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A puzzle from antiquity . . .

The Logician/Philosopher vs. the Astronomer/Mathematician :

“Chrysippus says that the number of conjunctionsa [constructible] from
only ten assertibles exceeds one hundred myriads [i.e. 106]. However, Hip-
parchus refuted this, demonstrating that the affirmative encompasses 103049
conjoined assertibles and the negative 310952.”

— Plutarch, Quæstiones Convivales (2nd C. AD)

a‘combinations’ in some documents . . .

This was reported as common knowledge,
“Chrysippus is refuted by all the arithmeticians, among them Hipparchus

himself who proves that his error in calculation is enormous”.
— Plutarch, De Stoicorum Repugnantiis (2nd C. AD)

but the precise meaning was lost.
“Since the exact terms of the problem are not stated, it is difficult to inter-

pret the numerical answers . . . The Greeks took no interest in these matters”.
— N. L. Biggs The Roots of Combinatorics 1979
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Interpretation and Composition

The significance of 103049 was realised in January 1994 by a
graduate student (D. Hough) at George Washington University :

Hipparchus, Plutarch, Schröder and Hough
— R. Stanley, American Mathematical Monthly (1997)

It is simply the 10th little Schröder number, counting (amongst other things1) the
number of distinct Rooted Planar Trees with ten leaves.

A (too easy?) interpretation

It is tempting to interpret :
1 Each branching as a logical operation (conjunction?)
2 Each leaf as a simple assertible (variable?)

Building larger trees from smaller trees : Substituting a tree for a given leaf.

1e.g. the number of facets of the tenth associahedron
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Replacing simple assertibles by non-simple composites

Operadic Composition :
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and

˝2
v 1
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and
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Provided we

Avoid clashes of free variable names, & identify α-equivalent trees,

Identify up to (planar) topological equivalence,

we arrive at the non-symmetric operad RPT of rooted planar trees.
This is freely generated by one tree of each arity (number of leaves).
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Formal definitions

An operad is an indexed family of disjoint sets H “ tH1,H2,H3 . . .u of ‘operations’,
together with composition functions

˝i : Hn ˆ Hm Ñ Hm`n´1 , i “ 1 . . . n

that include an identity in H1, and satisfy the following:

For all f P Hn, g P Hm, and h P Hp,

pf ˝j gq ˝i h “

$

’

’

’

&

’

’

’

%

pf ˝i hq ˝j`p´1 g if 1 ď i ď j ´ 1

f ˝j pg ˝i´j`1 hq if j ď i ď m ` j ´ 1

pf ˝i´m`1 hq ˝j g if i ě m ` j
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The axioms, graphically :

1 There exists an identity Id ˝1 T “ T and T ˝k Id “ T .
2 “Composition is associative”

3 “Parallel composites commute”

Diagrams ‘borrowed’ from Tai-Danae Bradley’s Math3ma blog
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The How and Why of counting Stoic conjunctions

How did Hipparchus (and “all the arithmeticians”) calculate Schröder numbers??
On the Shoulders of Hipparchus:
A Reappraisal of Ancient Greek Combinatorics.

— F. Acerbi (2004)

Why should we be interested?

Chrysippus’ main achievement is the development of a propositional logic
& deductive system2. He was innovative in topics central to contemporary
formal and philosophical logic. The many close similarities with Gottlob Frege
are especially striking.

— Stanford Encyclopedia of Philosophy

How & why did Chrysippus & Hipparchus come up with such different values?
Combinatorics for Stoic Conjunction:
Chrysippus Vindicated, Hipparchus Refuted.
Oxford Studies in Ancient Philosophy, S. Bobzien (2011)

2best understood as a substructural backwards-working Gentzen-style natural-deduction
system — S.E.P.
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peter.hines@york.ac.uk nihil sub sōle novum www.peterhines.info 7 / 29



The How and Why of counting Stoic conjunctions

How did Hipparchus (and “all the arithmeticians”) calculate Schröder numbers??
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A misunderstanding of logic?

Bobzien’s claim is that, “Hipparchus, it seems, got his mathematics right. What I
suggest in this paper is that he got his Stoic logic wrong.”

Where it starts going wrong :

“He counts the same sequence of conjuncts but with different bracketing as different
conjunctions . . . He counts

rP ^ Qs ^ R
P ^ Q ^ R

P ^ rQ ^ Rs

as different assertibles. Unlike modern propositional logic, Hipparchus assumes that a
[elementary] conjunction can consist of two or more conjuncts.

In order to get to [the little Schröder number 103049], Hipparchus also had to take the
order of the ten atomic assertibles as fixed.‘” – S. B.
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A synthesis via category theory

Between ‘equal’ and ‘not equal’ lies a compromise :

The Same
equal up to

unique isomorphism
Different

This should be understood at the level of semantic models.

What might we need ?

A family of k -ary elementary conjunctions

p ‹ q , p ‹ ‹ q , p ‹ ‹ ‹ q , . . .

The operad they generate under substitution should be free (i.e. – RPT).

A notion of ‘equivalent up to isomorphism’ that uniquely relates any two
composites of the same arity.
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An additional concern

We cannot assume idempotency of conjunction

“Non-simple [assertibles] are those that are, as it were, double pδιπλαq – put together
by means of a connecting particle from an assertible that is taken twice pδιζq,

or from two different assertibles.” — S. B.

We need to reconsider the structural rules of contraction and weakening.

We find what we need in models of Linear Logic.

(As a bonus!) Everything is based on Euclidean division.
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“Everything is [in the endomorphism monoid of] Numbers”

In J.-Y. Girard’s Geometry of Interaction system :

Propositions are modelled by operations on N

For M.L.L. Elements of the symmetric group SpNq

For M.E.L.L. Elements of the symmetric inverse monoid IpNq

Conjunction is modelled by the following operation :

pf ‹ gqp2nq “ 2.f pnq

pf ‹ gqp2n ` 1q “ 2.gpnq ` 1

A simple description, based on Hilbert’s Grand Hotel

This “writes two functions as a single function”, by

replicating their behaviour on the even and odd numbers respectively.

This is an injective homomorphism IpNq ˆ IpNq ãÑ IpNq of inverse monoids.
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Potential vs. actual infinity

The Greeks feared infinity and tried to avoid it . . . According to tradition,
they were frightened off by the paradoxes of Zeno. . . . Until the late C19th,
mathematicians were reluctant to accept infinity as more than “potential”.

— J. Stillwell, Mathematics and Its History 2012

This attitude persisted for a very long time :

“I must protest most vehemently against your use of the infinite as some-
thing consummated, as this is never permitted in mathematics. The infinite is
but a figure of speech; an abridged form for the statement that limits exist.

No contradictions will arise as long as Finite Man does not mistake the
infinite for something fixed.

— Gauss, Letter to Schumacher (1831)
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What about Greek proofs on infinite sets?

Not Euclid There exists an infinite number of primes.

Euclid The prime numbers are more numerous
than any proposed multitude of prime numbers.

Actual infinity was eventually forced by the requirements of medieval theology:

Duns Scotus on God (R. Cross, 2005)

John Duns Scotus (1266-1308) [ontological] argument may be summarised as,

“If God is composed of parts, then each part must be finite or infinite. . . . If any given
part is infinite, then it is equal to the whole, which is absurd”

John Duns’ absurdity was was (mostly!) stripped of theological interpretations,
and taken as a definition by G. Cantor & company.

peter.hines@york.ac.uk nihil sub sōle novum www.peterhines.info 13 / 29



What about Greek proofs on infinite sets?

Not Euclid There exists an infinite number of primes.

Euclid The prime numbers are more numerous
than any proposed multitude of prime numbers.

Actual infinity was eventually forced by the requirements of medieval theology:

Duns Scotus on God (R. Cross, 2005)

John Duns Scotus (1266-1308) [ontological] argument may be summarised as,

“If God is composed of parts, then each part must be finite or infinite. . . . If any given
part is infinite, then it is equal to the whole, which is absurd”

John Duns’ absurdity was was (mostly!) stripped of theological interpretations,
and taken as a definition by G. Cantor & company.
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Not strictly the same . . .

In general : pP ‹ Qq ‹ R ‰ P ‹ pQ ‹ Rq

No injective homomorphism M ˆ M ãÑ M on a non-abelian monoid can be strictly
associative.

Coherence & Strictification for Self-Similarity
Journal Homotopy & related Structures (P.M.H. 2016)

There is a non-trivial bijection

pa ‹ pb ‹ cqq “ α´1
ppa ‹ bq ‹ cqα @ a, b, c P IpNq

This unique associator is defined by αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4,

This is defined piece-wise linearly on modulo classes — a congruential function.
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A Hipparchus-style generalisation

Girard gave a binary model of conjunction p ‹ q : IpNq ˆ IpNq ãÑ IpNq.

“pa ‹ bq replicates a, b on the modulo classes 2N, 2N ` 1 respectively”.

We draw this as
‚ ‚

‚

There is an obvious ternary analogue, p ‹ ‹ q : IpNq ˆ IpNq ˆ IpNq ãÑ IpNq

pa ‹ b ‹ cqp3n ` iq “

$

&

%

3.apnq i “ 0
3.bpnq ` 1 i “ 1
3.cpnq ` 2 i “ 2

“Replicate a, b, c on the modulo classes 3N , 3N ` 1 , 3N ` 2 respectively”.

We draw this as
‚ ‚ ‚

‚
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The general case :

For any k ě 1, we form the k th elementary conjunction by :

pf0 ‹ . . . fk´1qpkn ` iq “ k .fi pnq ` i where i “ 0, 1, 2, . . . , k ´ 1

Alternatively & equivalently,

pf0 ‹ . . . fk´1qpxq “ k .fi

ˆ

x ´ i
k

˙

` i where x ” i mod k

This gives, for any k ą 0, an injective homomorphism IpNq
ˆk

ãÑ IpNq that :
“replicates the action of f0 , f1 , . . . , fk´1 on the modulo
classes kN , kN ` 1 , . . . , kN ` pk ´ 1q respectively.

For k “ 1, 2, 3, 4, . . ., we draw these as
"

‚

‚

, ‚ ‚

‚

, ‚ ‚ ‚

‚

, ‚ ‚ ‚ ‚

‚

, . . .

*
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Composing elementary conjunctions

These ‘compose by substitution’ to give an operad Hipp of generalised
conjunctions. Each k -leaf tree determines an injective hom. IpNq

ˆk
ãÑ IpNq.

¨ ¨ ¨

¨ ¨

¨ ¨

¨

: IpNq
ˆ5

ãÑ IpNq

pf0, f1, f2, f3, f4q ÞÑ ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q

More formally :

We have one operation of each arity ą 0 in the (non-symmetric) endomorphism
operad of IpNq within the category pInv,ˆq of inverse monoids / homomorphisms with
Cartesian product.

These generate the sub-operad Hipp.
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An operad for Hipparchus

Claim :

The operad Hipp of generalised conjunctions extends Girard’s operation
from the Geometry of Interaction, to provide a semantic model for

Hipparchus’ (mis-)understanding of Chrysippus’ Stoic Logic.

More concisely(!)

Hipp – RPT, so each tree determines a distinct homomorphism IpNq
ˆk

ãÑ IpNq.

Proof?

Proving this requires a concept the Greeks (notoriously) did not have3:
The greatest calamity in the history of science was the failure of

Archimedes to invent positional notation. – C. F. Gauss

Gauss was referring to Archimedes’ “Sand Reckoner” pΨαµµιτηζq.
3. . . but may (occasionally) have borrowed from their neighbours
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Let me see you counting like they do in Babylon

¨ ¨ ¨

¨ ¨

¨ ¨

¨

defines a homomorphism : IpNq
ˆ5

ãÑ IpNq

In the operadic composite pf0, f1, f2, f3, f4q ÞÑ ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q, the action of each
fj is mapped :

from The whole of the natural numbers N

to Some modulo class AjN ` Bj .

For example : f3 is translated onto 12N ` 10.

Question:

How do we derive these coefficients from the tree?
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A root and branch approach

Deriving 12N ` 10, from the leaf-to-root path :

f1 f2 f3

f0 ¨ Branch number 2 of 3

¨ f4 Branch number 1 of 2

¨ Branch number 0 of 2

Multiplicative coefficient : 12 “ 3 ˆ 2 ˆ 2

Additive coefficient : (Decimal) Base 3 Base 2 Base 2
10 “ 2 1 0

Positional mixed-radix number systems

First formal study by G. Cantor, Über einfache Zahlensysteme (1869)
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Covering the Numbers with Trees

Rooted Planar Trees are uniquely determined by the addresses of their leaves

leaf1 leaf2 leaf3

leaf0 ¨

¨ leaf4

¨

leaf0 p0, 2q p0, 2q 4N
leaf1 p0, 3q p1, 2q p0, 2q 12N ` 2
leaf2 p1, 3q p1, 2q p0, 2q 12N ` 6
leaf3 p2, 3q p1, 2q p0, 2q 12N ` 10
leaf4 p1, 2q 2N ` 1

which uniquely determine ordered exact covering systems, such as

4N , 12N ` 2 , 12N ` 6 , 12N ` 10 , 2N ` 1

Heavily studied by P. Erdös (1950s)

Ordered sets of pairwise-disjoint modulo classes, whose union is the whole of N

(& hence, by PMH / MVL 1998, embeddings of polycyclic monoids into IpNq).

Corollary: Distinct trees determine distinct homomorphisms.
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Mappings between between gen. conjunctions

Consider the generalised conjunctions T ,U : IpNq
ˆ5

ãÑ IpNq

T “

¨ ¨ ¨

¨ ¨

¨ ¨

¨

U “

¨ ¨ ¨ ¨

¨ ¨ ¨

¨

We build a bijection ηT ,U : T ñ U by monotonically mapping between their respective
ordered covering systems :

leaf 0 4N ÞÑ 6N
leaf 1 12N ` 2 ÞÑ 6N ` 3
leaf 2 12N ` 6 ÞÑ 3N ` 1
leaf 3 12N ` 10 ÞÑ 6N ` 2
leaf 4 2N ` 1 ÞÑ 6N ` 4

This gives, as desired,

ppa ‹ pb ‹ c ‹ dqq ‹ eq “ η´1
T ,Uppa ‹ bq ‹ c ‹ pd ‹ eqqηT ,U
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Formulæ for the general case

Given any two k -ary generalised conjunctions T ,U, we derive two ordered exact
covering systems

leaf 0 A0N ` B0 ÞÑ C0N ` D0

leaf 1 A1N ` B1 ÞÑ C1N ` D1

...
...

...

leaf k ´ 1 Ak´1N ` Bk´1 ÞÑ Ck´1N ` Dk´1

The natural isomorphism ηT ,U is the bijection

ηT ,Upxq “
1
Aj

ˆ

Cjx `

ˇ

ˇ

ˇ

ˇ

Aj Bj

Cj Dj

ˇ

ˇ

ˇ

ˇ

˙

where x ” Bj mod Aj

We arrive at John Conway’s congruential functions

“Unpredictable Iterations” — J. Conway (1972)

as used to demonstrate undecidability in elementary arithmetic.
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A category for Chrysippus

Observe that :

ηT ,T “ Id P IpNq

ηT ,UηS,T “ ηS,U

η´1
T ,U “ ηU,T

We may define a (posetal) groupoid Chrys of functors / natural iso.s, given by :

Objects Generalised conjunctions (operations of Hipp)

Arrows ChryspT ,Uq “

$

&

%

tηT ,Uu T ,U have the same arity,

H otherwise.

There is at most one arrow between any two objects

This means that ‘all diagrams commute’ — a big deal in category theory.

By forgetting sources / targets, we derive commuting diagrams

(i.e. identities) between composites of congruential functions.
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Concrete examples : back to the Greeks

Recall the ‘three simple assertibles’ example of S. Bobzien :

pp ‹ q ‹ q p ‹ p ‹ qq
αks

p ‹ ‹ qγ5

ai

γ

6>

Natural isomorphisms between them have already been named :

The associator The ‘amusical permutation’

αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4.
γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

The ‘flattened permutation’

γ5pnq “

$

’

&

’

%

4n
3 n ” 0 mod 3,

4n`2
3 n ” 1 mod 3,

2n´1
3 n ” 2 mod 3.
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Musical permutations?

The amusical permutation γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

Introduced by L. Collatz (2nd July 1932), who conjectured that
the orbit of 8 under γ is infinite.

A plot of log2 pγn
pkqq, for k “ 8, 14, 40, 64, 80, 82

γ200000
p8q « 105000

Conway described this as ‘obviously’ both true, and undecidable — he claimed it as
the motivation for his proof of undecidability in arithmetic.
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The name amusical permutation is due to J. Conway

“There are twelve notes per octave, which represents a doubling
of frequency, just as twelve steps [of γ or γ´1] approximately
doubles a number, on average.”

– On unsettleable arithmetic problems (2013)

This expected doubling is not exact :

[The amusical permutation] a factor of 312

218 « 2

[Its inverse] a factor of 220

312 « 2

“A frequency ratio of 312

219 is called the Pythagorean comma4 and is that
between B5 and A7. So there really is a connection with music.”

The amusing musical permutation

“Since the series always ascends by a fifth, modulo octaves, it does not sound very
musical. It has always amused me to call it amusical.”

4First written down by Euclid
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What about the flattened permutation?

The other natural isomorphism

γ5pnq “

$

’

&

’

%

4n
3 n ” 0 mod 3,

4n`2
3 n ” 1 mod 3,

2n´1
3 n ” 2 mod 3.

is simply the amusical permutation, ‘one step down’. Precisely, 1 ` γ5pnq “ γpn ` 1q.

The ‘flattened permutation’ replicates the behaviour of the ‘amusical permutation’, one
semitone lower.

Mathematically / categorically :

The successor function is the natural partial isomorphism between γ and γ5.

γK
5 “ Succ´1γK Succ @K P N
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Finally, some semigroups ...

Structure from ‘three simple assertibles’ :

pp ‹ q ‹ q p ‹ p ‹ qq
αks

p ‹ ‹ qγ5

ai

γ

6>

Elementary properties :

α “ γ5γ
´1

Succ.γ5 “ γ.Succ

α “
“

Succ, γ´1‰

Claim : The inverse submonoid of IpNq generated by

t γ , γ5 , α , Succ u Ď IpNq

is related to a wide range of topics : Girard’s conjunction, Thompson’s F , MacLane’s
pentagon, bicyclic / polycyclic monoids, Conjectures of Collatz, associahedra,
categorical coherence, computational universality / undecidability, the circle of fifths,
the Pythagorean comma . . .
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