
Computing in Free Bands

Reinis Cirpons

School of Mathematics and Statistics, University of St Andrews

A detour into universal algebra

Definition

An algebra is a set S together with a collection {fi : i ∈ I} of operations
fi : S

ni → S . The sequence (ni : i ∈ I) is called the type of the algebra.

Example

Any semigroup is an algebra of type (2) with multiplication ◦ : S2 → S as its
operation.

Any monoid is an algebra of type (2, 0) with the null-ary operation
1 : S0 → S returning the identity.

Any inverse semigroup is an algebra of type (2, 1) with the unary operation
−1 : S1 → S inverting an element.

Any group is an algebra of type (2, 0, 1) with operations {◦, 1,−1 }.

Varieties

Definition
An variety of a given type is the collection of all algebras of the given type
satisfying a set of universally quantified equations.

Example

The variety of semigroups Sg has type (2) and is defined by the single
equation Sg = [x ◦ (y ◦ z) = (x ◦ y) ◦ z],
The variety of monoids Mon has type (2, 0) and is defined by the equations

Mon = [x ◦ (y ◦ z) = (x ◦ y) ◦ z , 1 ◦ x = x , x ◦ 1 = x] ,

The variety of inverse semigroups Inv has type (2, 1) and is defined by

Inv =
[
x(yz) = (xy)z ,

(
x−1

)−1
= x , (xy)−1 = x−1y−1,

xx−1x = x , xx−1yy−1 = yy−1xx−1
]
,

The variety of groups Gp has type (2, 0, 1).

Example

The variety of bands B has type (2) and is defined by the equations

B =
[
x(yz) = (xy)z , x2 = x

]
= Sg

[
x2 = x

]
,

The variety of commutative semigroups Com = Sg[xy = yx],

The variety of semilattices Sl = Sg[xy = yx , x2 = x],

Left zero semigroups LZ = Sg[xy = x],

The trivial semigroup variety T = Sg[x = y],

We will also be interested in the variety of band monoids

BM = Mon[x2 = x].

A subclass of a variety that is itself a variety is called a subvariety. A variety V1 is
a subvariety of V2 if and only if it satisfies all the equations defining V2. It can be
shown that subvarieties form a lattice.

Example

Sg

Com = Sg[xy = yx] B = Sg
[
x2 = x

]

SL = Sg
[
x2 = x , xy = yx

]
LZ = Sg [xy = x]

T = Sg [x = y]

Note that LZ = Sg[xy = x] ̸= Sg[x = y] since the semigroup S = {0, 1} with
multiplication

◦ 0 1
0 0 0
1 1 1

is a nontrivial semigroup in LZ.
On the other hand, Mon[xy = x] = Mon[x = y]. Indeed if S ∈ Mon[xy = x],
then xy = x for all x , y ∈ S . Hence setting x = 1 we get that y = 1 for all y ∈ S .
But then S is trivial and x = y holds for all elements x , y ∈ S .

V-free algebras

Definition
Let V be a variety and A be a set. The V-free algebra generated by A is the
algebra FV(A) such that

there exists an injection ι : A ↪→ FV(A),
for every algebra S in V and function ϕ : A → S there exists a unique
morphism φ̂ : FV(A) → S which agrees with φ on A. In other words the
following diagram commutes:

A FV(A)

S

ι

φ ∃!φ̂

Just as with free objects, there is an equivalent notion for presentations of
algebras within a variety.

Project (with J. D. Mitchell)

Can we generalize algorithms for computing with finitely presented semigroups
and groups, such as the Todd-Coxeter and Knuth-Bendix algorithm, to work
within other varieties such as Inv or B?

In order to answer this question for B we need to first have a good computational
representation of the Free Band.

The Free Band

We will write FB(A) for the free band generated by A.

Theorem

Let β be the least congruence on A+ generated by the set{
(w ,w2) : w ∈ A+

}
,

then FB(A) ∼= A+/β.

So we can represent elements of FB(A) as words. We write x ∼ y if the words
x , y ∈ A∗ represent the same element in FB(A). And we write x/∼ ∈ FB(A) for
the element represented by x ∈ A+.

The word problem

Given words x , y ∈ A+ determine if x ∼ y in FB(A).

The minimal word representative problem

Given a word x ∈ A+ determine min(x) ∈ A+ the shortest word such that
x ∼ min(x).

Five important operations on words

The following functions are crucial to the study of FB(A):

The content cont : A+ → P(A), where cont(x) is the set of letters occurring
in x .

The prefix pref : A+ → A∗, where pref(x) is the longest prefix of x such that
|cont(pref(x))| = |cont(x)| − 1.

The last letter to occur first ltof : A+ → A, where ltof(x) is the letter
immediately after pref(x) in x .

The suffix suff : A+ → A∗ and ftol : A+ → A are defined dually by taking the
longest suffix and letter immediately before the suffix in x .

Example

Consider x = ababbbcbcbc , then

cont(x) = {a, b, c},
pref(x) = ababbb,

ltof(x) = c ,

suff(x) = bbbcbcbc ,

ftol(x) = a

The Greens relations of FB(A)

Since every element of FB(A) is idempotent, it follows that Greens H-relation is
trivial.

Theorem (Green and Rees 1952)

Let x , y ∈ A+ and let s = x/∼, t = y/∼ ∈ FB(A), then

sDt ⇐⇒ cont(x) = cont(y),

sRt ⇐⇒ pref(x) ∼ pref(y) and ltof(x) = ltof(y),

sLt ⇐⇒ suff(x) ∼ suff(y) and ftol(x) = ftol(y).

It follows that |Ds | = |Rs | · |Ls |. Let ci be the size of the D-class consisting of all
elements s ∈ FB(A) with |cont(s)| = i . Then c1 = 1 and

ci = |Rs | · |Ls | = ci−1 · i · ci−1 · i = i2c2i−1.

If |A| = k, then

|FB(A)| =
k∑

i=1

(
k

i

)
ci .

In particular, every finitely generated free band is finite. So, by constructing a
Cayley graph for FB(A), we can solve the word problem and find minimal word
reps in linear time.

The end?

Does this mean we are done?

The catch

How do we construct the Cayley graph?

Even if we do construct it, we need to store it.

|A| |FB(A)|
1 1
2 6
3 159
4 332380 = 3.32 · 105
5 2751884514765 = 2.75 · 1012
6 272622932796281408879065986 = 2.76 · 1026
7 3.64 · 1054

k ≥ 1
42

2k

For |A| = 5, even assuming every element can be stored using 1 bit, we would
need at least 343 GB of memory to store the Cayley graph!

Comparison table

Let |A| = k and n = |x |+ |y | be the total length of words x , y ∈ A+. The below
table will keep track of the time and space complexity of various algorithms for
solving the word problem:

Algorithm Time Space Minimal word reps?
Cayley graph O(n) O (|A| · |FB(A)|) Yes

Comparison table

Let |A| = k and n = |x |+ |y | be the total length of words x , y ∈ A+. The below
table will keep track of the time and space complexity of various algorithms for
solving the word problem:

Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees method

Theorem (Green and Rees 1952)

Let x , y ∈ A+ and let s = x/∼, t = y/∼ ∈ FB(A), then

sDt ⇐⇒ cont(x) = cont(y),

sRt ⇐⇒ pref(x) ∼ pref(y) and ltof(x) = ltof(y),

sLt ⇐⇒ suff(x) ∼ suff(y) and ftol(x) = ftol(y).

To check if x ∼ y , compute pref, suff, ltof, ftol for x and y . If ltof(x) ̸= ltof(y)
or ftol(x) ̸= ftol(y) then x ̸∼ y and we are done. Otherwise recursively check if
both pref(x) ∼ pref(y) and suff(x) ∼ suff(y).

t(n, k) = n + 2 · t(n − 1, k − 1) ⇒ t(n, k) ∈ O
(
n · 2k

)
Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees O
(
n · 2k

)
O(n) No

Infinite complete rewriting system

Theorem (Siekmann and Szabó 1982)

Let A be a set and R be the infinite rewriting system on A+ consisting of rules

x2 → x ,∀x ∈ A+

xyz → xz ,∀x , y , z ∈ A+, s.t. cont(y) ⊆ cont(x) = cont(z)

then R is a complete rewriting system for FB(A).

Note R is strictly length reducing, so we will need to apply it at most n times to
fully reduce a word of length n. So the time complexity of a solution to the word
problem based on the rewriting system takes O (n · t(n, k)) time where t(n, k) is
the time necessary to recognize the application of a rule in R to the input word.

To apply R, need to be able to

find occurrences of subwords of the form x2. This is well studied and can be
done in O(n) time, see e.g. Crochemore 1981,

find occurrences of subwords xyz where cont(y) ⊆ cont(x) = cont(z). It is
not clear how to do this efficiently, and literature has come up empty.

While the efficiency of the second step is not clear, certainly t(n, k) ∈ O(n). So
we can reduce a word using R in O(n2) time. Note furthermore that the reduced
form of a word is the minimal word representative.

Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees O
(
n · 2k

)
O(n) No

Siekmann and Szabó O
(
n2
)

O(n) Yes

The lattice of subvarieties of bands

Theorem (Gerhard 1970)

Every subvariety of bands is determined by exactly one extra equation.

The lattice of subvarieties of bands was first determined by Gerhard 1970,
Biryukov 1970 and Fennemore 1970. The lattice of subvarieties of band monoids
was determined by Wismath 1986.

T

LZ

SL

RZ

B

TM

SLM

BM

Inertial trees

Definition
A rooted binary tree T is a directed graph such that

there is a vertex called the root, that is not the target vertex of any edge,

each vertex except the root is the target vertex of a unique edge,

there is a unique path from the root to each vertex,

every edge is labelled as either a right edge or a left edge,

each vertex v ∈ V (T) has at most one outgoing right and one outgoing left
edge. The targets of these edges, if they exist, are labelled r(v) and l(v)
respectively.

Definition
An inertial tree is a binary tree such that

if r(v) exists, then so does r(r(v)) and furthermore the induced subtrees
rooted at r(v) and r(r(v)) are isomorphic.

the above condition holds for l as well.

Example

Theorem (Neto and Sezinando 1996)

The lattice of inertial binary trees is isomorphic to the lattice of varieties of band
monoids.

TM

SLM

BM

∅

Admissible maps

Definition

Let A be a set and T be an inertial tree. A map φ : V (T) → P(A) is admissible if

if u, v ∈ V (T) and v is reachable from u, then φ(v) ⊆ φ(u),

if φ(v) ̸= ∅ and r(v) is defined, then |φ(r(v))| = |φ(v)| − 1,

the above conditions holds for l as well.

{a, b, c}

{a, b} {b, c}

{a} {b} {b} {c}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Theorem (Neto and Sezinando 1996)

Let A be a set, V be a subvariety of bands and TV be the corresponding inertial
tree. Then there is a bijective correspondence between admissible maps
φ : TV → P(A) and elements of FV(A).

{a, b, c}

{a, b} {b, c}

{a} {b} {b} {c}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

ababbbcbcbc

ababbbcbcbc

Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees O
(
n · 2k

)
O(n) No

Siekmann and Szabó O
(
n2
)

O(n) Yes
Neto and Sezinando O

(
n · 2k

)
O
(
n + 2k

)
No

Compression

Theorem (Radoszewski and Rytter 2010)

There is a O(n · k) time and O(n) space algorithm for solving the word problem in
the free band.

Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees O
(
n · 2k

)
O(n) No

Siekmann and Szabó O
(
n2
)

O(n) Yes
Neto and Sezinando O

(
n · 2k

)
O
(
n + 2k

)
No

Radoszewski and Rytter O (n · k) O(n) No

Our contributions

As before let |A| = k.

Theorem (C and Mitchell 2023)

The minimized binary tree representing s ∈ FB(A) has at most k · |min(s)|
vertices, where min(s) is the shortest word representative of s.

Theorem (C and Mitchell 2023)

Given two binary trees τs , τt representing elements s, t ∈ FB(A) we can compute
a binary tree representing st in O(|τs |+ |τt |+ k2) time and space.

Theorem (C and Mitchell 2023)

There is a O(n · k) time and space algorithm for finding the minimum word
representative of a given word in the free band.

Algorithm Time Space Minimal word reps?

Cayley graph O(n) O
(
k · 22k

)
Yes

Green and Rees O
(
n · 2k

)
O(n) No

Siekmann and Szabó O
(
n2
)

O(n) Yes
Neto and Sezinando O

(
n · 2k

)
O
(
n + 2k

)
No

Radoszewski and Rytter O (n · k) O(n) No
C and Mitchell O (n · k) O(n · k) Yes

Reference Python implementations of the method from our paper are available as
part of the freebandlib library:

https://github.com/reiniscirpons/freebandlib

https://github.com/reiniscirpons/freebandlib

Future work

Problems
Find a Neto-Sezinando like tree correspondence for all varieties of bands.

Apply the tree and compression approach to efficiently solve the word problem
and find minimal word representatives in all varieties of band monoids.

Devise an efficient algorithm for solving the word problem in finitely
presented bands.

Can we generalize our tree based methods to solve in linear time the word
problem in the free completely regular semigroups, which has a similar
description of elements in terms of trees?

What about the free Clifford semigroup (the free completely regular inverse
semigroup)?

References I

Biryukov, A. P. (May 1970). “Varieties of idempotent semigroups”. en. In:
Algebra and Logic 9.3, pp. 153–164. issn: 1573-8302. doi:
10.1007/BF02218673. url: https://doi.org/10.1007/BF02218673
(visited on 11/07/2023).

C, R. and J.D. Mitchell (2023). “Polynomial time multiplication and normal
forms in free bands”. In: Theoretical Computer Science 953, p. 113783. issn:
0304-3975. doi: https://doi.org/10.1016/j.tcs.2023.113783. url:
https:

//www.sciencedirect.com/science/article/pii/S0304397523000968.

Crochemore, Max (1981). “An optimal algorithm for computing the
repetitions in a word”. In: Information Processing Letters 12.5, pp. 244–250.
issn: 0020-0190. doi:
https://doi.org/10.1016/0020-0190(81)90024-7. url: https:
//www.sciencedirect.com/science/article/pii/0020019081900247.

Fennemore, Charles (Dec. 1970). “All varieties of bands”. en. In: Semigroup
Forum 1.1, pp. 172–179. issn: 1432-2137. doi: 10.1007/BF02573031. url:
https://doi.org/10.1007/BF02573031 (visited on 11/07/2023).

https://doi.org/10.1007/BF02218673
https://doi.org/10.1007/BF02218673
https://doi.org/https://doi.org/10.1016/j.tcs.2023.113783
https://www.sciencedirect.com/science/article/pii/S0304397523000968
https://www.sciencedirect.com/science/article/pii/S0304397523000968
https://doi.org/https://doi.org/10.1016/0020-0190(81)90024-7
https://www.sciencedirect.com/science/article/pii/0020019081900247
https://www.sciencedirect.com/science/article/pii/0020019081900247
https://doi.org/10.1007/BF02573031
https://doi.org/10.1007/BF02573031

References II

Gerhard, J.A (1970). “The lattice of equational classes of idempotent
semigroups”. In: Journal of Algebra 15.2, pp. 195–224. issn: 0021-8693. doi:
https://doi.org/10.1016/0021-8693(70)90073-6. url: https:
//www.sciencedirect.com/science/article/pii/0021869370900736.

Green, J. A. and D. Rees (1952). “On semi-groups in which x r = x”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 48.1,
pp. 35–40. doi: 10.1017/S0305004100027341.

Neto, O. and H. Sezinando (Dec. 1996). “Trees, band monoids and formal
languages”. en. In: Semigroup Forum 52.1, pp. 141–155. issn: 0037-1912,
1432-2137. doi: 10.1007/BF02574091. url:
http://link.springer.com/10.1007/BF02574091 (visited on
08/03/2023).

Radoszewski, J. and W. Rytter (Jan. 2010). “Efficient Testing of Equivalence
of Words in a Free Idempotent Semigroup”. In: SOFSEM 2010: Theory and
Practice of Computer Science, pp. 663–671. doi:
10.1007/978-3-642-11266-9_55.

https://doi.org/https://doi.org/10.1016/0021-8693(70)90073-6
https://www.sciencedirect.com/science/article/pii/0021869370900736
https://www.sciencedirect.com/science/article/pii/0021869370900736
https://doi.org/10.1017/S0305004100027341
https://doi.org/10.1007/BF02574091
http://link.springer.com/10.1007/BF02574091
https://doi.org/10.1007/978-3-642-11266-9_55

References III

Siekmann, J. and P. Szabó (Dec. 1982). “A Noetherian and confluent rewrite
system for idempotent semigroups”. In: Semigroup Forum 25.1, pp. 83–110.
doi: 10.1007/bf02573590. url: https://doi.org/10.1007/bf02573590.

Wismath, Shelly L. (Dec. 1986). “The lattices of varieties and pseudovarieties
of band monoids”. en. In: Semigroup Forum 33.1, pp. 187–198. issn:
1432-2137. doi: 10.1007/BF02573192. url:
https://doi.org/10.1007/BF02573192 (visited on 10/10/2023).

https://doi.org/10.1007/bf02573590
https://doi.org/10.1007/bf02573590
https://doi.org/10.1007/BF02573192
https://doi.org/10.1007/BF02573192

	References

