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The aim of this paper is to study certain quasivarieties of left ample monoids.
Left ample monoids are monoids of partial one–one mappings of sets closed under
the operation α 7→ αα−1. The idempotents of a left ample monoid form a semi-
lattice and have a strong influence on the structure of the monoid; however, a left
ample monoid need not be inverse. Every left ample monoid has a maximum right
cancellative image and a proper cover which is also left ample. The structure of
proper left ample monoids is well understood. Let V be a class of right cancella-
tive monoids. A left ample monoid has a proper cover over V if it has a proper
cover with maximum right cancellative image in V . We show that if V is a qua-
sivariety determined within right cancellative monoids by equations, then the left
ample monoids having a proper cover over V form a quasivariety. We achieve our
aim using the technique of graph expansions to construct proper left ample monoids
from presentations of right cancellative monoids. © 2000 Academic Press

Key Words: monoid, right cancellative, expansion, left ample, proper cover, qua-
sivariety.

1. INTRODUCTION

The notion of an expansion from one category of monoids A to another
B was introduced by Birget and Rhodes in [1]. An expansion from A to B
is a functor F x A→ B satisfying properties which ensure that the structure
of any monoid MF for M ∈ Ob A is essentially linked to that of M . Expan-
sions were originally used to solve problems about the complexity of finite

1The diagrams in this paper are drawn using Paul Taylor’s commutative diagram package.
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semigroups. However, they have applications in quite different directions,
in particular to the study of inverse monoids and related classes. Here, as
elsewhere, the idea is to “expand” from a category A of monoids having
relatively well understood structure via the functor F to a category B of
monoids having possibly more complex structure. The motivation is that
insight into the nature of (at least some) monoids in B can be obtained
from known properties of A and the explicit description of F .

The Birget–Rhodes expansion [1], the Szendrei expansion [18], and the
graph expansion of Margolis and Meakin [14], each from the category of
groups to the category of inverse monoids, have been used in the study
of inverse monoids and, in particular, the relation of inverse monoids to
groups. The Szendrei expansion and the graph expansion of right cancella-
tive monoids are considered in [10] and the forerunner of this paper, [12].
In each case they belong to the class of left ample monoids (previously
called left type A), a class which strictly contains the class of inverse
monoids.

Left ample monoids may be approached via the generalisation R∗ of
Green’s relation R; elements a; b of a monoid M are R∗-related if and
only if a and b are R-related in some overmonoid of M . Clearly R ⊆ R∗

and it is easy to see that if M is regular then R = R∗, but, in general,
the inclusion is strict. A monoid M is left adequate if every R∗-class of M
contains an idempotent and the idempotents E�M� of M form a semilattice.
In this case every R∗-class of M contains a unique idempotent. We denote
the idempotent in the R∗-class of a by a+ (sometimes a†). A left adequate
monoid M is left ample if ae = �ae�+a for each a ∈M and e ∈ E�M�. Any
inverse monoid is left ample; however, the class of left ample monoids is
much larger. For example, every right cancellative monoid is left ample.

It is easy to see that a monoid M with semilattice of idempotents E�M�
is left adequate if and only if every element a of M is right e-cancellable
for some e ∈ E�M�. This means that ea = a and for any x; y ∈ M , if
xa = ya, then xe = ye; it is equivalent to the principal left ideal Ma be-
ing projective [5]. The extra restriction that M be left ample also comes
from a consideration of principal left ideals; it is equivalent to insisting that
Ma∩Me =Mae for all a ∈M and e ∈ E�M� [6]. Left ample monoids arise
naturally as monoids of one–one mappings of mathematical structures. For
example, the monoid of partial one–one maps of a poset is left ample but
need not be inverse. Similarly, the monoid of partial one–one continuous
maps of a topological space is left ample. Indeed, with a change of sig-
nature, all left ample monoids may be obtained in this way. Regarded as
algebras of type �2; 1; 0�, where the unary operation is given by a 7→ a+,
it follows from [5, Proposition 1.2] that left ample monoids are those left
adequate monoids that are subalgebras of symmetric inverse monoids. Al-
ternatively, left ample monoids are exactly the submonoids of symmetric
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inverse monoids that are closed under the operation α 7→ αα−1. As alge-
bras of type �2; 1; 0�, left ample monoids form a quasivariety [8, 9]: thus
free left ample monoids exist. These were originally described in [9] where
they are also shown to be proper, in the following sense.

The least right cancellative congruence σ on a left ample monoid plays
a role corresponding to that of the least group congruence on an inverse
monoid and, indeed, has the same description (see Section 2). We say that
a left ample monoid is proper if σ ∩R∗ = ι. In analogues of the celebrated
results of McAlister for inverse monoids, proper left ample monoids are
described in terms of right cancellative monoids acting on partially ordered
sets [5] and further, any left ample monoid M is the image of a proper
left ample monoid P under an idempotent separating morphism [5]. The
monoid P is called a proper cover of M . An alternative characterisation of
proper left ample monoids in terms of right cancellative monoids acting on
categories is given in [11].

By a monoid presentation we mean a triple �X; f; S� where X is a set,
S is a monoid, and f x X → S is a function such that Xf generates S
as a monoid. In [12] we used the Cayley graph of a monoid presentation
�X; f; S� to construct a monoid, M�X; f; S�, called a graph expansion. We
prove in [12] that M�X; f; S� is a proper left ample monoid which is the
initial object in a suitable category PLA�X; f; S� of X-generated proper left
ample monoids having maximum right cancellative image S. Full definitions
are given in the next section. The latter part of [12] concentrates on the
larger category PLA�X� of X-generated proper left ample monoids and the
corresponding category RC�X� of X-generated right cancellative monoids.
Using graph expansions we construct a functor Fex RC�X� → PLA�X� and
show that Fe is an expansion in the sense of Birget–Rhodes. Further, Fe is
a left adjoint of Fσ x PLA�X� → RC�X�, where Fσ takes an X-generated
proper left ample monoid to its maximum right cancellative image.

The first object of this paper is to use the techniques developed in [12]
to yield an expansion, also denoted by Fe, from the category RC of all right
cancellative monoids to the category PLA of all proper left ample monoids.
We would like to say that Fe is a left adjoint of a suitably defined functor
Fσ x PLA → RC. Unfortunately as it stands this statement is not correct.
To redeem the situation we construct from PLA an augmented category
PLA0 and show that Fe and Fσ may be regarded as functors between RC
and PLA0 and that as such, Fe is a left adjoint of Fσ . The objects in PLA0

are proper left ample monoids equipped with an extra unary operation, the
image of which is a transversal of the σ-classes. The morphisms between
two objects in PLA0 are the morphisms between the objects regarded as
algebras of type �2; 1; 1; 0�. The category PLA0 is thus reminiscent of the
category of left FA monoids and +–homomorphisms [10], a left FA monoid
being the left ample analogue of an F-inverse monoid.
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The fact that inverse monoids and groups form varieties of algebras has
lead to fruitful work in the theory of varieties of inverse monoids. Let V
be a variety of groups. An inverse monoid M has a proper cover over V
if M has a proper cover P (in the established sense of inverse semigroup
theory), such that the maximal group image of P is in V . The collection
of inverse monoids having a proper cover over V form a variety of inverse
monoids defined by 6 where

6 = {u2 ≡ u x u ≡ 1 is a law in V
}

(for words u over Z ∪ Z−1 for a countably infinite set Z) [15, 16]. In [14]
graph expansions of groups are used to construct free objects in such
varieties.

Although right cancellative monoids and left ample monoids do not form
varieties of algebras, they do form quasivarieties. We say that a subquasiva-
riety of the quasivariety RC of right cancellative monoids or the quasiva-
riety LA of left ample monoids is a q-subvariety if it is determined (within
RC or LA, respectively) by equations. Let V be a q-subvariety of RC. By
analogy with the definition in the case for groups and inverse monoids, we
say that a left ample monoid M has a proper cover over V if there is a
proper cover P of M such that the maximal right cancellative image of P
lies in V . We show that

V̂ = �M ∈ LA xM has a proper cover over V �
is a q-subvariety of LA and we give a set of equations determining V̂ within
LA. Since q-subvarieties are certainly quasivarieties, free objects exist. If
�X; f; S� is the canonical presentation of the free object in V on a given
set X, then M�X; f; S� is the free object in V̂ . We arrive at this result by
finding a presentation of M�X; f; S� for any monoid presentation �X; f; S�
of a right cancellative monoid S. That is, we find a congruence ρ = ρ�X;f;S�
on the free left ample monoid FX on X such that M�X; f; S� is isomorphic
to FX/ρ. Of course, as left ample monoids do not form a variety we have
to show explicitly that FX factored by the given congruence ρ is left ample,
indeed proper left ample.

In Section 2 we gather together preliminary definitions and results con-
cerning left adequate and left ample monoids. We also define, for a given
monoid presentation �X; f; S� of a right cancellative monoid S, the sub-
category RC�X� of the category RC of right cancellative monoids and the
subcategories PLA�X; f; S� and PLA�X� of the category PLA of proper left
ample monoids.

In Section 3 we define the functors Fex RC→ PLA and Fσ x PLA→ RC.
We show that Fe is an expansion. We define the category PLA0 and prove
that, regarded as functors between RC and PLA0, Fe is a left adjoint of Fσ .
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Section 4 concentrates on finding, given a monoid presentation �X; f; S�
of a right cancellative monoid S, a congruence ρ on the free left ample
monoid FX on X such that M�X; f; S� is isomorphic to FX/ρ. We use the
description given in [12] of FX as M�X; ι;X∗�, where �X; ι;X∗� is the
canonical presentation of the free monoid on X.

Finally in Section 5 we give the promised results concerning q-
subvarieties. Namely, if V is a q-subvariety of RC we show that V̂ is
a q-subvariety of LA. Further, V̂ is the q-subvariety determined by 6,
where

6 = {s+t ≡ t+s x s ≡ t is a law in V
}

(for words s; t over a countably infinite set Z). We show that free objects
in V̂ are graph expansions of monoid presentations of free objects in V .
Note that this means that free objects in V̂ are proper.

2. PRELIMINARIES

In this section we draw together definitions and results used later in the
paper. For further background in semigroup theory and universal algebra
we refer the reader to [3, 13].

We begin with the following alternative characterisation of the relation
R∗, which we use without further mention.

Lemma 2.1 [7]. Elements a; b of a monoid M are R∗-related if and only
if for all x; y ∈M ,

xa = ya if and only if xb = yb:

From Lemma 2.1 it is clear that R∗ is an equivalence relation on any
monoid M , indeed a left congruence.

Recall that a monoid M is left adequate if every R∗-class contains an
idempotent and the idempotents of M form a semilattice; the unique idem-
potent in the R∗-class of a is denoted by a+.

Lemma 2.2 [6]. Let M be a left adequate monoid. Then

(1) �ab�+ = �ab+�+ for all a; b ∈M;

(2) �ea�+ = ea+ for all a ∈M and e ∈ E�M�;
(3) �ab�+ ≤ a+ for all a; b ∈ M , where ≤ is the natural partial order

on E�M�.
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We consider left adequate monoids as algebras of type �2; 1; 0�. We em-
phasize that a+ always denotes the idempotent in the R∗-class of a. As
pointed out in the Introduction, left adequate monoids form a quasivariety
of algebras. It is easy to see they are axiomatised by the set

�1x = x = x1; �xy�z = x�yz�; �x+�+ = x+; x+x = x;
�x2 = x ∧ y2 = y� ⇒ xy = yx; xy = zy ⇒ xy+ = zy+�

of quasi-identities [8, 9].
A left ample monoid is a left adequate monoid M in which ae = �ae�+a

for each a ∈ M and e ∈ E�M�, that is, satisfying the additional quasi-
identity

x2 = x ⇒ yx = �yx�+y: �AL�
Thus left ample monoids form a subquasivariety of the quasivariety of left
adequate monoids.

We regard arbitrary monoids as algebras of type �2; 0�. Now, any right
cancellative monoid is a left ample monoid and later in the paper we con-
sider right cancellative monoids S with a given set of generators. The next
lemma shows that no ambiguity arises whether we regard such an S as an
algebra of type �2; 1; 0� or of type �2; 0�.

Lemma 2.3. Let S be a right cancellative monoid. Then S is a left ample
monoid. A subset X of S is a set of generators of S as an algebra of type �2; 0�
if and only if it is a set of generators of S as an algebra of type �2; 1; 0�. A
subset T of S is a submonoid of S if and only if it is a �2; 1; 0�-subalgebra.
Further, a function φ from a left ample monoid M to S is a monoid morphism,
that is, a �2; 0�-morphism, if and only if it is a morphism where S is regarded
as a left ample monoid, that is, a �2; 1; 0�-morphism.

For a left ample monoid M , the least right cancellative congruence has
the same description as that of the least group congruence on an inverse
monoid.

Lemma 2.4 [5]. Let M be a left ample monoid and define the relation σ
on M by the rule that for a; b ∈ M , aσ b if and only if ea = eb for some
e ∈ E�M�. Then σ is the least right cancellative monoid congruence on M .

Where there is danger of ambiguity, the relation σ on a left ample
monoid M is denoted by σM . Note that E�M� is contained within a σ-
class.

We say that a left ample monoid is proper if σ ∩R∗ = ι. For an inverse
monoid, being proper is the same as being E-unitary, that is, the idempo-
tents forming a unitary subset. A subset H of a monoid M is unitary if for
all a ∈ M and h ∈ H, either ah ∈ H or ha ∈ H implies that a ∈ H. In the
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general case, a proper left ample monoid M is E-unitary but the converse
is not true [5]. Note that if M is E-unitary then E�M� is a σ-class. The
following lemma is crucial in our later arguments.

Lemma 2.5 [4]. Let M be a proper left ample monoid. If a; b ∈ M , then
a σ b if and only if b+a = a+b.

Corollary 2.6. Let M be a left ample monoid. Then M is proper if and
only if M satisfies the quasi-identity(

x2 = x ∧ y+ = z+ ∧ xy = xz) ⇒ y = z:
Thus proper left ample monoids are a quasivariety.

Corollary 2.7 [4]. Let M be a left adequate monoid and let N be a
subalgebra of M .

(1) The subalgebra N is a left adequate monoid and for all a; b ∈ N ,
a R∗ b in N if and only if a R∗ b in M .

(2) If M is left ample then so is N .

(3) If M is a proper left ample monoid then so is N and for all a; b ∈ N
a σ b in N if and only if a σ b in M:

Another consequence of the above which we shall require in Section 5 is:

Corollary 2.8. Let I be a non-empty set indexing left adequate monoids
Mi; i ∈ I. Then

∏
i∈I Mi is left adequate and �ai� R∗ �a+i � for each �ai� ∈∏

i∈I Mi. Hence for �ai�; �bi� ∈
∏
i∈I Mi,

�ai� R∗ �bi� if and only if ai R∗ bi for all i ∈ I:
We recall from the Introduction that a left ample monoid P is a proper

cover of a left ample monoid M if P is proper and M is the image of P
under an idempotent separating morphism.

Theorem 2.9 [5]. Every left ample monoid has a proper cover.

It is clear that the class of right cancellative monoids forms a quasivariety.
The class of right cancellative monoids together with all monoid morphisms
between them is of course a category. We denote the quasivariety of right
cancellative monoids by RC and the corresponding category by RC. Simi-
larly, LA (PLA) denote the quasivariety of left ample (proper left ample)
monoids and LA (PLA) denote the corresponding categories. Recall that
left ample monoids are actually �2; 1; 0�-algebras. Nevertheless, in view of
Lemma 2.3, we may regard RC as a subquasivariety of PLA and RC as a
full subcategory of PLA.
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In [12] we are concerned with various categories of X-generated
monoids, obtained in the following manner.

Let X be a set and A a class of algebras of a given fixed type. Then A�X�
is the category which has objects pairs �f;A� where A ∈ A; f x X → A
and �Xf � = A; a morphism in A�X� from �f;A� to �g;B� is a morphism
θx A→ B such that

X

A B

f g

θ]

commutes. From �Xf � = A we deduce that if such a θ exists, it must be
unique; from �Xg� = B we deduce that such a θ must be onto.

For the purposes of this paper we require some results concerning full
subcategories of PLA�X� of the form PLA�X; f; S� where �X; f; S� is a
monoid presentation �X; f; S� of a right cancellative monoid S. An object
�g;M� of PLA�X� is an object in PLA�X; f; S� if the diagram

X

M S

g
f

σ]

commutes, where σ] is a morphism with kernel σ . As previously remarked,
σ] must then be the only morphism making the above diagram commute,
and σ] must be onto, so that S is the maximum right cancellative image
of M . In [12] we introduce a construction of a monoid M�X; f; S� ∈ Ob
PLA�X; f; S� from the Cayley graph of �X; f; S�, which we now detail.

For the purposes of this paper a graph 0 consists of two sets V = V �0�
(the vertices of 0) and E = E�0� (the edges of 0), together with two maps
(written on the left), ix E → V and tx E → V . The maps i and t are
the initial and terminal maps, respectively. We may represent e ∈ E with
i�e� = v and t�e� = v′ by

e• > •
v v′

A path from a vertex v to a vertex w is a finite sequence of edges e1; : : : ; en
with

i�e1� = v; t�e1� = i�e2�; t�e2� = i�e3�; : : : ; t�en� = w
and we write this as

e1• > •
v

e2
> • • en

> •
w
:
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There is also an empty path Iv from any vertex v to itself. The graph 0
is v-rooted, where v ∈ V , if for all w ∈ V there is a path from v to w.
A subgraph 1 of 0 consists of a subset V �1� of V �0� and a subset E�1�
of E�0� such that for any e ∈ E�1�; i�e�; t�e� ∈ V �1�. Clearly any path
determines a subgraph; it is convenient at times to use the same notation
for a path and the corresponding subgraph.

A graph morphism θ from a graph 0 to a graph 0′ consists of two func-
tions, each denoted by θ, from V �0� to V �0′� and from E�0� to E�0′�, such
that for any e ∈ E�0�,

i�e�θ = i�eθ� and t�e�θ = t�eθ�:
Clearly such a θ maps subgraphs to subgraphs and paths to paths.

A monoid S acts on a graph 0 (on the left) if V and E are left S-sets and
i and t are left S-maps, that is, i�s · e� = s · i�e� and t�s · e� = s · t�e� for all
s ∈ S and e ∈ E. Note that if S acts on 0, then the action of any s ∈ S is a
graph morphism so that if 1 is a subgraph of 0, then so is s · 1.

Our interest here is in the Cayley graph 0 = 0�X; f; S� of a monoid
presentation �X; f; S�. Here V �0� = S and

E�0� = ��s; x; s�xf �� x s ∈ S; x ∈ X�;
where i�s; x; s�xf �� = s and t�s; x; s�xf �� = s�xf �. We may write the edge
�s; x; s�xf ��, or the corresponding subgraph, as

x• > •
s s�xf � :

The monoid S acts on 0 where for s ∈ S; v ∈ V; �t; x; t�xf �� ∈ E we have

s · v = sv; s · �t; x; t�xf �� = �st; x; st�xf ��:
The graph expansion M = M�X; f; S� of �X; f; S� is given by

M = ��1; s� x 1 is a finite 1-rooted subgraph of 0 and 1; s ∈ V �1��:
We define a multiplication on M by

�1; s��6; t� = �1 ∪ s · 6; st�:
It is easy to check that M�X; f; S� is a monoid with identity �•1; 1�. Clearly

0x =
x• > •

1 xf

is a 1-rooted subgraph of 0 and �0x; xf � ∈ M. We define τM�X; f; S� =
τMx X → M by xτM = �0x; xf �.
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Proposition 2.10 [12]. Let �X; f; S� be a monoid presentation of a right
cancellative monoid S. Then M = M�X; f; S� is a proper left ample monoid.
For any �1; s�; �6; t� ∈ M,

(i) �1; s� ∈ E�M� if and only if s = 1;
(ii) �1; s�+ = �1; 1�;

(iii) �1; s� R∗ �6; t� if and only if 1 = 6;
(iv) �1; s� σ �6; t� if and only if s = t.

Further, M = �XτM� and

X

M S

τM
f

σ]

commutes, where σ]x M → S is the morphism with kernel σ defined by
�1; s�σ] = s. Thus �τM;M� is an object in the category PLA�X; f; S�.

Theorem 2.11. The pair �τM;M� is an initial object in the category
PLA�X; f; S�.

In Section 5 we show that graph expansions can be used to construct
free objects in q-subvarieties of LA. A subclass W of a quasivariety V is
a q-subvariety if W is determined within V by identities; that is, there is a
set of identities 6 such that W = �V ∈ V x V �= 6�. An alternative char-
acterisation is given in [17] (see Section 5). We remark that, regarded as
a class of algebras of type �2; 1; 0�, RC is the q-subvariety of PLA de-
termined by the identity x+ = 1. Since q-subvarieties are subquasivarieties,
free objects in non-trivial q-subvarieties exist [3]. If F is a free object on a
set X in a quasivariety V and f x Y → X is a bijection between a set Y and
X, then we may refer to F as the free object (in V ) on Y with canonical
embedding f .

Free left ample monoids were first described in [9]. Alternative construc-
tions using Szendrei expansions and graph expansions were given in [10, 12],
respectively. We make use of the latter approach.

Theorem 2.12 [12]. Let X be a set and let ιx X → X∗ be the standard
embedding of X into the free monoid on X. Then M�X; ι;X∗� is the free left
ample monoid on X with canonical embedding τM.

We denote the free left ample monoid on a set X by FX . Note that the
free left ample monoid is proper.

Finally in this section on preliminaries we remark that if ρ is a congruence
on an algebra A, then we denote by A/ρ the quotient algebra of A by ρ
and by ρ\ the natural morphism from A to A/ρ.
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3. THE CATEGORY PLA0 AND THE FUNCTORS Fe AND Fσ

In this section we define functors Fex RC→ PLA and Fσ x PLA → RC.
We construct from PLA a new category PLA0 and show that Fe and Fσ

may be regarded as functors between RC and PLA0 and as such, Fe is
a left adjoint of Fσ . This is a slightly stronger result than that promised
in [12]. The objects in PLA0 are those of PLA equipped with an extra
unary operation; the morphisms between two objects in PLA0 are those of
PLA preserving this operation.

We begin with the functor Fe. Suppose that S ∈ Ob RC, that is, S is a right
cancellative monoid. The triple �S; IS; S� is certainly a monoid presentation
of S, where ISx S → S is the identity map. We put SFe = M�S; IS; S�. By
Proposition 2.10, M�S; IS; S� is a proper left ample monoid so that Fe is a
function from Ob RC to Ob PLA.

Suppose now that S; T ∈ Ob RC and θx S → T is in MorRC�S; T �. We
first define a map θ′x 0�S; IS; S� → 0�T; IT ; T � by

vθ′ = vθ
for any vertex v of 0�S; IS; S� and

�s; x; sx�θ′ = �sθ; xθ; sθxθ�
for any edge �s; x; sx� of 0�S; IS; S�. Clearly θ′ is a graph morphism so that
as remarked in Section 2, θ′ maps subgraphs to subgraphs and paths to
paths; indeed as 1θ = 1, θ′ maps one-rooted subgraphs to one-rooted sub-
graphs. Thus we can define θFe to be θe where θex SFe→ TFe is given by

�1; s�θe = �1θ′; sθ�:
For any subgraph 1 of 0�S; IS; S� and s ∈ S,

�s · 1�θ′ = sθ · 1θ′:
Using Proposition 2.10 it is now easy to see that θe ∈ MorPLA�SFe; TFe�
and that Fe defined in this manner is a functor from RC to PLA.

In fact, Fe is an expansion in the sense of Birget–Rhodes [1]. Regarding
RC as a subcategory of PLA, we need to show that for any S ∈ Ob RC
there is an onto morphism ηS ∈ MorPLA�SFe; S� such that for each θ ∈
MorRC�S; T � the square

SFe TFe

S T

θe

ηS ηT

θ
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commutes; further, if θ is onto then so also is θFe. Defining ηS by
�1; s�ηS = s, it is immediate that ηS is an onto monoid morphism so that
by Lemma 2.3, ηS ∈ MorPLA�SFe; S�. For any θ ∈ MorRC�S; T � and any
�1; s� ∈ SFe,

�1; s�θeηT = �1θ′; sθ�ηT = sθ = �1; s�ηSθ;
so that the above square commutes. Suppose now that θ is onto. For any
t ∈ T we have t = sθ for some s ∈ S so that( t• > •

1 t
; t
)
=
( sθ• > •

1 sθ
; sθ

)
=
( s• > •

1 s
; s
)
θe:

Recall from Proposition 2.10 that

{( t• > •
1 t

; t
)
x t ∈ T

}
is a set of generators of TFe, so that θe is onto and we have proved:

Proposition 3.1. The functor Fex RC→ PLA is an expansion.

We now define the functor Fσ x PLA→ RC. The action of Fσ on objects
is given by MFσ = M/σ for any M ∈ Ob PLA. By definition of σ , the
monoid M/σ is right cancellative. For θ ∈ MorPLA�M;N� put θFσ = θσ
where �m�θσ = �mθ�. In view of the description of θ in Lemma 2.5, θσ is
well defined. Clearly Fσ is a functor from PLA to RC.

We would like to say that Fe is a left adjoint of Fσ . Unfortunately, this
is not strictly true, as the natural mapping between the relevant morphism
sets (see Theorem 3.3) is not necessarily a bijection. The situation can be
remedied if we augment proper left ample monoids with an extra unary
operation, as we now describe.

The category PLA0 has as objects proper left ample monoids given an
added unary operation ◦ such that for any proper left ample monoid M

(i) m σ m◦ for all m ∈M and
(ii) �m◦ x m ∈M� is a transversal of the σ-classes of M .

The morphisms of PLA0 are the morphisms between objects regarded as
algebras of type �2; 1; 1; 0�.

Clearly the only way a right cancellative monoid S can be made into an
object of PLA0 is if s◦ = s for all s ∈ S. For an arbitrary proper left ample
monoid there are of course many choices for ◦. A left ample monoid M is
weak left FA if every σ-class contains a maximum element under the partial
ordering ≤, where for any a; b ∈ M , a ≤ b if and only if a = eb for some
e ∈ E�M�; a weak left FA monoid is necessarily proper [10]. The standard
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choice of ◦ for a weak left FA monoid is to put a◦ = m�a�, where m�a�
denotes the maximum element in the σ-class of a. The Szendrei expansion
S̃SR of a right cancellative monoid S is weak left FA; indeed S̃SR is left FA;
that is, S̃SR satisfies the identity m�x�+m�xy�+ = �m�x�m�y��+ [10]. The
relationship between RC and the category of left FA monoids regarded as
algebras of type �2; 1; 1; 0� is studied in [10], making use of the Szendrei
expansion (in fact Fountain and Gomes consider the left–right dual case
throughout).

A fundamental difference between graph expansions and Szendrei ex-
pansions is that the latter are not presentation dependent. Further, for a
right cancellative monoid S the expansion SFe need not be weak left FA:

Lemma 3.2. If T = �x; y�∗ is the free monoid on two generators then TFe

is not weak left FA.

Proof. It is easy to see that for any monoid presentation �X; f; S� of a
right cancellative monoid S and any �6; s�; �1; t� ∈ M�X; f; S�,

�6; s� ≤ �1; t� if and only if s = t and 1 ⊆ 6:
Now consider T = �x; y�∗ and TFe = M�T; IT ; T �. Certainly( x• > •

1 x

y
> •

xy
; xy

)
and

( xy• > •
1 xy

; xy
)

are σ-related elements of TFe. The subgraphs

x• > •
1 x

y
> •

xy
and

xy• > •
1 xy

contain no common 1-rooted subgraph having vertex xy, so by the previous
paragraph, their σ-class has no maximum element.

With the right choice of ◦ for SFe, the functor Fe may be regarded as
a functor from RC to PLA0. For a right cancellative monoid S define ◦ on

SFe by �6; s�◦ =
( s• > •

1 s
; s
)

. By Proposition 2.10, SFe is then an object

in PLA0. Suppose further that S; T ∈ Ob RC and θ ∈MorRC�S; T �. For any
�6; s� ∈ SFe we have

�6; s�◦θe =
( s• > •

1 s
; s
)
θe =

( sθ• > •
1 sθ

; sθ
)
;

= �6θ′; sθ�◦ = ��6; s�θe�◦;
so that θex SFe → TFe is a �2; 1; 1; 0�-morphism; that is, θFe = θe ∈
MorPLA0�SFe; TFe�. Thus Fe is a functor from RC to PLA0.
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Of course, Fσ may be viewed as a functor from PLA0 to RC. We can
now state the main result of this section.

Theorem 3.3. Regarded as functors between RC and PLA0, Fe is a left
adjoint of Fσ .

Proof. We must prove that for any T ∈ Ob RC and M ∈ Ob PLA0, there
is a bijection

αT xM x MorPLA0�TFe;M� →MorRC�T;MFσ�
such that for any T ′ ∈ Ob RC, M ′ ∈ Ob PLA0, φ ∈ MorRC�T ′; T �, and
θ ∈MorPLA0�M;M ′�, the square

MorPLA0�TFe;M� MorRC�T;MFσ�

MorPLA0�T ′Fe;M ′� MorRC�T ′;M ′Fσ�

αT xM

Mor�φe;θ� Mor�φ;θσ �

αT ′ xM′

commutes. Here

Mor �φe; θ�x MorPLA0�TFe;M� →MorPLA0�T ′Fe;M ′�
is given by

ψ Mor�φe; θ� = φeψθ
and

Mor �φ; θσ�x MorRC�T;MFσ� →MorRC�T ′;M ′Fσ�
is given by

ψ Mor �φ; θσ� = φψθσ:
Let T ∈ Ob RC. In view of Proposition 2.10 we may define an isomor-

phism σT x T → TFe/σ by

tσT =
[( t• > •

1 t
; t
)]
= ��6; t��

for any �6; t� ∈ TFe. If M ∈ Ob PLA0 then we define

αT xM x MorPLA0�TFe;M� →MorRC�T;MFσ�
by

ψαT xM = σTψσ:



442 victoria gould

We first show that the above diagram commutes. Let ψ ∈ MorPLA0

�TFe;M� and let t ′ ∈ T ′. Then

t ′�ψαT xM Mor �φ; θσ�� = t ′�φσTψσθσ�
= ��6; t ′φ��ψσθσ

= ��6; t ′φ�ψθ�
for any �6; t ′φ� ∈ TFe. On the other hand,

t ′�ψ Mor �φe; θ�αT ′ xM ′ � = t ′�σT ′ �φeψθ�σ�
= ��1; t ′���φeψθ�σ

= ��1; t ′�φeψθ�
= ��1φ′; t ′φ�ψθ�

for any �1; t ′� ∈ T ′Fe. But for any �6; t ′φ� ∈ TFe and �1; t ′� ∈ T ′Fe we
have by Proposition 2.10 that �6; t ′φ� σ �1φ′; t ′φ�. Lemma 2.4 then gives
�6; t ′φ�ψθ σ �1φ′; t ′φ�ψθ so that ψαT xM Mor �φ; θσ� is the same map as
ψ Mor �φe; θ�αT ′ xM ′ , that is, the diagram commutes as required.

It remains to show that αT xM is a bijection. We use results of [12] to
construct an inverse βT xM of αT xM .

First consider γx M/σM → M defined by �m�γ = m◦;m ∈ M . Then for
any �m� ∈M/σM ,

�m�γσ\M = m◦σ\M = �m◦� = �m� = �m�IM/σM :
Thus the diagram

M/σM

M M/σM

γ
IM/σM

σ
\
M

commutes. Put K = ��M/σM�γ�; that is, K is the �2; 1; 0�-subalgebra (or
equivalently, the �2; 1; 1; 0�-subalgebra) of M generated by �m◦ x m ∈M�.
It follows from Corollary 2.7 that K is a proper left ample monoid; indeed,
K ∈ Ob PLA0. Certainly

M/σM

K M/σM

γ
IM/σM

δ
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commutes, where δ is the restriction of σ\M to K. Corollary 2.7 also
gives that Ker δ = σK. In the terminology of [12] this says that the
pair �γ;K� is an object in the category PLA�M/σM; IM/σM ;M/σM �.
Theorem 2.11 guarantees the existence of a unique �2; 1; 0�-morphism
πx M = M�M/σM; IM/σM ;M/σM� → K such that

M/σM

K M

γ τM

π

commutes, where τMx M/σM → M is the map given by �m�τM =( �m�• > •
1 �m�; �m�

)
. Of course M = �M/σM�Fe; regarding M and K as

�2; 1; 1; 0�-algebras we then have

�6; �m��◦π =
( �m�• > •

1 �m�; �m�
)
π = �m�τMπ = �m�γ = m◦

for any �6; �m�� ∈ M. But as π is a �2; 1; 0�-morphism,

�6; �m��π σ �6; �m��◦π;
giving that

�6; �m��π◦ = �6; �m��◦π◦ = m◦◦ = m◦ = �6; �m��◦π:
Thus π is a �2; 1; 1; 0�-morphism.

We can now define

βT xM x MorRC�T;MFσ� →MorPLA0�TFe;M�
by

ψβT xM = ψeπ;
where we regard π as a morphism from M to M .

Consider ψ ∈MorRC�T;MFσ�. From the definitions,

ψβT xMαT xM = σT �ψeπ�σ :
Let t ∈ T . Then

tσT �ψeπ�σ =
[( t• > •

1 t
; t
)]
�ψeπ�σ

=
[( t• > •

1 t
; t
)
ψeπ

]
=
[( tψ• > •

1 tψ
; tψ

)
π
]
:
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We have tψ = �m� for some m ∈M and so

tψβT xMαT xM =
[( �m�• > •

1 �m�; �m�
)
π
]
= [�m�τMπ

]
= [�m�γ] = �m◦� = �m� = tψ:

Thus ψβT xMαT xM = ψ and βT xMαT xM is the identity map in MorRC
�T;MFσ�.

Finally we consider ψ ∈MorPLA0�TFe;M�. Again from the definitions,

ψαT xMβT xM = �σTψσ�eπ:
From Proposition 2.10, TFe is generated as a �2; 1; 0�-algebra by ele-

ments of the form
( t• > •

1 t
; t
)

where t ∈ T . Thus to show that

αT xMβT xM is the identity map in MorPLA0�TFe;M�, it is enough to show
that for any t ∈ T ,( t• > •

1 t
; t
)
�σTψσ�eπ =

( t• > •
1 t

; t
)
ψ:

Let t ∈ T . We have( t• > •
1 t

; t
)
�σTψσ�eπ =

( �m�• > •
1 �m�; �m�

)
π;

where �m� = tσTψσ =
[( t• > •

1 t
; t
)
ψ
]
. Thus

( t• > •
1 t

; t
)
�σTψσ�eπ = �m�τMπ = �m�γ

= m◦ =
( t• > •

1 t
; t
)
ψ◦ =

( t• > •
1 t

; t
)
◦ψ;

using the fact that ψ is a �2; 1; 1; 0�-morphism. But( t• > •
1 t

; t
)
◦ =

( t• > •
1 t

; t
)
;

giving ( t• > •
1 t

; t
)
�σTψσ�eπ =

( t• > •
1 t

; t
)
ψ;

as required.
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4. A PRESENTATION OF M�X; f; S�

For the remainder of the paper we return to regarding left am-
ple monoids as algebras of type �2; 1; 0�. Given a monoid presentation
�X; f; S� of a right cancellative monoid S, the left ample monoid M�X; f; S�
is generated by �xτM�X; f; S� x x ∈ X� where xτM�X; f; S� is

( x• > •
1 xf

; xf �.
Let X∗ be the free monoid on X and let ιx X → X∗ be the canonical em-
bedding. Theorem 2.12 says that M�X; ι;X∗� is the free left ample monoid

on �xτM�X;ι;X∗� x x ∈ X�, where xτM�X;ι;X∗� =
( x• > •

1 x
; x
)

. Abbreviat-

ing our notation we write τM for τM�X; f; S�, FX for M�X; ι;X∗� and τ for
τM�X;ι;X∗�. It follows from Theorem 2.12 that M�X; f; S� is a morphic im-
age of FX under a morphism θ such that τθ = τM. The aim of this section
is to give an explicit description of the kernel of θ.

Our approach is to find a congruence ρ on FX such that the pair
�τρ\; FX/ρ� is an initial object in the category PLA�X; f; S�. According
to Theorem 2.11, the pair �τM;M�X; f; S�� is also an initial object in this
category. Uniqueness of initial objects yields the required result.

The main problem lies in the fact that the class of proper left ample
monoids is a quasivariety and quasivarieties are not closed under morphic
images, not unless they are actually varieties. In view of Theorem 2.9, to
see that proper left ample monoids do not form a variety, one needs only
remark that there are left ample monoids which are not proper. Indeed,
any inverse monoid that is not proper as an inverse monoid is not proper
as a left ample monoid. For a specific example of a right cancellative monoid
with a quotient that fails to be right cancellative or even left ample, take
the free monoid T = �x; y�∗ on two generators and quotient T by the
congruence generated by ��x; x2�; �y; y2��; the quotient monoid has non-
commuting idempotents.

We begin with some observations concerning our construction of the free
left ample monoid FX on X. With �X; ι;X∗�; FX , and τ defined as above,
Proposition 2.10 gives that

X

FX X∗

τ ι

σ
]

commutes, where σ] is the onto morphism with kernel, the relation σ on
FX given by �6; x�σ] = x. We lift the maps τ and ι to monoid morphisms
τx X∗ → FX and ι = IX∗ x X∗ → X∗.
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Lemma 4.1 (cf. [9]). With τ defined as above, the diagram

X

FX X∗

τ
IX∗

σ
]

commutes. It follows that the submonoid Im τ of FX is isomorphic to X∗.
Further, if e�x̄τ̄� = g�ȳτ̄� for e; g ∈ E�FX� and x; y ∈ X∗, then x = y.

Proof. The first part of the lemma is clear.
If e�x̄τ̄� = g�ȳτ̄� for e; g ∈ E�FX� and x; y ∈ X∗, then �e�x̄τ̄��σ] =
�g�ȳτ̄��σ]. As σ] is a morphism mapping all idempotents to 1 and τσ] =
IX∗ we obtain x = y.

It follows from [9] and, more directly, from Proposition 2.10 of this paper
and [12, Lemma 4.1], that any element a of FX can be written as a = e�x̄τ̄�
for some e ∈ E�FX� and x ∈ X∗. This enables us to define the positive part
p�a� of a ∈ FX by p�a� = x where a = e�x̄τ̄�; e ∈ E�FX�; x̄ ∈ X∗. That p
is a function is immediate from Lemma 4.1 above.

Lemma 4.2. The function px FX → X∗ is a monoid morphism.

Proof. We need only show that if a = e�x̄τ̄� and b = g�ȳτ̄� where e; g ∈
E�FX� and x; y ∈ X∗, then p�a�p�b� = p�ab�. Using condition (AL) gives

ab = e�x̄τ̄�g�ȳτ̄� = e�x̄τ̄g�+x̄τ̄ȳτ̄ = e�x̄τ̄g�+�x̄ ȳ�τ̄;

so that

p�a�p�b� = x̄ ȳ = p�ab�;

as required.

Let �X; f; S� be a monoid presentation of a right cancellative monoid S.
We use f̄ to denote the extension of f to a monoid morphism from X∗ to
S. Let

H = H�X;f;S�
= {��ūτ̄�+v̄τ̄; �v̄τ̄�+ūτ̄� ∈ FX × FX x ū; v̄ ∈ X∗ and ūf̄ = v̄f̄}

and let ρ = ρ�X; f; S� be the �2; 1; 0�-congruence on FX generated by H.

Proposition 4.3. With ρ defined as above, FX/ρ is a proper left ample
monoid.
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Proof. Note first that if ū; v̄ ∈ X∗ and ūf̄ = v̄f̄ , then using Lemma 4.1,

��ūτ̄�+v̄τ̄�σ]f̄ = v̄τ̄σ]f̄ = v̄f̄ = ūf̄ = ūτ̄σ]f̄ = ��v̄τ̄�+ūτ̄�σ]f̄ ;
so that H ⊆ Kerσ]f̄ . As S is right cancellative, the monoid morphism
σ]f̄ x FX → S is in fact a �2; 1; 0�-morphism, so that ρ ⊆ Kerσ]f̄ . It follows
that if a; b ∈ FX and a ρ b, then p�a�f̄ = p�b�f̄ .

We next show that every idempotent ρ-class of FX contains an idempo-
tent. Let a ∈ FX with a ρ a2. Writing a as a = e�x̄τ̄� for some e ∈ E�FX�
and x̄ ∈ X∗, the above paragraph gives p�a�f̄ = p�a2�f̄ . Using Lemma 4.2
we have

x̄f̄ = p�a�f̄ = p�a2�f̄ = p�a�2f̄ = x̄2f̄ = �x̄f̄ �2

and so x̄f̄ = 1 = 1f̄ , as S is right cancellative. Thus

�x̄τ̄; �x̄τ̄�+� = ��1τ̄�+x̄τ̄; �x̄τ̄�+1τ̄� ∈ H
and

a = e�x̄τ̄� ρ e�x̄τ̄�+ ∈ E�FX�;
as required. As the idempotents of FX commute, it follows that so also do
the idempotents of FX/ρ.

Suppose now that a = e�x̄τ̄�, b = g�ȳτ̄� ∈ FX with a R∗ b, where e; g ∈
E�FX� and x̄; ȳ ∈ X∗. We claim that aρ R∗ bρ in FX/ρ. To see this, let
c = h�z̄τ̄�; d = k�w̄τ̄� ∈ FX with h; k ∈ E�FX� and z̄; w̄ ∈ X∗, and suppose
that

�cρ��aρ� = �dρ��aρ�;
that is, ca ρ da. Hence

�p�c�p�a��f̄ = p�ca�f̄ = p�da�f̄ = �p�d�p�a��f̄
and we obtain �z̄x̄�f̄ = �w̄x̄�f̄ . As S is right cancellative, z̄f̄ = w̄f̄ and so

�w̄τ̄�+z̄τ̄ ρ �z̄τ̄�+�w̄τ̄�: (1)

From ca ρ da and the fact that ρ is a �2; 1; 0�- congruence, certainly

�cb�+ = �ca�+ ρ �da�+ = �db�+: (2)

Using Lemma 2.2,

�cb�+ ≤ c+ = h�z̄τ̄�+ ≤ �z̄τ̄�+;
so that

�db�+�z̄τ̄�+ ρ �cb�+�z̄τ̄�+ = �cb�+ ρ �db�+:
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Thus �db�+ ρ �db�+�z̄τ̄�+ and similarly, �cb�+ ρ �cb�+�w̄τ̄�+. Putting to-
gether (1) and (2) gives

�cb�+�w̄τ̄�+z̄τ̄ ρ �db�+�z̄τ̄�+w̄τ̄
so that from the above remarks,

�cb�+z̄τ̄ ρ �db�+w̄τ̄y
hence

�cb�+z̄τ̄ȳτ̄ ρ �db�+w̄τ̄ȳτ̄:
The left hand side equals

�h�z̄τ̄�g�ȳτ̄��+z̄τ̄ȳτ̄ = h��z̄τ̄�g�+�z̄τ̄ȳτ̄�+z̄τ̄ȳτ̄
= h��z̄τ̄�g�+z̄τ̄ȳτ̄ = h�z̄τ̄�gȳτ̄ = cb;

using (AL) and Lemma 2.2. Similarly, the expression on the right hand side
equals db so that cb ρ db; that is,

cρbρ = dρbρ
in FX/ρ. Together with the dual argument this gives that aρ R∗ bρ in FX/ρ.

The above allows us to deduce from a R∗ a+ that aρ R∗ a+ρ for any a ∈
FX . Since a+ρ = �aρ�+ is idempotent, we have that FX/ρ is left adequate
and + has its standard meaning. From the fact that each ρ-class contains an
idempotent, we deduce that FX/ρ inherits (AL) from FX so that FX/ρ is
left ample.

It remains to show that FX/ρ is proper. Let aρ; bρ ∈ FX/ρ and suppose
that

aρ �R∗ ∩ σ� bρ;
so that aρ R∗ bρ and ha ρ hb for some h ∈ E�FX�. From aρ R∗ bρ we
obtain

a+ρ = �aρ�+ = �bρ�+ = b+ρ;
so that

a+ ρ b+; (3)

whilst from ha ρ hb we obtain p�a�f̄ = p�b�f̄ . Thus

�p�b�τ̄�+p�a�τ̄ ρ �p�a�τ̄�+p�b�τ̄ (4)

and putting together (3) and (4) a straightforward argument gives that
a ρ b. That is, aρ = bρ and FX/ρ is proper.
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Continuing with the notation established above, it follows from the proof
of Proposition 4.3 that there is a �2; 1; 0�-morphism ηx FX/ρ→ S given by
�aρ�η = aσ]f̄ . Clearly η is onto,

X

FX/ρ S

τρ\
f

η

commutes, and FX/ρ = �Xτρ\�.
Lemma 4.4. The pair �τρ\; FX/ρ� is an object in PLA�X; f; S�.
Proof. It remains only to show that Kerη = σFX/ρ. For ease of notation

we write σρ for σFX/ρ. Clearly σρ ⊆ Kerη.
Conversely, consider a = e�x̄τ̄�, b = g�ȳτ̄� ∈ FX where e, g ∈ E�FX�,

x̄; ȳ ∈ X∗ and suppose that �aρ�η = �bρ�η. By definition of η, aσ]f̄ =
bσ]f̄ so that as eσ] = gσ] = 1, we have that x̄τ̄σ]f̄ = ȳτ̄σ]f̄ . But τ̄σ] =
IX∗ and so x̄f̄ = ȳf̄ and

�x̄τ̄�+ȳτ̄ ρ �ȳτ̄�+x̄τ̄:
It is now clear that aρ σρ bρ in FX/ρ so that Kerη ⊆ σρ and, consequently,
Kerη = σρ.

Lemma 4.5. The pair �τρ\; FX/ρ� is an initial object in PLA�X; f; S�.
Proof. We need to show that if �g;N� ∈ Ob PLA�X; f; S� then there is

a morphism ψ ∈ MorPLA��τρ\; FX/ρ�; �g;N�� (recall from Section 2 that
there is at most one element in any Mor set in this category). In other
words, given a proper left ample monoid N and a map gx X → N with
�Xg� = N , such that there is a morphism µx N → S with Kerµ = σN and

X

N S

g
f

µ

commuting, we must show that there is a �2; 1; 0�-morphism ψx FX/ρ→ N
such that

X

N FX/ρ

g τρ\

ψ

�∗�

commutes.
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Let �g;N� be as above. Since FX is the free proper left ample monoid
on Xτ there is a �2; 1; 0�-morphism φ such that

X

N FX

g τ

φ

commutes. We claim that ρ ⊆ Kerφ. To see this, first extend g to a monoid
morphism ḡx X∗ → N , so that ḡµ = f̄ and τ̄φ = ḡ. Let x̄; ȳ ∈ X∗ with
x̄f̄ = ȳf̄ . Then x̄ḡµ = ȳḡµ and since Kerµ = σN and N is proper, it
follows from Lemma 2.5 that �x̄ḡ�+ȳḡ = �ȳḡ�+x̄ḡ. We deduce from τ̄φ = ḡ
that

��x̄τ̄�+ȳτ̄; �ȳτ̄�+x̄τ̄� ∈ Kerφ:

Thus H ⊆ Kerφ and consequently, ρ ⊆ Kerφ.
We can now define a �2; 1; 0�-morphism ψx FX/ρ→ N by �aρ�ψ = aφ,

for any a ∈ FX . For any x ∈ X we have

xτρ\ψ = ��xτ�ρ�ψ = xτφ = xg;
so that diagram (∗) commutes as required.

As quoted at the beginning of this section, the pair �τM;M�X; f; S�� is
also an initial object in PLA�X; f; S�. We thus achieve the aim of this sec-
tion.

Theorem 4.6. The proper left ample monoid FX/ρ is isomorphic to
M�X; f; S�. Indeed, if θ is the �2; 1; 0�-morphism making the diagram

X

M�X; f; S� FX

τM τ

θ

commute, then Ker θ = ρ.

5. PROPER COVERS OVER Q-SUBVARIETIES OF RC

Recall from Section 2 that any left ample monoid N has a proper cover
M . Let V be a subclass of RC. We say that N has a proper cover over V if
N has a proper cover M such that M/σ ∈ V and we put

V̂ = �N ∈ LA x N has a proper cover over V �:



quasivarieties and proper covers 451

These definitions correspond to those for groups and inverse monoids given
in [14]. As indicated in that paper, if V is a variety of groups then the class
of inverse monoids having proper covers over V is a variety of inverse
monoids and it is shown in [16] that this variety is determined by 6 where

6 = �ū2 ≡ ū x ū ≡ 1 is a law in V �:
Our situation is somewhat different as, unlike the case for groups, right

cancellative monoids do not themselves form a variety so one cannot speak
of (sub)varieties of RC. This leads us to consider q-subvarieties.

Let V be a quasivariety of algebras. As in the Introduction we say that
a subclass W of V is a q-subvariety of V if

W = �V ∈ V x V �= 6�
for some set 6 of identities. We have the following alternative characterisa-
tion.

Lemma 5.1 [17]. Let W be a subclass of a quasivariety V . Then the fol-
lowing conditions are equivalent:

(i) W is a q-subvariety of V ;
(ii) W = U ∩ V for some variety U;

(iii) W is closed under subalgebras, direct products, and morphisms be-
tween algebras in V .

Proof. The equivalence of (ii) and (iii) is proved in [17]. The equivalence
of (i) and (ii) is immediate from Birkhoff’s theorem [2]; cf. [3].

It is clear from the definition that a q-subvariety is a subquasivariety so
that free objects in q-subvarieties exist.

Let V be a q-subvariety of RC. In this section we show that V̂ is a q-
subvariety of LA. Further, if �X; f; S� is a monoid presentation of the free
object in V on X, then M�X; f; S� is the free object in V̂ on X. We also
show that V̂ is the q-subvariety of LA axiomatisied by 6, where

6 = �ū+v̄ ≡ v̄+ū x ū ≡ v̄ is a law in V �:
Proposition 5.2. Let V be a q-subvariety of RC. Then V̂ is a q-

subvariety of LA.

Proof. In view of Corollaries 2.7 and 2.8, the argument that V̂ is closed
under subalgebras and direct products is routine.

Suppose that M ∈ V̂ and θx M → N is an onto morphism where N ∈
LA. By definition of V̂ , M has a proper cover over V ; that is, there is
a proper left ample monoid P and an (idempotent separating) morphism
φx P → M such that S = P/σ ∈ V . Put ψ = φθx P → N so that ψ and
σ\x P → S are onto morphisms.
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Since LA is a quasivariety, N × S is a left ample monoid and from Corol-
lary 2.8, for any �n; s�; �m; t� ∈ N × S,

�n; s� R∗ �m; t� in N × S if and only if n R∗ m in N:

Let

K = ��n; s� ∈ N × S x there exists p ∈ P with pψ = n and pσ\ = s�:
It is easy to verify that K is a subalgebra of N × S so that K is left ample
and by Corollary 2.7 and the remark above, for any �n; s�; �m; t� ∈ K,

�n; s� R∗ �m; t� in K if and only if n R∗ m in N:

Suppose that �n; s�; �m; t� ∈ K and

�n; s� �σ ∩R∗� �m; t� in K:

Thus �e; 1��n; s� = �e; 1��m; t� for some e ∈ E�N� and �n; s� R∗ �m; t� in
K. Let p; q ∈ P be such that pψ = n;pσ\ = s; qψ = m and qσ\ = t. As
s = t we have that p σ q in P and so p+q = q+p. Applying the morphism
ψ yields n+m = m+n. But from �n; s� R∗ �m; t� in K we have that n R∗ m
in N and so n = m. Thus �n; s� = �m; t� and K is proper. Since ψ is onto it
follows that the morphism γx K→ N is also onto, where γ is the projection
onto the first coordinate. Patently γ is idempotent separating, so that K is
a proper cover of N .

Let e ∈ E�N�. As ψ is onto, there is some p ∈ P with e = pψ. Hence

e = e+ = �pψ�+ = p+ψ
and p+σ\ = 1 so that �e; 1� ∈ E�K�. Thus E�K� = E�N� × �1�.

Define µx K→ N/σN × S by �n; s�µ = ��n�; s�. Clearly µ is a morphism
from K to the right cancellative monoid N/σ × S. For any �n; s�; �m; t� ∈ K
we have �n; s�µ = �m; t�µ if and only if �n� = �m� and s = t, that is, if and
only if en = em for some e ∈ E�N� and s = t. Since E�K� = E�N� × �1�
this is equivalent to �n; s� σK �m; t� so that Ker µ = σK and

K/σK ∼= Im µ ⊆ N/σN × S:
As shown in Section 3 we can construct from the onto morphism ψx P → N
an onto morphism ψσ x P/σP = S → N/σN . Since N/σN ∈ RC and S is in
the q-subvariety V , it follows that N/σN ∈ V . As V is also closed under
direct products and subalgebras we have that K/σK ∈ V . Thus K is a
proper cover of N over V so that N ∈ V̂ and V̂ is closed under morphisms
between algebras in LA. By Lemma 5.1, V̂ is a q-subvariety of LA.

Given a q-subvariety V of RC the question now arises of determining
a set of identities axiomatising the q-subvariety V̂ of LA. At this stage it
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is convenient to regard RC as a class of algebras of type �2; 0� so that an
identity in RC is an expression of the form ū ≡ v̄, where ū and v̄ are words
over a countably infinite set Z. Given such an identity ū ≡ v̄ we can form
the identity ū+v̄ ≡ v̄+ū, which is an identity for �2; 1; 0�-algebras.

We recall that if V is any quasivariety of algebras and V is non-trivial
(that is, V contains non-trivial algebras), then for any set X (where X 6= ∅
if there are no nullary operations) the free object in V on X exists. Note
that if V is a q-subvariety of RC and S ∈ V , then, regarded as an algebra
of type �2; 1; 0�, S ∈ V̂ . Thus if V is non-trivial, so also is V̂ .

In our last two results we follow the notation FX; τ; τM; ρ established in
the previous section for a monoid presentation �X; f; S� of a right cancella-
tive monoid S.

Theorem 5.3. Let V be a non-trivial q-subvariety of RC. Then

V̂ = �N ∈ LA x N �= 6�;
where

6 = �ū+v̄ ≡ v̄+ū x ū ≡ v̄ is a law in V �:
Proof. Suppose first that N ∈ V̂ . There is a proper left ample monoid M

such that M/σ ∈ V and an idempotent separating onto morphism ζx M →
N . If ū ≡ v̄ is a law in V then since M is proper, Lemma 2.5 gives that
M �= ū+v̄ ≡ v̄+ū. But ζ is onto so that N �= ū+v̄ ≡ v̄+ū and indeed N �= 6.

Conversely, suppose that N is a left ample monoid and N �= 6. Let X
be an infinite set of generators for N; that is, there is a map gx X → N
such that �Xg� = N . Let S be the free object in V on X and let f x X → S
denote the canonical embedding of X into S, so that �Xf � = S and �X; f; S�
is a monoid presentation of S.

Since FX is the free (proper) left ample monoid on X with canonical
embedding τ, there is a morphism θx FX → N such that

X

FX N

τ g

θ

commutes. We show that ρ ⊆ Ker θ.
Let ū; v̄ ∈ X∗ and suppose that ūf̄ = v̄f̄ . From [3, Theorem II.11.4] it

follows that ū ≡ v̄ is a law in V so that ū+v̄ ≡ v̄+ū ∈ 6.
Since N �= 6 this gives that

�ūḡ�+v̄ḡ = �v̄ḡ�+ūḡ;
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where ḡ denotes the lifting of g to a monoid morphism from X∗ to N . But
ḡ = τ̄θ and θ is a �2; 1; 0�-morphism, giving that

��ūτ̄�+v̄τ̄�θ = ��v̄τ̄�+ūτ̄�θ:
Thus H ⊆ Ker θ and as H generates the congruence ρ we have that ρ ⊆
Ker θ.

It follows that there is an onto morphism ψx FX/ρ → N such that
ρ\ψ = θ. Proposition 4.3 and Lemma 4.4 tell us that FX/ρ is a proper
left ample monoid and FX/ρ has maximal right cancellative image S ∈ V .
Certainly then FX/ρ ∈ V̂ so that by Proposition 5.2 N , being left ample
and a morphic image of FX/ρ, is also in V̂ . This completes the proof of
the theorem.

In view of the preceding proof, the last result of this paper is not sur-
prising.

Theorem 5.4. Let V be a non-trivial q-subvariety of RC. Let X be a set
and �X; f; S� the canonical monoid presentation of the free object in V on X.
Then M�X; f; S� is the free object in V̂ on X with canonical embedding τM.

Proof. Let N be a left ample monoid in V̂ and let gx X → N be a map.
Let S be the free object in V on X with canonical presentation �X; f; S�
and let θx FX → N be the morphism making

X

FX N

τ g

θ

commute. Exactly as in the proof of Theorem 5.3 we have that ρ ⊆ Ker θ
so that there is a morphism ψx FX/ρ→ N such that ρ\ψ = θ.

The monoid FX/ρ ∈ V̂ and from Theorem 2.11 and Lemma 4.5, the pairs
�τM;M�X; f; S�� and �τρ\; FX/ρ� are both initial objects in PLA�X; f; S�.
It follows that there is an isomorphism φx M�X; f; S� → FX/ρ such that
τMφ = τρ\. Put ξ = φψ so that ξx M�X; f; S� → N is a morphism. For any
x ∈ X we have

xτMξ = xτMφψ = xτρ\ψ = xτθ = xg;
so that

X

M�X; f; S� N

τM g

ξ
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commutes. Certainly M�X; f; S� ∈ V̂ and from Proposition 2.10, XτM gen-
erates M�X; f; S�. The fact that V and V̂ are non-trivial yields that τM

is one–one. Thus M�X; f; S� is the free object on X in V̂ with canonical
embedding τM.

Let V1 be the trivial q-subvariety of RC; that is, V1 is axiomatised by the
identity u ≡ v. By Theorem 5.3,

V̂1 = �N ∈ LA x N �= ū+v̄ ≡ v̄+ū for all ū; v̄ ∈ Z�
for some countably infinite set Z. It is then easy to see that V̂1 is the q-
subvariety of semilattices.

For a less trivial example let V2 be the q-subvariety of RC consisting
of all commutative cancellative monoids; that is, V2 is axiomatised (within
RC) by the identity uv ≡ vu. We say that words ū; v̄ over a countably
infinite set Z have the same content and write c�ū� = c�v̄�, if the number of
occurrences of each z ∈ Z is the same in ū as it is in v̄. From [3, Corollary
II.11.5] we have that ū ≡ v̄ is a law in V2 if and only if ū = v̄ in the free
commutative cancellative monoid on Z, that is, if and only if c�ū� = c�v̄�.
From Theorem 5.3,

V̂2 = �N ∈ LA x N �= ū+v̄ ≡ v̄+ū for all ū; v̄ ∈ Z∗ with c�ū� = c�v̄��:
Further, we deduce from Theorem 5.4 that if X 6= ∅ then the free object in
V̂2 is not commutative. Let �X; f; S� be the canonical monoid presentation
of the free commutative cancellative monoid S on X. Then M = M�X; f; S�
is the free object in V̂2 on X (with canonical embedding τM). Let x ∈ X.
Then �1; 1�; �1; xf � ∈ M where 1 is the subgraph

x• > •
1 xf

of 0�X; f; S�. We know that in S the powers of xf are distinct and it follows
that in M,

�1; 1��1; xf � =
( x• > •

1 xf
; xf

)
;

which is distinct from( x• > •
1 xf

x
> •

�xf �2; xf
)
;

namely, the product

�1; xf ��1; 1�:
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