Basic Stochastic Processes by Zdzisław Brzeźniak and Tomasz Zastawniak Springer-Verlag, London 1999 Corrections in the 1st printing

Version: 21 May 2005

Page and line numbers refer to the 1st printing of the book. A list of corrections in the 2nd printing is also available. Please see http://www-users.york.ac.uk/~tz506/bsp To make a comment or report further mistakes please contact the authors at bz506@york.ac.uk or tz506@york.ac.uk Your feedback will be greatly appreciated!

 vii_3 with discrete time should be in discrete time

- 89 $P(A) = P(A|B_1) + P(A|B_2) + \cdots$ should be $P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \cdots$
- $13_2 \ P\{\eta \geq t\}$ should be $P\{\eta \leq t\}$

 17^5 This chapter is been designed should be This chapter is designed

- $24_{13} \ 0 \notin C$ should be $2 \notin C$
- $24_{12} \ 0 \in C \quad \text{should be} \quad 2 \in C$
- $29_8~\eta$ should be ζ
- 30^3 if ξ is a step function should be if ξ is a *G*-measurable step function
- $38^1~E(\xi|\eta)$ should be $~E(\xi^2|\eta)$
- $38_8 \ E(\xi|\eta)$ should be $E(\xi^2|\eta)$
- $41^9~\xi$ should be ζ
- $41^{11}\ \xi$ should be ζ

$$59_5 \bigcap_{n=1}^{\infty} P\{\tau > 2Kn\}$$
 should be $P\left(\bigcap_{n=1}^{\infty} \{\tau > 2Kn\}\right)$

- 60^8 replace 2) by 1)
- $60^3 \, \sum_{n=1}^\infty$ should be $\, \sum_{n=0}^\infty \,$

191₁₄ This has been proved in Proposition 7.1. should be This follows by approximating $1_{[0,t)}f$ by random step processes in M^2_{step} and using Proposition 7.1.

 195_7 is an Itô process. should be is an Itô process; see Exercise 7.8.

 $196^{9,10}$ the latter should be which

 202^8 of all functions should be in all functions

 203^{15} is a solution of **should be** satisfies

 203^{15} clearly satisfies should be also satisfies

 214_2 , since $\,$ should be $\,$, since by the Cauchy-Schwartz inequality $215^{2,3,4}$ lines 2,3,4 should be replaced by

$$\leq n \sum_{i=0}^{n-1} E\left(\left| \int_{t_i^n}^{t_{i+1}^n} \left(W(t_{i+1}^n) - W(t) \right) dt \right|^2 \right)$$

$$\leq n \sum_{i=0}^{n-1} \left(t_{i+1}^n - t_i^n \right) E\left(\int_{t_i^n}^{t_{i+1}^n} \left| W(t_{i+1}^n) - W(t) \right|^2 dt \right)$$

$$= n \sum_{i=0}^{n-1} \frac{\left(t_{i+1}^n - t_i^n \right)^3}{2} = n \sum_{i=0}^{n-1} \frac{T^3}{2n^3} = \frac{T^3}{2n} \to 0 \quad \text{as } n \to \infty.$$