
AXIOMATISABILITY PROBLEMS FOR S-SYSTEMS

VICTORIA GOULD

1. Introduction

To a given type of algebraic systems # there corresponds at least one first order
language L. One can then ask whether a property P, defined for members of #, is
expressible in the language L. In other words, is there a set of sentences II such that
a member M of # has property P if and only if all sentences in n are true in M.
If the set II exists we say that P is definable in L. Further, Q) is axiomatisable in L
and II axiomatises Si, where 2 is the subclass of # whose members have property P.

In this paper we are concerned with the following problems. Given a monoid S,
what conditions must S satisfy for the class of flat S-systems to be axiomatisable or
for the class of projective S-systems to be axiomatisable? The corresponding questions
for modules over a ring R have been fully answered by Eklof and Sabbagh in [4],

The relevant algebraic definitions are given in Section 2, where we also outline
some of the basic semigroup terms that we shall use. We do assume some knowledge
of model theory, including the construction of ultraproducts. As far as possible we
follow the notation and terminology of [7] for semigroup theory and [2] for model
theory. We adopt the convention that an ordinal is the set of all smaller ordinals.

If S is a monoid (R a ring with a 1) we let & denote the class of projective ^-systems
(.R-modules) and SF the class of flat. S-sy stems CR-modules). A monoid or a ring is
said to be perfect if & = &.

In Theorem 3.1 we give necessary and sufficient conditions on a monoid S for the
class 3F to be axiomatisable. Eklof and Sabbagh show that for a (unitary) ring R, &
is axiomatisable if and only if $F is axiomatisable and R is perfect. To prove this they
draw on a general result which is not true of 5-systems. We show that for a monoid S,
if & is axiomatisable, then 2F is axiomatisable and 5 satisfies MR, the descending chain
condition for principal right ideals. A ring satisfies MR if and only if it is perfect [1],
but MR is not enough to give perfection for a monoid. It is shown in [5] that a monoid
S is perfect if and only if it satisfies MR and condition A, which asserts that every
5-system satisfies the ascending chain condition for cyclic S'-subsystems. We prove
in Proposition 4.3 that if & is axiomatisable, then a monoid S satisfies A if and only
if it satisfies ML, the ascending chain condition for principal left ideals. This enables
us to deduce that in some fairly general cases, for example if S is regular, & is
axiomatisable if and only if $F is axiomatisable and S is perfect.
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with regard to this work.
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194 VICTORIA GOULD

2. Preliminaries

Throughout this paper S will denote a given monoid and R a given ring with unity.
A set A is a left S-system if there is a map £:SxA-> A satisfying

and

, a) = «*,«*, a))

for any element a of 4̂ and any elements s, t of 5. For £(s, a) we write 5a and we refer
to left S-systems simply as S-systems. One has the obvious definitions of an
S-subsystem and an S-homomorphism. We assume the reader to be familiar with the
elementary definitions and results concerning modules over a ring R. We shall refer
to left /^-modules simply as R-modules.

For a monoid S the relation 9t is defined by a@tb if and only if aS = bS, where
a,beS. That is, a@b if and only if a and b generate the same principal right ideal
of S. The relation if is defined dually. Then 91 is a left congruence and S£ is a right
congruence; $ and JSf are two of Greerts relations on 5. For an element a of S the
^-class of a (respectively if-class of a) is simply the equivalence class of 9t
(respectively if) to which a belongs.

An element a of a monoid S is regular if a = axa for some x e S. A monoid S
is regular if all its elements are regular or equivalently, every ̂ -class and every if-class
of S contains an idempotent. Further details of the semigroup theory we use can be
found in [7].

For a monoid S we denote by Ls the first order language with equality, which
has no constant or relation symbols and which has a unary function symbol ps for
each element s of S. We write sx for ps(x) and we regard 5-systems as Ls-structures
in the obvious way.

For any elements s, t of S, we denote by y/s t the sentence

0/x)((st)x = s(tx))

of Ls. Put

1 = {(Vx)(l* = x)} U {Ws,t-s,

Clearly an Ls-structure M is an 5-system if and only if M is a model of I . Thus 2
axiomatises the class of S-systems in the language Ls. It follows from the Completeness
Theorem that if Th(S) is the theory of ^-systems, that is, the set of all sentences of
Ls true in all S-systems, then Th(S) is the deductive closure of I .

An S-system A is projective if given any diagram of S-systems and
S-homomorphisms

0
M
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AXIOMATISABILITY PROBLEMS FOR 5-SYSTEMS 195

where <f>\M -»N is onto, there exists an S-homomorphism y/:A -* M such that

A

is commutative. Projective i?-modules are defined in the corresponding way.
In the category of S-systems, the coproduct of ^-systems At, is I, is their disjoint

union. We use the symbol 0 to denote a disjoint union.
Given an S-system A, aeA and eeS where e is idempotent, we say that a is

e-cancellable if ea = a and sa = ta implies that se = te, for any s,teS.

PROPOSITION 2.1 [3]. An S-system A is projective if and only if A is isomorphic to
a coproduct of idempotent generated principal left ideals of S.

COROLLARY 2.2 [3]. An S-system A is projective if and only if A =
where for each is I, at is e-cancellable for some idempotent et of S.

The definition of a flat 5-system may be given in terms of tensor products, but
we state here the equivalent definition in terms of elements of S [9], which is more
useful for our purposes.

An S-system A is flat if, given any s,teS and a, b s A with sa = tb, there exist
s', t' e S and c s A such that ss' = tt\ a = s'c, b = t'c; moreover, if a = b we may insist
that s' = t'. One may take an additive version of this condition to define a flat
/^-module over a ring R.

For a monoid S (ring R) we denote by & the class of projective S-systems
(projective i?-modules) and by 2F the class of flat S-systems (flat i?-modules). It follows
from Corollary 2.2 that for a monoid S, & £ #"; the same result is true for rings.
If & = $F then the monoid or ring is said to be (left) perfect.

THEOREM 2.3 [5]. A monoid S is perfect if and only if it satisfies MR and
condition A.

As noted in the introduction, a ring is perfect if and only if it satisfies MR [1].
To prove our results we rely heavily on the use of ultraproducts, and in particular

Los's theorem.

THEOREM 2.4 (Los, see [2]). Let L be a first order language and let <& be a class
of L-structures. Then if^ is axiomatisable, <& is closed under ultraproducts.

3. Axiomatisability of ^

For any elements s, t of a monoid S, we define R(s, t) and r(s, t) as follows:

R(s, t) = {(M, V) e S x S: su - tv),

r(s, t) = {ueS.su = tu}.

Clearly R(s, t) = 0 or R(s, t) is a right 5-subsystem of the right .S-system 5 x S .
Similarly, r(s, t) = 0 or r{s, t) is a right ideal of S.

7-2
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196 VICTORIA GOULD

THEOREM 3.1. The following conditions are equivalent for a monoid S:

(i) the class SF is axiomatisable;

(ii) every ultraproduct of flat S-systems is flat;

(iii) every ultrapower of S is flat;

(iv) for any s,teS, R(s, t) = 0 or R(s, t) is finitely generated as a right S-system
and r(s, t) = 0 or r(s, t) is a finitely generated right ideal of S.

Proof, (i) => (ii) This follows from Theorem 2.4.
(ii) => (iii) This is obvious since S is flat as a (left) .S-system.
(iii) => (iv) Let s, t e S and suppose that R(s, t) # 0. Then R(s, t) is an 5-subsystem

of the right 5-system S x S. We suppose that R(s, t) is not finitely generated.
Let {(tip, vp):fi < y) be a generating subset of R(s, t) of cardinality y. By assumption,

y is infinite and so y is a limit ordinal. We may suppose that for any /? < y, (up, vp)
is not in the right ^-subsystem generated by the preceding elements (ur, vx), that is,

Let D be a uniform ultrafilter on y, that is, D is an ultrafilter on y such that all
sets in D have cardinality y. The existence of such a D is shown in [2]. Put °U = S*/D.
By assumption, ^ is a flat 5-system.

Define elements a, 1) of °U by a = (up)D, T) = (vp)D. Since sup = Wp for all /? < y,
clearly sa = ib. By the flatness of °U there exist s', t'eS and cetft with ss' = tt', a = s'c
and 5 = t'c. Let c = (wp)D.

From.«' = //' we have (s\ t') e R(s, t) and so (s', t') = (M ,̂ yff) h for some <r < y and
/i e S. Since a = s'c and 5 = f'c there exist sets Tx, T2 in D such that ŵ  = 5'iv^ for all
fieTi and i^ = t'wp for all )9e T2. Using the facts that 7J n 7Je.D and I> is uniform,
7̂  n 7̂  contains an ordinal a ^ CT+ 1. Then

("a, U«) = (j'Wa, t'wa) = (S\ t') Wa = (ua, Va)hwa

and so (ua, va) e (ua, va) S, a contradiction. Thus R(s, t) is finitely generated.
A similar argument shows that if s, t e S and r(s, t) # 0, then r(s, t) is finitely

generated.
(iv) => (i) We show that J* is axiomatisable by giving explicitly a set of sentences

that axiomatises SP'.
For any element p of S x S with R(p) ^ 0 ? we choose and fix a finite set of

generators (upl,vpl),...,{upn{p),vpn(p)) of R(p). If r(/>) ^ 0 , choose and fix a set of
generators wpl, . . . , wp m(p) of r(p). For peSxS where p = (5,0, define sentences <f>p,
£p of L s as follows:

if R(P) = 0, <t>p is Qtx)Qty)(sx * ty),

\ ^ (x = upJzhy = vPtiz)JJ,

<yx){sx*tx),
if r{p) # 0, Zp is

/ (m(p)

(Vx) sx = tx->(3z)[ V x = wpiz

Let IT = £ U {<j>p,£p:peSxS}. We claim that n axiomatises &'.
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AXIOMATISABILITY PROBLEMS FOR 5-SYSTEMS 197

Suppose first that A is a flat S-system and peSxS, where p = (s, t). If R(p) = 0
and there exist a,beA such thatsa = tb, then since A is flat, ss' = tt' for somes', t'eS,
a contradiction. Thus At= </>p. lfR(p) =t 0 and sa = /ft where a, be A, then again using
the flatness of A, there are elements s', t' of S and c of >4 such that ss' = tt', a = s'c,
b = t'c. Now (s',t')eR(s,t) and so ($ ' ,0 = (up,i,vpi)h for some i e { l , . . . ,n(p)} and
some /zeS. Thus a = upihc, b = vpihc and hceA. Hence At=<f>p. A similar
argument gives that A \= £p. Then clearly A is a model of IT.

Conversely, if A is a model of II, then clearly A is an S-system. If sa = tb where
s, t e S and a, be A, then since 4̂ N ̂ p, where /? = (s, t), it follows that R(p) cannot be
empty and <f>p is

Hence there is an element c of A with a = up tc and b = vpi c, for some i"e {1,..., n(p)}.
By definition of w^, vpi, supj = ^ j f . In a similar manner one sees that if sa = ta
where s, teS and aeA, then ss' = te' and a = s'c for some s'eS and ce;4. Thus A
is flat and so n axiomatises SF.

It is easy to construct examples of monoids not satisfying condition (iv) of
Theorem 3.1. Let U be a cancellative semigroup with more than one element and V
a completely simple semigroup with an infinite number of ̂ -classes. Let 0 be a symbol
not occurring in U or V. Then U U V U {0} is a semigroup under the multiplication
*, where

{ xy if x,yeU or jcje V,

0 otherwise.

Let S be the monoid obtained by adjoining an identity to C/U V[) {0}.
Let s,teU where s # /. In S, r(s, t) = F U {0} and it follows that r(s, t) cannot be

finitely generated.

4. Axiomatisability of &

Eklof and Sabbagh show in [4] that for modules over a ring R, the class & is
axiomatisable if and only if 2F is axiomatisable and R is perfect. For a ring to be perfect
it is enough that is satisfies MR [1]. This is a necessary condition for a monoid to be
perfect, but as remarked earlier, it is not sufficient. In Proposition 4.3 we show that
for a monoid S, if ̂  is closed under ultraproducts, in particular if ̂  is axiomatisable,
then 5 satisfies MR and a number of other conditions that in some special cases
immediately give that Sis perfect. Before stating the result we require some definitions.

We remind the reader that the relation S£* on a semigroup S is defined by the
rule that for a,beS, aS£*b if and only if a, b are related by Green's relation J5f in
some oversemigroup of S.

LEMMA 4.1 [6]. Let S be a monoid and let a,beS. Then the following conditions
are equivalent:

(i) a<£*b;

(ii) for all x,y eS, ax = ay if and only ifbx = by;

(iii) there is an S-isomorphism <f>:aS -*bS with <f>(a) = b.
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198 VICTORIA GOULD

Given a monoid S, we define a preorder ^ t by a ^ t b if and only if bx = />>>
implies that ax = ay, for any elements x, y of 5. The equivalence relation associated
with ^ j is clearly if*, that is, a$£*b if and only if a ^tb and b ^ta. if a, b e S it is
easy to see that if Sa c Sb then a ^ t b and if £ is regular then Sa £ Sb if and only
if a < j 6. Thus if a, b e S are regular, then a£t?*b if and only if a<£ b.

We define a condition ML* on S by analogy with ML, the ascending chain
condition for principal left ideals. We say that S satisfies ML* if there are no strictly
increasing chains of the form

where ax, a2,... are elements of S. Thus if S is regular, then S satisfies ML if and only
if S satisfies ML*.

We recall that a monoid S satisfies condition A if every S-system satisfies the
ascending chain condition on cyclic S-subsystems. Clearly, if S satisfies A then S
satisfies ML. The converse is not true—it is shown in [8] that S may satisfy ML and
MR but not A. We show below that if ^ is axiomatisable, then S satisfies A if and
only if S satisfies ML. To prove this we use an equivalent characterisation of A, given
in [8].

L E M M A 4.2 [8]. A monoid S satisfies A if and only if for any elements alt a2,... of
S, there exists neN such that for any ieN, i^ «, there exists JiEN,j( ^ i + 1 , with

Saiai+1...au = Sai+1...ai{.

PROPOSITION 4.3. Let S be a monoid such that every ultrapower of S is projective.
Then

(i) the class IF is axiomatisable;

(ii) 5 satisfies MR;

(iii) 5 satisfies ML*;

(iv) S satisfies the ascending chain condition for idempotent generated principal left
ideals;

(v) if S satisfies ML, then S satisfies A.

Proof, (i) Since every ultrapower of S is flat, this statement is immediate from
Theorem 3.1.

(ii) If ax S 2 b2 S ^ b3 S ^ ... is a decreasing sequence of principal right ideals of
S, t h e n b2 = a x a 2 , b3 = b 2 a 3 = a x a 2 a 3 , . . . f o r s o m e e l e m e n t s a 2 , a 3 ) . . . in S.

Let D be a non-principal ultrafilter over a> and put % = S^/D. By assumption,
W is projective and so there is an .S-homomorphism yM -> SP such that

is a commutative diagram, where <f>\S^ -> % is the canonical mapping.
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AXIOMATISABILITY PROBLEMS FOR 5-SYSTEMS 199

Define elements 5< of %, i e M, by

Hf = (1 ,1 , . . . , 1, o<, a< ai+x, a{ a m ai+2,...)/»

where the entry at is the ith coordinate. Then for any iJeN with i <j we have
Vi = ai...a}_xUi.

For 16N let (̂w*) = {c\,c\,...)• Then for any i,j,keN with i <j,

and so c\ S £ ai ai+x... at_x S.
From ux = <fni/(ux) we have

(ax, ax a2, ax a2 a3, ...)/> = (c\, c\, c\,.. .)D.

Thus there exists neN with a1a2...an = cf. Then for any m ^ n,

Hence bnS = bn+1 S = ... and so S satisfies MR.
(iii) If altatt... are elements of S such that

then by definition of ^ j , R(altax) 2 R(a2,a2) 2 ... . Note that for any ieN,
R(aifat) # 0 as (1, O e i t y ^ , ^ ) ; thus by (i), Ria^a^ is finitely generated. It is an easy
consequence of (ii) that any right S-system satisfies the descending chain condition
for cyclic 5-subsystems. Thus SxS satisfies the descending chain condition for
cyclic 5-subsystems and so by [5, Lemma 6], SxS satisfies the descending chain
condition for finitely generated S-subsystems. It follows that for some n,
R(an,an) = R(an+1,an+1) = ... and so an,an+1,... are all <£*-related.

(iv) If Sex <=, Se2 £ ... is an ascending chain of principal left ideals of S, where
e\ = et for each /, then clearly ex ^ t e 2 ^ t . . . and so there exists neN such that
en Se*en+X. Hence en £?en+x and Sen = Sen+X.

(v) Suppose now that S satisfies ML and ax,a2,... are elements of S. Define D,
% and ut, ie N, as in the proof of (ii). For ieN,ut = atui+x and since °U is projective,
this gives that ut = dt v, ie N, for some elements dt of S and some e-cancellable element
v oftft, where e is idempotent. So for any ieN,dtv = a^^v, giving dte = atdi+xe.
Hence 5 ^ e £ Sd2e ^ ... and by assumption, Sdne = Sdn+Xe = ... for some neN
and it follows that Sun = Sun+X = .... Now let i ^ n, so that ui+x = CM{ for some
ceS. Since D is non-principal there exists jteN with j^i+l such that

•% a n d s o

that is, S satisfies condition A.

COROLLARY 4.4. Let S satisfy ML. Then & is axiomatisable if and only if 3F is
axiomatisable and S is perfect.

Proof. If & is axiomatisable then it is closed under ultraproducts so certainly
every ultrapower of 5 is projective. By Proposition 4.3, !F is axiomatisable, S satisfies
MR and since S satisfies ML, S satisfies A. From Theorem 2.3, S is perfect. The
converse is clear.
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200 VICTORIA GOULD

COROLLARY 4.5. Suppose that the relations S£*, S£ coincide for the monoid S. Then
& is axiomatisable if and only if $F is axiomatisable and S is perfect.

Proof We need only show that if & is axiomatisable, then S satisfies ML.
If & is axiomatisable and Sax c Sa2 c ... is an ascending chain of principal left

ideals of S, then certainly a1^l^a2^l... and so from Proposition 4.3(iii),
an & *an+1 S£ *... for some »eM. Thus an &an+1 &... and San = San+1 = . . . .

COROLLARY 4.6. IfS is a regular monoid, then & is axiomatisable if and only if
& is axiomatisable and S is perfect.

For our next corollary we need a subsidiary lemma.

LEMMA 4.7. IfS is a left cancellative monoid and S satisfies MR, then S is a group.

Proof. For any aeS we have aS 2 a2S 2 ... and so an = an+1t for some neN
and t€S. Since S is left cancellative it follows that a is a unit. Hence S is a group.

COROLLARY 4.8. If the monoid S is a semilattice of left cancellative monoids, then
& is axiomatisable if and only if & is axiomatisable and S is perfect.

Proof. We suppose that & is axiomatisable and that S is a semilattice Y of left
cancellative monoids Sa, OLEY, with identities ea. Note that ex is the only idempotent
ofSa.

If a e Y and a,beSa, then aS£*b. For if xeSp, y eSy and ax = ay, then <xfi = <xy
and so (ea/?a)(xea^) = (eape)(yeap). Since Sap is left cancellative, xeap = yeap and so
bxeap = byeafi, giving bx = by.

We show that each Sa satisfies MR. For if a e Yand aXia2,... are elements of Sa

such that a1Sa ^a2Sa 2 .. . , then a 1 5 ' 3 f l 2 5 2 . . . . But by Proposition 4.3, S
satisfies MR and so anS = an+1 S = ... for some neN. Thus for ieN, an — an+iht

for some h{e S, say ht e SPi. Then for each / e N , a ^ j ? j , which gives that h{ ea e Sa and
an = an+i(hiea). Hence anSa = an+1 Sa = .... Lemma 4.7 now gives that Sis regular
and so the result follows from Corollary 4.6.

COROLLARY 4.9. IfS is a commutative monoid, then &> is axiomatisable if and only
if SF is axiomatisable and S is perfect.

Proof. If & is axiomatisable, then S satisfies MR and ML*. Let

Sat ^ S a 2 ^ . . .

be an ascending chain of principal left ideals. Then

a n d s o a n j £ ? * a n + 1 i ? * . . . f o r s o m e n e ' N . P u t bt = a n + i _ l 5 i e N , a n d f o r e a c h i e N
suppose that bt = t{bi+1. Now txS 2 tx t2S 2 ... and so tl...tmS = tx...tm+1 S = ...
for s o m e meN. T h u s for any ieN there is ̂ eS wi th t1...tm+ihi = t1...tm. Hence
' i • • • tm+iKbm+1 = t1...tmbm+1 and so

• • • t
m+i
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AXIOMATISABILITY PROBLEMS FOR 5-SYSTEMS 201

that is, tm+1... tm+i ̂  bx = bv Now bx J?*bm+i+1 and S is commutative, so

giving bm+i+1 = hitm+l...tm+ibm+i^l - hibm+1eSbm+v Thus Sbm+1 = Sbm+2

and S has ML. Corollary 4.4 gives the result.

5. Examples

We begin by remarking that for any finite monoid $F and & are axiomatisable
classes.

For any group both SF and & are axiomatisable. This is easy to see, since if G
is a group then G is perfect so that 2F is axiomatisable if and only if & is axiomatisable.
Let s,teG. Then r(s, t) = 0 or r(s, t) = G. For any u,veG, su = to if and only if
M = .rtt; , which is so if and only if (u, v) e (.r1/, 1) G. Thus /*($, /) is cyclic. By Theorem
3.1, 2F is an axiomatisable class.

An example of a monoid for which $F is axiomatisable but & is not is provided
by an co-chain C where C = {1 = e0, elt e2,...} and et e} = emax{< ^.

Suppose that C is as above and let et, ei e C. If i = j then /-(ê , ^) = C. If i < y then
et ek = ê  ek if and only if k ^ / Thus r(ef, e}) = ê  C. Considering R(eo e^), if i = j then
put i? = ( J {(ij.,ij)C:&,/ < i}. It is clear that R s R(e{ie^). Conversely, if ^ ^ = ^e^
then max {/, u} = max {/, v} so that i"£• u if and only if i ^ v. If i ^ u then (eu, ev) e /?.
If / < u, then ê gy = eu and it follows that v = u and (eu,ew) = (ei,ei)eueR. Thus
Rie^e^^R and so Rie^e^ is finitely generated. If i < y we claim that
Rie^e^iepVC. For eiejek = ejek for all efceC, so that ( ^ . l J C c ^ . c , ) .
Conversely, suppose that eiek = eieh = et. Then t = max{i,&} = max{j,h}. If t = h
then also A: = h and

(«*» eft) = (en, eh) = (ep 1) eh e (^, 1) C.

If t =j then & = y and

(e&> «A) = (ef, eh) = (ep \)ehe (ep 1) C.

ThusR(ei,ej) = (epl)C.
We have shown that & is axiomatisable. Since S satisfies ML, Corollary 4.4

applies. But C is not perfect as it does not satisfy MR and so & is not axiomatisable.
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