fact an optimal hedging strategy
for the buyer, that is, πb(ξ, ζ) = −α0.

3.6 Representations for Bid Price

As in the case of the ask price, representations of the bid price of an American
option can be established in terms of the corresponding hedging strategy, the
pricing algorithm, and the risk-neutral expectations of stopped payoffs. The
proof of the following theorem can be found in Appendix A.3.

Theorem 3.4 Under the small transaction costs assumption (2.2) the bid price
of an American option (ξ, ζ) can be expressed as

πb(ξ, ζ) = −α0

= max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
= max

τ∈T
min
S∈S

E(ξτ + ζτSτ ),

where α0 is the initial value of the buyer’s hedging strategy (α, β) constructed in
Section 3.5, Ua, U b are constructed in Algorithm 3.2, Xa, Xb are given by (3.1),
and where E is the expectation under the probability measure P that turns S into
a martingale.
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The representation of the bid price of the option in terms of risk-neutral
expectations of stopped payoffs resembles that in Föllmer and Schied [FS02]
(Theorem 6.33), where it applies to an incomplete friction-free market. However,
in contrast to the latter, the maximum and minimum cannot, in general, be
interchanged, i.e. no minimax theorem holds under transaction costs.

4 Numerical Examples

We shall apply Algorithms 3.1 and 3.2 to compute the ask and bid prices of
American call options in the same setting as used in Boyle and Vorst [BV92] for
European calls under transaction costs. Computing American call prices is by
no means a vacuous exercise, as it turns out that they are not necessarily equal
to the European counterparts in the presence of transaction costs.

Following the approach in Boyle and Vorst [BV92], we consider the Cox-
Ross-Rubinstein binary tree model with parameters u, d, r such that

1 + u = eσ
√

h, 1 + d = e−σ
√

h, 1 + r = (1 + re)h,

where h = 1
N , N is the number of time steps, σ is the stock volatility per

annum, and re is the annually compounded interest rate (the effective rate).
The stock price process S is assumed to satisfy Sn+1 = (1 + εn)Sn for n =
0, 1, . . . , N − 1 with S0 > 0, where εn is a sequence of independent identically
distributed random variables that take only two values, 1 + u and 1 + d, both
with positive probability.

Introducing the transaction cost rate k as in Boyle and Vorst [BV92], we
express the bid and ask stock prices at any n = 1, . . . , N as Sb

n = Sn(1− k) and
Sa

n = Sn(1 + k). Following [BV92], we also assume that there are no transaction
costs at the initial time 0, that is, Sb

0 = Sa
0 = S0.

The small transaction costs assumption (2.2) is satisfied whenever 1+k
1−k <

eσ
√

h(1 + re)−h. For small values of k and h, if the left- and right-hand sides are
expanded to within terms of order k and

√
h, this becomes 2k

σ
√

h
< 1. A similar

restriction applies to the work by Leland [Lel85] extended by Hoggard, Whalley
and Wilmott [HWW94], as discussed in detail by Avellaneda and Parás [AP94].
(In our notation 2k is what Avellaneda and Parás denote by k, the round-trip
transaction cost rate.)

To compare our results with those obtained by Boyle and Vorst [BV92] we
consider an American call option with strike price K and time to expiry Nh = 1
year, exercised by the delivery of a portfolio (−K1{S≥K}, 1{S≥K}) of cash and
stock, with the following input parameters: the initial stock price S0 = 100,
stock volatility σ = 20% p.a., and effective interest rate re = 10%.

The bid and ask prices of American and also European call options on the
same stock for various levels of small proportional transaction costs and strike
prices are presented in the table below. All numerical calculations for American
options are based on Algorithms 3.1 and 3.2, whereas those for European options
on the algorithm in Boyle and Vorst [BV92]. The numbers in brackets represent
the prices of European calls that differ from their American counterparts.
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Strike Number of trading times (N)
Price 6 6 13 13 52 52 250 250
(K) bid ask bid ask bid ask bid ask

k = 0%
80 27.703 27.703 27.701 27.701 27.665 27.665 27.675 27.675
90 19.821 19.821 19.740 19.740 19.667 19.667 19.674 19.674
100 12.665 12.665 13.093 13.093 12.953 12.953 12.984 12.984
110 8.129 8.129 8.026 8.026 7.972 7.792 7.965 7.965
120 4.216 4.216 4.427 4.427 4.548 4.548 4.551 4.551

k = 0.125%
80 27.671 27.735 27.656 27.747 27.582 27.753 27.502 27.876
90 19.749 19.894 19.638 19.842 19.469 19.865 19.246 20.103
100 12.555 12.770 12.935 13.248 12.644 13.256 12.288 13.630

(12.538) (12.638) (12.286)

110 8.003 8.254 7.843 8.205 7.604 8.324 7.136 8.715
120 4.102 4.329 4.256 4.595 4.202 4.882 3.773 5.269

k = 0.5%
80 27.582 27.837 27.534 27.894 27.386 28.047 27.273 28.574

(27.383)

90 19.531 20.113 19.333 20.149 18.889 20.453 18.222 21.346
(18.221)

100 12.251 13.107 12.445 13.699 11.644 14.111 9.751 15.339
(12.177) (11.606) (9.684)

110 7.614 8.618 7.269 8.721 6.374 9.300 3.647 10.649
120 3.754 4.663 3.726 5.084 3.077 5.820 0.879 7.161

4.1 American Versus European Bid and Ask Option Prices

We can see in the table above that in the presence of proportional transaction
costs the bid prices of American and European calls are not necessarily the same.

To illustrate this with an example that can readily be analysed by hand,
consider a model with all input parameters the same as above, but with the
number of time steps N = 2, transaction cost rate k = 0.5% and strike price
K = 100. Here, the bid prices of the American and European call options are
11.838 and 11.729, respectively. The optimal stopping time τ̌ for the buyer of
the American call turns out to be at nodes uu and ud after 2 time steps, and
at node d after just 1 time step, that is, prior to option expiry. This realises the
maximum over stopping times in Theorem 3.4. On the other hand, the optimal
stopping time τ̂ for the writer of the American call, which realises the maximum
in Theorem 3.2, coincides with the expiry time.

It is interesting to observe that the two optimal stopping times, τ̌ for the
buyer and τ̂ for the writer of the American call do not have to be the same.
Although a rational buyer can be expected to exercise the option at time τ̌ , to
ensure that the writer’s position is fully hedged it is necessary to account for the
possibility that the buyer will behave in a suboptimal way and exercise at expiry
rather than at τ̌ . It might prove beneficial for the parties to agree in advance
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that the option will in fact be exercised at time τ̌ , as the writer would then be
able to charge a lower premium, a situation bearing some similarities to a Nash
equilibrium.

As regards the ask prices of American and European calls, the following
proposition holds in the general setting of Section 2 in the presence of a possibly
non-zero risk-free return r ≥ 0 over each time step, in which case the small trans-
action costs assumption (2.2) applies to discounted stock prices. The proposition
will be proved in Appendix A.4.

Proposition 4.1 Suppose that r ≥ 0, the discounted ask and bid stock prices
satisfy (2.2), and S is an adapted process such that Sb

t ≤ St ≤ Sa
t for each t =

0, 1, . . . , T . Consider American and European calls with the same strike price K
and expiry T , the American option with payoff process

(
−K1{St≥K}, 1{St≥K}

)
for t = 0, 1, , . . . , T , and the European one with payoff

(
−K1{ST≥K}, 1{ST≥K}

)
.

Then the ask prices of these two options are the same.

5 Conclusions and Outlook

We have established a procedure for computing the ask price πa(ξ, ζ) of an
American contingent claim (ξ, ζ) under small proportional transaction costs in
the binary tree setting, resembling the standard construction of the Snell enve-
lope. A suitable algorithm has also been developed for computing the bid price
πb(ξ, ζ). Moreover, we have constructed optimal strategies to hedge long and
short positions in American options, and established representations of the ask
and bid option prices in terms of the initial values of these strategies, and also
in terms of risk-neutral expectations of stopped payoffs. In addition, optimal
stopping times τ̂ for the writer and τ̌ for the buyer of the option have been
constructed.

A distinctive feature of the algorithms developed under small transaction
costs is that two quantities need to be tracked at each tree node, rather than a
single one as in the standard iterative construction of the Snell envelope in the
friction-free case.

In the numerical examples the algorithms have been applied to compute
the ask and bid prices of American options in a realistic setting (option expiry
T = 1 year, daily rehedging of portfolios with N = 250, and round-trip trans-
action costs 2k = 1% typical of large capitalisation stocks) satisfying the small
transaction costs condition. The numerical results are compared to the earlier
work by Boyle and Vorst [BV92] for European options under proportional trans-
action costs. The small transaction costs assumption (2.2) is shown to lead to a
very similar restriction on the time step versus transaction cost rate as in Leland
type approaches.

We have observed that the bid prices of American and European calls are not
necessarily the same, and proved that the ask prices are equal to one another.
Moreover, the optimal stopping times may be different for traders hedging long
and short positions in American options under transaction costs.
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A natural question arises as to what will happen if the small costs assump-
tion (2.2) is relaxed, so that only the no-arbitrage condition prevails. Results
in Tokarz [Tok04], which apply to European options only, suggest that the al-
gorithms for American options might need to be modified by keeping track of
more than two quantities at each tree node whenever the bid-ask spreads for the
stock price at adjacent nodes overlap. The work of Chalasani and Jha [CJ01]
indicates that the constructions might also need to accommodate randomised
stopping times in place of ordinary ones.

Appendix: Proofs of Main Results

A.1 Auxiliary Results

First of all, we shall state and outline the proofs of two technical propositions
and a lemma, which are needed to prove the main results of this paper. The full
proofs of the two propositions, which are elementary but somewhat tedious, can
be found in [Tok04].

Proposition A.1 Under assumption (2.2), for any t = 1, . . . , T , any R2-valued
Ft-measurable random variables A = (Aa, Ab) and B = (Ba, Bb) and any c, d ∈
{a, b} the following conditions are equivalent:

(a) min
v,w∈{a,b}

Eavw
t−1 (A;B) = Eacd

t−1(A;B),

(b) min
v,w∈{a,b}

Ebvw
t−1(A;B) = Ebcd

t−1(A;B).

The conditions remain equivalent to one another if the two minima are replaced
by maxima.

Proof Outline The main steps of the proof are:

• For any c, d, e, f, u ∈ {a, b} such that c 6= e and d 6= f show that the
inequalities

Eucd
t−1(A;B) ≤ Eued

t−1(A;B), (A.1)

Eucd
t−1(A;B) ≤ Eucf

t−1(A;B) (A.2)

imply
Eucd

t−1(A;B) ≤ Euef
t−1(A;B),

and deduce that (A.1), (A.2) are equivalent to

min
v,w∈{a,b}

Euvw
t−1 (A;B) = Eucd

t−1(A;B).

• Verify that for any c, d, e, f ∈ {a, b} the inequalities (A.1), (A.2) with u = a
are equivalent to (A.1), (A.2) with u = b.
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The equivalence of (a) and (b) follows directly from these two steps.

Proposition A.2 Under assumption (2.2), for any t = 1, . . . , T , any R2-valued
Ft-measurable random variables A = (Aa, Ab) and B = (Ba, Bb) and any
C,D ∈ {A,B} the following conditions are equivalent:

(a) max
V,W∈{A,B}

min
v,w∈{a,b}

Eavw
t−1 (V;W) = min

v,w∈{a,b}
Eavw

t−1 (C;D),

(b) max
V,W∈{A,B}

min
v,w∈{a,b}

Ebvw
t−1(V;W) = min

v,w∈{a,b}
Ebvw

t−1(C;D).

Proof Outline The main steps of the proof are:

• For any C,D,E,F ∈ {A,B} such that C 6= E and D 6= F and for any
u ∈ {a, b} show that the inequalities

min
v,w∈{a,b}

Euvw
t−1 (C;D) ≥ min

v,w∈{a,b}
Euvw

t−1 (E;D), (A.3)

min
v,w∈{a,b}

Euvw
t−1 (C;D) ≥ min

v,w∈{a,b}
Euvw

t−1 (C;F) (A.4)

imply
min

v,w∈{a,b}
Euvw

t−1 (C;D) ≥ min
v,w∈{a,b}

Euvw
t−1 (E;F),

and deduce that (A.3), (A.4) are equivalent to

max
V,W∈{A,B}

min
v,w∈{a,b}

Euvw
t−1 (V;W) = min

v,w∈{a,b}
Euvw

t−1 (C;D).

• Verify that for any C,D,E,F ∈ {A,B} the inequalities (A.3), (A.4) with
u = a are equivalent to (A.3), (A.4) with u = b.

The equivalence of (a) and (b) follows directly from these two steps.

Lemma A.3 If (α, β) ∈ Φ(Sa, Sb) and S ∈ S is a martingale under P ∈ P,
then α + βS is a supermartingale under P.

Proof of Lemma A.3 Since Sb
t ≤ St ≤ Sa

t , the self-financing condition (2.1)
implies that

αt − αt+1 ≥ (βt − βt+1)
−Sa

t − (βt − βt+1)
+Sb

t ≥ −(βt − βt+1)St.

As a result, for each t = 0, . . . , T − 1

E(αt+1 + βt+1St+1|Ft) = αt+1 + βt+1St ≤ αt + βtSt,

where E denotes the expectation under P.
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A.2 Results for Ask Price

Proof of Lemma 3.1 By Proposition A.1 there are g, h ∈ {a, b} such that
V u

t−1 = Eugh
t−1(Zt;Zt) for each u ∈ {a, b}. We put

σ =
Zg

t (u)− Zh
t (d)

Sg
t (u)− Sh

t (d)
, ρ = Zg

t (u)− σSg
t (u) = Zh

t (d)− σSh
t (d).

Then, for each u ∈ {a, b}

ρ + σSu
t−1 = ρ + σEugh

t−1(St;St) = Eugh
t−1(Zt;Zt) = V u

t−1 ≤ γ + δSu
t−1,

where we have used (a) in the last inequality. Next, observe that for each
r ∈ {a, b}

Eugh
t−1(Zt;Zt) ≥ Eurh

t−1(Zt;Zt), Eugh
t−1(Zt;Zt) ≥ Eugr

t−1(Zt;Zt),

which can be transformed, respectively, into

ρ + σSr
t (u) ≥ Zr

t (u), ρ + σSr
t (d) ≥ Zr

t (d).

This gives ρ + σSr
t ≥ Zr

t for each r ∈ {a, b}, as required.

Proof of Theorem 3.2 We begin by constructing processes Ŝ, V̂ , Ẑ such that:

• For some u ∈ {a, b}
Ŝ0 = Su

0 ,

V̂0 = V u
0 ,

Ẑ0 = Zu
0 ,

and
Zu
0 = max{Za

0 , Z
b
0}. (A.5)

• For each t = 0, . . . , T − 1 and each ωt ∈ Ωt there are v, w ∈ {a, b} such
that

Ŝt+1(ωtu) = Sv
t+1(ωtu), Ŝt+1(ωtd) = Sw

t+1(ωtd),
V̂t+1(ωtu) = V v

t+1(ωtu), V̂t+1(ωtd) = V w
t+1(ωtd),

Ẑt+1(ωtu) = Zv
t+1(ωtu), Ẑt+1(ωtd) = Zw

t+1(ωtd),

and
V u

t (ωt) = Euvw
t (Zt+1;Zt+1|ωt) (A.6)

for each u ∈ {a, b}. Such v, w exist by Proposition A.1.

The processes Ŝ, V̂ , Ẑ may not be unique. The lack of uniqueness may arise
whenever there is more than one pair v, w ∈ {a, b} satisfying (A.6), or there is
more than one u ∈ {a, b} such that (A.5) holds. In such cases we can choose any
Ŝ, V̂ , Ẑ satisfying the conditions above.

Because of the small transaction costs assumption (2.2), Ŝ ∈ S. Let P̂ ∈ P
be the probability measure turning Ŝ into a martingale, and let Ê denote the
expectation under P̂.
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We claim that Ẑ is the Snell envelope of the process ξ + ζŜ under P̂. Indeed,
by the construction of Ŝ, V̂ , Ẑ, for any t = 0, . . . , T − 1 and any ωt ∈ Ωt there
are u, v, w ∈ {a, b} such that

Ŝt(ωt) = Su
t (ωt), Ŝt+1(ωtu) = Sv

t+1(ωtu), Ŝt+1(ωtd) = Sw
t+1(ωtd),

V̂t(ωt) = V u
t (ωt), V̂t+1(ωtu) = V v

t+1(ωtu), V̂t+1(ωtd) = V w
t+1(ωtd),

Ẑt(ωt) = Zu
t (ωt), Ẑt+1(ωtu) = Zv

t+1(ωtu), Ẑt+1(ωtd) = Zw
t+1(ωtd),

and (A.6) holds. Thus

V̂t(ωt) = V u
t (ωt) = Euvw

t (Zt+1;Zt+1|ωt) = Ê(Ẑt+1|ωt).

Because Zu
T = ξT + ζT Su

T for each u ∈ {a, b}, we have ẐT = ξT + ζT ŜT . Since
Zu

t = max{ξt + ζtS
u
t , V u

t } for each u ∈ {a, b}, it follows that

Ẑt = max{ξt + ζtŜt, V̂t} = max{ξt + ζtŜt, Ê(Ẑt+1|Ft)}

for each t = 0, . . . , T − 1, proving the claim.
Next, we define a stopping time τ̂ ∈ T by

τ̂ = min{ t | Ẑt = ξt + ζtŜt}.

Because Ẑ is the Snell envelope of ξ + ζŜ under P̂ it follows that

Ê(ξτ̂ + ζτ̂ Ŝτ̂ ) = Ẑ0 = max{Za
0 , Z

b
0}.

This proves that

max{Za
0 , Z

b
0} ≤ max

τ∈T
max
S∈S

E(ξτ + ζτSτ ). (A.7)

Finally, take a strategy (α, β) ∈ Φ(Sa, Sb) such that α0 = πa(ξ, ζ) and
ϑτ (ατ − ξτ , βτ − ζτ ) ≥ 0 for each τ ∈ T . Then ξτ + ζτSu

τ ≤ ατ + βτSu
τ for

each u ∈ {a, b} and each τ ∈ T . Also, take any S ∈ S. Because Sb
τ ≤ Sτ ≤ Sa

τ

it follows that ξτ + ζτSτ ≤ ατ + βτSτ . By Lemma A.3 the process α + βS
is a supermartingale under the probability measure P ∈ P that turns S into a
martingale. As a result,

E(ξτ + ζτSτ ) ≤ E(ατ + βτSτ ) ≤ α0 + β0S0 = α0 = πa(ξ, ζ),

where E is the expectation under P. Since S ∈ S and τ ∈ T are arbitrary,

max
τ∈T

max
S∈S

E(ξτ + ζτSτ ) ≤ πa(ξ, ζ). (A.8)

Inequalities (A.7) and (A.8) together with (3.3) complete the proof.
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A.3 Results for Bid Price

Proof of Lemma 3.3 Take G,H ∈ {Xt,Ut} and g, h ∈ {a, b} such that for
each u ∈ {a, b}

Uu
t−1 = min

v,w∈{a,b}
Euvw

t−1 (G;H) = Eugh
t−1(G;H).

Such G,H and g, h exist by Propositions A.1 and A.2. We put

σ = 0, ρ = γ + δ+Sb
t−1 − δ−Sa

t−1

on {τ̌ < t}, and

σ = −Gg(u)−Hh(d)

Sg
t (u)− Sh

t (d)
, ρ = −Gg(u)− σSg

t (u) = −Hh(d)− σSh
t (d)

on {τ̌ ≥ t}. Then, for each u ∈ {a, b}

ρ + σSu
t−1 = γ + δ+Sb

t−1 − δ−Sa
t−1 ≤ γ + δSu

t−1

on {τ̌ < t}, and

ρ + σSu
t−1 = ρ + σEugh

t−1(St;St) = −Eugh
t−1(G;H) = −Uu

t−1 ≤ γ + δSu
t−1

on {τ̌ ≥ t}. Next, observe that for each r ∈ {a, b}

Eugh
t−1(G;H) ≤ Eurh

t−1(G;H), Eugh
t−1(G;H) ≤ Eugr

t−1(G;H),

which can be transformed, respectively, into

ρ + σSr
t (u) ≥ −Gr(u), ρ + σSr

t (d) ≥ −Hr(d)

on {τ̌ ≥ t}. By the construction of τ̌ we know that G = H = Ut on {τ̌ > t},
and we can select G = Xt on {τ̌ = t, ηt = u} and H = Xt on {τ̌ = t, ηt = d}.
It follows that ρ + σSr

t ≥ −Xr
t on {τ̌ = t} and ρ + σSr

t ≥ −Ur
t on {τ̌ > t} for

each r ∈ {a, b}, as required.

Proof of Theorem 3.4 We take any τ ∈ T and a number C such that for
each u ∈ {a, b} and each t = 0, . . . , T

C > Xu
t .

Consider the processes Za, Zb constructed as in Algorithm 3.1 for the American
option with exercise time T and payoff process (κ, λ) defined by

(κt, λt) =

{
(−ξτ ,−ζτ ) on {τ = t} ,
(−C, 0) on {τ 6= t} .

for each t = 0, . . . , T . We claim that for each u ∈ {a, b} and each t = 0, . . . , T

Zu
t ≥ −Uu

t on {τ > 0} .

This can be proved by backward induction on t. Since {τ > T} is empty, the
claim is trivially satisfied for t = T . Now suppose that the claim is valid for
some t = 1, . . . , T . For each node ωt−1 ∈ Ωt−1 such that τ > t− 1 at ωt−1 there
are up to four possibilities:
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1. If τ > t at ωt−1u and at ωt−1d, then Zv
t ≥ −Uv

t at ωt−1u and Zw
t ≥ −Uw

t

at ωt−1d for each v, w ∈ {a, b}, so at ωt−1 for each u ∈ {a, b}

Zu
t−1 ≥ max

v,w∈{a,b}
Euvw

t−1 (Zt;Zt) ≥ − min
v,w∈{a,b}

Euvw
t−1 (Ut;Ut) ≥ −Uu

t−1;

2. If τ = t at ωt−1u and τ > t at ωt−1d, then Zv
t = −Xv

t at ωt−1u and
Zw

t ≥ −Uw
t at ωt−1d for each v, w ∈ {a, b}, so at ωt−1 for each u ∈ {a, b}

Zu
t−1 ≥ max

v,w∈{a,b}
Euvw

t−1 (Zt;Zt) ≥ − min
v,w∈{a,b}

Euvw
t−1 (Xt;Ut) ≥ −Uu

t−1;

3. If τ > t at ωt−1u and τ = t at ωt−1d, then Zv
t ≥ −Uv

t at ωt−1u and
Zw

t = −Xw
t at ωt−1d for each v, w ∈ {a, b}, so at ωt−1 for each u ∈ {a, b}

Zu
t−1 ≥ max

v,w∈{a,b}
Euvw

t−1 (Zt;Zt) ≥ − min
v,w∈{a,b}

Euvw
t−1 (Ut;Xt) ≥ −Uu

t−1;

4. Finally, if τ = t at ωt−1u and at ωt−1d, then Zv
t = −Xv

t at ωt−1u and
Zw

t = −Xw
t at ωt−1d for each v, w ∈ {a, b}, so at ωt−1 for each u ∈ {a, b}

Zu
t−1 ≥ max

v,w∈{a,b}
Euvw

t−1 (Zt;Zt) = − min
v,w∈{a,b}

Euvw
t−1 (Xt;Xt) ≥ −Uu

t−1.

This verifies the claim. It follows that Zu
0 ≥ −Uu

0 on {τ > 0} for each u ∈ {a, b}.
We also have Zu

0 = −Xu
0 on {τ = 0} for each u ∈ {a, b}. As a result,

−max{Za
0 , Z

b
0} ≤ max

{
min{Xa

0 , X
b
0}, min{Ua

0 , U b
0}

}
.

Observe that on {t 6= τ}

κt + λtSt = −C < −max{Xa
τ , Xb

τ} ≤ −ξτ − ζτSτ = κτ + λτSτ

for any S ∈ S. Consequently, E(κσ + λσSσ) ≤ E(κτ + λτSτ ) for each σ ∈ T
and S ∈ S, where E is the expectation under the probability measure P ∈P that
turns S into a martingale. Thus, by Theorem 3.2,

max{Za
0 , Z

b
0} = max

σ∈T
max
S∈S

E(κσ+λσSσ) = max
S∈S

E(κτ +λτSτ ) = −min
S∈S

E(ξτ +ζτSτ ).

It follows that for each τ ∈ T

min
S∈S

E(ξτ + ζτSτ ) ≤ max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
,

so that

max
τ∈T

min
S∈S

E(ξτ + ζτSτ ) ≤ max
{

min{Xa
0 , X

b
0}, min{Ua

0 , U b
0}

}
. (A.9)

Next take any S ∈ S and a strategy (α, β) ∈ Φ(Sa, Sb) such that α0 =
−πb(ξ, ζ) and there is a τ ∈ T such that ϑτ (ατ + ξτ , βτ + ζτ ) ≥ 0, and therefore
−ξτ − ζτSu

τ ≤ ατ + βτSu
τ for each u ∈ {a, b}. Because Sb

τ ≤ Sτ ≤ Sa
τ it

follows that −ξτ − ζτSτ ≤ ατ + βτSτ . By Lemma A.3 the process α + βS is
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a supermartingale under the probability measure P ∈ P that turns S into a
martingale. As a result,

E(−ξτ − ζτSτ ) ≤ E(ατ + βτSτ ) ≤ α0 + β0S0 = α0 = −πb(ξ, ζ),

where E is the expectation under P. Since S ∈ S is arbitrary,

πb(ξ, ζ) ≤ min
S∈S

E(ξτ + ζτSτ ),

which implies that
πb(ξ, ζ) ≤ max

τ∈T
min
S∈S

E(ξτ + ζτSτ ). (A.10)

Inequalities (A.9) and (A.10) together with (3.4) complete the proof.

A.4 Equality of Ask Prices of American and European
Calls

For an American call with expiry T and payoff process (ξt, ζt) =(
−K1{St≥K}, 1{St≥K}

)
, where t = 0, 1, . . . , T , we denote by X = (Xa, Xb) the

process defined by (3.1), and by ZA = (ZAa, ZAb) the process constructed in
Algorithm 3.1, modified by the inclusion of the factor (1 + r)−1 multiplying the
right-hand side of (3.2) and the factor (1 + r) multiplying Su

t (ωt) in (2.3) to
account for the presence of a possibly non-zero risk-free return r ≥ 0. Simi-
larly, by ZE = (ZEa, ZEb) we denote the analogous process for a European call
with payoff (ξT , ζT ) =

(
−K1{ST≥K}, 1{ST≥K}

)
and expiry T , which can for this

purpose be regarded as an American option with payoff process

(κt, λt) =

{
(0, 0) for t = 0, 1, . . . , T − 1,(
−K1{ST≥K}, 1{ST≥K}

)
for t = T .

Proof of Proposition 4.1 First, we claim that

ZEu
t ≥ (Su

t −K)+ (A.11)

for each u ∈ {a, b} and each t = 0, 1, . . . , T−1, which we shall prove by backward
induction on t. Observe that for each u ∈ {a, b}

ZEu
T−1 = (1 + r)−1 max

v,w∈{a,b}
Euvw

T−1(XT ;XT ) ≥ (1 + r)−1Eubb
T−1(XT ;XT )

≥ Su
T−1 − (1 + r)−1K ≥ Su

T−1 −K,

since Xb
T = (Sb

T−K)1{ST≥K} ≥ Sb
T−K. Moreover, Xa

T = (Sa
T−K)1{ST≥K} ≥ 0,

so

ZEu
T−1 = (1 + r)−1 max

v,w∈{a,b}
Euvw

T−1(XT ;XT ) ≥ (1 + r)−1Euaa
T−1(XT ;XT ) ≥ 0.
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The claim has been proved for t = T − 1. Now take some t = 1, . . . , T − 1 and
suppose that ZEu

t ≥ (Su
t −K)+ for each u ∈ {a, b}. Then, ZEu

t ≥ Su
t −K for

each u ∈ {a, b} and therefore

ZEu
t−1 = (1 + r)−1 max

v,w∈{a,b}
Euvw

t−1 (ZE
t ;ZE

t ) ≥ Su
t − (1 + r)−1K ≥ Su

t −K.

Because ZEu
t ≥ 0 for each u ∈ {a, b}, it follows that ZEu

t−1 = (1 +
r)−1maxv,w Euvw

t−1 (Zv
t ; Zw

t ) ≥ 0 for each u ∈ {a, b}. As a result, ZEu
t−1 ≥

(Su
t −K)+ for each u ∈ {a, b}, completing the proof of claim (A.11).
To prove the equality of the American and European call prices it suffices to

verify that for each u ∈ {a, b} and each t = 0, 1, . . . , T

ZAu
t = ZEu

t . (A.12)

This can be verified by backward induction on t. For t = T we have ZAu
T =

Xu
T = ZEu

T . Suppose that (A.12) holds for some t = 1, . . . , T . Then

ZAu
t−1 = max

{
Xu

t−1, (1 + r)−1 max
v,w∈{a,b}

Euvw
t−1 (ZA

t ;ZA
t )

}
= max

{
Xu

t−1, (1 + r)−1 max
v,w∈{a,b}

Euvw
t−1 (ZE

t ;ZE
t )

}
= max

{
Xu

t−1, Z
Eu
t−1

}
= ZEu

t−1,

where the last equality holds because, by (A.11),

ZEu
t−1 ≥

(
Su

t−1 −K
)+ ≥ (

Su
t−1 −K

)
1{St−1≥K} = Xu

t−1,

completing the proof.
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