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ABSTRACT. A monoid S satisfies Condition (A) if every locally cyclic left S-act is cyclic.
This condition first arose in Isbell’s work on left perfect monoids, that is, monoids such
that every left S-act has a projective cover. Isbell showed that S is left perfect if and only
if every cyclic left S-act has a projective cover and Condition (A) holds. Fountain built on
Isbell’s work to show that S is left perfect if and only if it satisfies Condition (A) together
with the descending chain condition on principal right ideals, M. We note that a ring is
left perfect (with an analogous definition) if and only if it satisfies Mz. The appearance
of Condition (A) in this context is therefore monoid specific.

Condition (A) has a number of alternative characterisations, in particular, it is equiva-
lent to the ascending chain condition on cyclic subacts of any left S-act. In spite of this, it
remains somewhat esoteric. The first aim of this article is to investigate the preservation
of Condition (A) under basic semigroup-theoretic constructions.

Recently, Khosravi, Ershad and Sedaghatjoo have shown that every left S-act has a
strongly flat or Condition (P) cover if and only if every cyclic left S-act has such a cover
and Condition (A) holds. Here we find a range of classes of S-acts C such that every left
S-act has a cover from C if and only if every cyclic left S-act does and Condition (A)
holds. In doing so we find a further characterisation of Condition (A) purely in terms of
the existence of covers of a certain kind.

Finally, we make some observations concerning left perfect monoids and investigate a
class of monoids close to being left perfect, which we name left ZPa-perfect.

1. INTRODUCTION

Throughout this article, S denotes a monoid. Our aim is to add to the understanding
of the so-called Condition (A) for S. Let A and B be left S-acts and let 6 : A — B be
an onto S-morphism. We say that 0 is co-essential if for any proper S-subact C' of A, the
restriction of 6 to C' is not onto. In this case we say A is a cover for B (more properly,
(A,0) is a cover for B). If C is a class of left S-acts then S is said to be left C-perfect if
every left S-act has a C-cover, that is, a cover lying in C [4]. A left perfect monoid is one
which is left Pr-perfect, where Pr is the class of projectives. Left perfect monoids were
shown by Fountain [2] and Isbell [5] to be exactly those satisfying Condition (A) and Mg
(the descending chain condition on principal right ideals). We refer the reader to [7] for
background details concerning acts over S.
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After some preliminaries, we give known equivalent characterisations of Condition (A) in
Section 2. Section 3 is devoted to the preservation of Condition (A) under some standard
constructions. Next, for the convenience of the reader and for notational consistency, we
have a short section defining classes of S-acts related to projectivity and flatness. These
classes are used in Section 5 to find a new description of Condition (A) purely in terms of
the existence of covers of a certain kind.

We stress that our techniques in Section 5 are essentially based on interpreting existing
work. In Section 6 we then apply our results to investigate classes of left S-acts having a
cover which is a disjoint union of cyclic left S-acts, or more particularly, of principal left
ideals (thus, a cover from a rather larger class than Pr). In the commutative case we can
generalise known results for left perfect monoids. Our final section contains a number of
examples and counterexamples.

2. CONDITION (A)

A left S-act A is cyclic if A = Sa for some a € A (equivalently, A = S/p for a left
congruence p on A) and locally cyclic if for any a,b € A there exists ¢ € A such that
a,b e Se.

Definition 2.1. A monoid S has Condition (A) if every locally cyclic left S-act is cyclic.

The following lemma gives a number of alternative characterisations of Condition (A),
taken from [5, 2] and [4], with the exception of (v), which clearly follows from the equiva-
lence of its predecessors.

Lemma 2.2. The following conditions are equivalent for a monoid S':

(i) S satisfies Condition (A);

(ii) every left S-act satisfies the ascending chain condition on cyclic subacts;

(i1i) for every sequence ai,as, ... of elements of S, there exists n € N such that for all
m > n, there exists k > 1 such that Sa,ami1 - - Qmig = SUmat - - - Qr;

(iv) for each left S-act A, there is a set {A; : 1 € I} of locally cyclic left S-acts such that
A= Ai and for all j €1, A; € U#j Ai;

(v) for each left S-act A, there is a set {A; : i € I} of cyclic left S-acts such that
A=  Ai and forall j €1, A; & U#j A;.

Further equivalent characterisations for Condition (A) may be found in [12, Lemma 3.1].
Clearly Condition (A) implies the ascending chain condition on principal left ideals of S
but it is, in general, stronger [5].

Remark 2.3. In checking Condition (A) by part (i) of Lemma 2.2, it is enough to
consider sequences not containing the identity and not containing subproducts a;a;41 ... a;
which are right zeros.

Proof. First note that if the sequence contains only finitely many non-identities then it is
enough to choose n such that a; = 1 for every ¢ > n. On the other hand, if it contains
infinitely many non-identities then it is easy to check that it satisfies the required condition
if and only if the subsequence consisting of all non-identity elements does.
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If for every m there exists ¢,j with m < ¢ < j such that a;a;41...a; is a right zero,
then the sequence aq,as, ... clearly satisfies the condition. So we can suppose that there
exists n € N such that the sequence a,,a,y1, ..., does not have any right zero subprod-
uct a;a;y1...a;5. It is straightforward that the sequence aq,aq,... satisfies the required
condition if and only if the sequence a,,, a,.1, ... does, so the remark is proved. U

Corollary 2.4. Let S be a monoid. Then S satisfies Condition (A) if and only if S°
satisfies Condition (A).

3. CONSTRUCTIONS AND CONDITION (A)

In this section we are going to investigate when submonoids, homomorphic images, direct
and semidirect products satisfy Condition (A).

Lemma 3.1. The class of monoids satisfying Condition (A) is closed under homomorphic
mages.

Proof. Let S be a monoid that satisfies Condition (A) and ¢ : S — T a homomorphism of

monoids. Given any sequence s1¢, s29, . .. of elements in the image of ¢, there exists n € N
such that for all m > n there exist k > 1, s € S such that ss,,8m41 - Smak = Smat - - - Smak,
5O ($0)(Sm®) - - - (Smak®) = (Sma10) - - . (Smax®) and the result follows. O

We now turn our attention to submonoids. Since a group clearly satisfies Condition (A),
the next result shows that the class of monoids satisfying Condition (A) is not closed under
submonoids.

Lemma 3.2. A cancellative monoid satisfies Condition (A) if and only if it is a group.

Proof. If S is cancellative and a™ £a™"!, then it follows that @ is a unit. Thus if S has
Condition (A), considering sequences of the form a,a, ... gives that S is a group. O

On the positive side we have the following lemma, the proof of which is clear.

Lemma 3.3. Let T be a submonoid of S such that for any a,b € T we have
albinT < albinS.
If S satisfies Condition (A), then so does T

Submonoids T of S satisfying the condition of Lemma 3.3 include regular submonoids
and retracts of S either as submonoids, or in the category of right T-acts. Examples of the
latter are right self-injective submonoids, by which we mean that 7' is injective as a right
T-act. (See Comments at the end of [7, Section IV.5] for some examples of self-injective
monoids). Further, it is shown in [1, Proposition 5.14] that if 7" is a pure submonoid (for
the definition, see [1]), then again 7" inherits Condition (A) from S.

As the following lemmas show, Condition (A) is preserved under finite direct products,
but not under infinite direct products or free products.

Lemma 3.4. The class of monoids satisfying Condition (A) is closed under finite direct
products.
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Proof. 1t is sufficient to show preservation for a direct product of two monoids. Let S = 57 X
Sy be the direct product of monoids S; and Sy that both satisfy Condition (A). Now given
any sequence (a,by), (az,bs),... € S there exist ny,ns € N such that for all m > ny,ny
there exist kq, ks > 1 such that

SlamamH v Oty = SlamH v Omtoky

Sobmbis - bk = Sabmst - bosh.
Let N = max{ny,ns} and for all M > N, let K = max{ky, k2}. Then

Slanr, bar)(anrir, barsr) - - - (anrrxc, by ) = S(anrs1, 0n41) - (aarv ik, by i)
and so S satisfies Condition (A). O

The following examples show that the class of monoids satisfying Condition (A) is not
closed under infinite direct products nor under free products.

Example 3.5. Let S = H,LEN T; where T; = T is a monoid containing an element ¢ which
has no left inverse. Considering the sequence

S1 = (t,]_,l,...),SQ = (].,t,l,...),Sg = (1,1,t,...),...
we see that S does not satisfy Condition (A). Note that S is residually finite if 7" is finite.

Example 3.6. Let 57,55 be non-trivial monoids and let S = S % .S;. Take any sequence
S1, 82,81, S92, 81 ... where s € S1 and sy € Sy are non-identities. Then for any m,k > 1,
SmSmat - - - Smak 18 @ word of length k£ 4+ 1 and s,,41 ... Smak 18 @ word of length k£ so the
principal ideals generated by these words can never be equal.

We say that a monoid T acts on a monoid S by endomorphisms on the left, if for every
t € T there exists a monoid endomorphism ¢; : S — S such that ¢;(¢u(s)) = ¢dw(s) (and
¢ =idy) for all t,u € T, s € S. We denote ¢;(s) by ’s.

Given two monoids S and T, with T" acting on S by endomorphisms on the left, the
semidirect product S x T is a monoid with underlying set .S x 7', with binary operation

51,01 )(S2,02) = (81 "S2,l1l2).
(s1,11) (52, ta) = (5159, tal2)

and identity (1,1). It is then clear that (sy,t1) ... (sk,tx) = (51089 1283 ... Bth-ig, ) 1)),
The wreath product ST of a monoid S by a monoid T is the semidirect product ST x T
where T acts on ST by #(1¢) = (tt')¢ for all t' € T where ¢: T — S.

Lemma 3.7. Let S be a monoid and T a monoid acting on S by endomorphisms on the
left. If S x T satisfies Condition (A) then S and T satisfy Condition (A).

Proof. Note that ¢: SxT — T, (s,t) — t is a surjective homomorphism and so T satisfies
Condition (A) by Lemma 3.1.

To show that S also does, let sq, s9,... be a sequence of elements of S. Let us consider
the sequence (s1,1),(s2,1),...in S x T. By Condition (A) there exists n € N such that
for every m > n there exist k > 1 and (s,t) € S x T satisfying

($,8)(Sms 1) (Smr1, 1)« oo (Smakr 1) = (Sma1, 1)+ - (Smtk, 1)-
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As a consequence we have that t = 1, SO $S;,Smi1 .-« Smik = Smi1Smi2 - - Smik, Which
proves that S satisfies Condition (A). O

Lemma 3.8. Let G be a group and S a monoid satisfying Condition (A) acting on G by
endomorphisms on the left. Then the semidirect product G x S satisfies Condition (A).

Proof. Given any sequence (g1, $1), (g2, 82),... € G x S, there exists n € N such that for
all m > n there exist k > 1, s € S such that 5,841 Smik = Smat--- Smik. Now let
h = ng ssmngrl ssmsm_,_lngrQ o ssm...strk,lngrk
and 9= Gmi1 " Gmag ... SmHlSmik—lg
(Note that if & =1 then h = °g,, **g,, and g = g,,+1.) Calculating,
(ghila S)(gma Sm)(gm—&-h Sm+1) s (gm-i-ky Sm—i-k) = (ghilha SSmSm41 - - - Sm+k)

(97 Sm+1 - - sm-i-k)
= (9m+1a 5m+1) e (9m+k> Sm+k)a

and so G x S satisfies Condition (A). O

Corollary 3.9. Let G be a group and S a monoid satisfying Condition (A), then a wreath
product G S satisfies Condition (A).

Proof. Recall that G S is a semidirect product of the form G° xS and cartesian products
of groups are still groups. [

As the following theorem shows, the most frequently used semidirect products preserve

Condition (A).

Lemma 3.10. A monoid semidirect product S x G where G is a group satisfies Condition
(A) if and only if S satisfies Condition (A).

Proof. 1f S x G satisfies Condition (A) then by Lemma 3.7 so does S. Conversely, if S
satisfies Condition (A) then let (s1, g1), (S2,92), ... be a sequence in S x G. Let us consider
the sequence si, 91sq9, 919253, ... in S. Since S satisfies Condition (A), there exists n € N
such that for every m > n there exist £ > 1 and s € S satisfying

Sgl-ngmflsm gi...9m . gl~-~gm+kflsm+k — gi...gm . gl~-~gm+k718m+k'

Sm41 - - Sm4+1 - -

As a consequence

-1 -1 —1 —1
Jm Jm—rG1 g Im g 6 I S g I Itk = S T Sy L I I
thus

1 -1 1 _
(9 Imorb g, gml)(sww Im)(Smt1, gm—i—l) oo (Smaks gm-i-k‘) = (Sm—l—lv Gmt1) - - - (Smaks Gm+k),

which shows that S x G satisfies Condition (A). O

Corollary 3.11. Let S be a monoid that satisfies Condition (A) and G a finite group,
then a wreath product S G satisfies Condition (A).
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Proof. Recall that S1G' is a semidirect product of the form S¢ x G and so the result follows
by Lemmas 3.4 and 3.10. U

Lemma 3.12. Let T be a semigroup satisfying uv L v for every u,v € T and let S =
MO[T; I; A; P] be a Rees matriz semigroup with zero over T such that the matriz P is
reqular (that is, every row and column of P contains a nonzero element). Then S' satisfies

Condition (A).

Proof. To show that S* satisfies Condition (A), by Remark 2.3, we need only consider
sequences s; = (11,11, A1), S2 = (ia,t2, A2), ... of elements in S. By the same remark, we can
also assume there are no pairs in the sequence whose product is zero, so that py,;,,, € T for
allr > 1. Let m € N, so that $,,541 = (Im, tmPrmims1 tm+1, Am+1). Since P is regular, there
exists some p1 € A (depending on m), such that p,;,, € T. Since pui, tmDrnin i tms1 £ tmst,
there must exist some t € T such that tp;,, tmPrning: tmt1 = tmr1. Let 8 = (im41,t, 1) and
note that $s,8m11 = Sma1 and so S satisfies Condition (A). Ul

Corollary 3.13. Every completely 0-simple and completely simple semigroup with a 1
adjoined is left perfect.

Proof. By the Rees Theorem, every completely 0-simple semigroup is a Rees matrix semi-
group with zero over a group, so the resulting monoid satisfies Condition (A) by Lemma 3.12.
For the completely simple case, note that by Corollary 2.4, a monoid M satisfies Condition
(A) if and only if M° does.

By definition, completely (0-)simple semigroups have Mg, whence certainly so do the
corresponding monoids. O

Lemma 3.14. Let L be a semigroup satisfying uv L v for every u,v € L and let
S={(n,z,m):n,meNn>m,ze L}U{0}
with multiplication given by
(n,z,m)(m,y,1) = (n,zy,1),
all other products being 0 (that is, S is a subsemigroup of the ‘Brandt’ semigroup B°(L,N)),

and let M = S*.
Then the monoid M satisfies Condition (A) and does not have M.

Proof. We first show that M satisfies Condition (A). Let a1, as, . .. be a sequence of elements
in M. As in the proof of Lemma 3.12, by Remark 2.3 we can suppose that a; # 1 and
that a;a;11 # 0 for every 1 < i. Putting a; = (n;, ;, m;), we have m; = n; for all 1 <.
Hence n; > my = ny > my = ...; clearly the descending sequence stabilises with w such
that n, =my =ng = .. ..

For every u > w we have that x, 2,1 £ x,.1 so there exists [ € L such that z,,1 = lz, 2,41
which implies that

(nun l; nw)auau—‘rl - (nun la nw)(”wa Loy nw)(nwu xu—&-lnw) - (nun Ly+1, nw) = Ay+1,
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so that Condition (A) is satisfied.
To see that M does not satisfy My, fix € L and note that

M(1,2,1) D M(2,z,1) D M(3,2,1) D ...

is an infinite strictly descending chain of principal left ideals of M.

4. THE CLASSES

We now describe the classes of left S-acts which will form the main object of our concern
in later sections of this article. Further details may be found, for example, in [7].

A left S-act A is decomposable if there exist left S-acts B and C' such that A= BUC
with BN C = (. A left S-act which is not decomposable is called indecomposable. Every
left S-act A can be uniquely written as a disjoint union of indecomposable left S-acts and
these indecomposable components are the classes of ~, where ~ is the transitive closure
of {(sa,ta) : s,t € S,a € A}.

It is clear that every locally cyclic left S-act is indecomposable, but the converse is only
true in case S is a group [9, 12].

Definition 4.1. Let X be a property of left S-acts. Then ZX is the class of left S-acts,
the indecomposable components of which have property X.

Notice that classes of the form ZX are precisely those that are closed with respect to
taking coproduct (disjoint union) and indecomposable components.

Let LC, C, Pa, Pe and S denote the properties of left S-acts of being locally cyclic, cyclic,
isomorphic to a principal left ideal, isomorphic to an idempotent generated principal left
ideal and isomorphic to S (regarded as a left S-act), respectively. Then ZS and ZPe are
the classes F and Pr of free and projective left S-acts, and we have the class inclusions

F=I8 CPr=2ZPeCIPaCICCILC.

Of course if S is regular or even left abundant (that is, every principal left ideal Sa is
S-isomorphic to one generated by an idempotent e, where the isomorphism takes a to e),
then Pa is just Pe and Pr = ZPe = TPa.

Lemma 4.2. A left S-act A lies in TLC if and only if for all a,b € A, if SanNSb # 0 then
Sa U Sb C Sc for some c € A.

Proof. Let A € ZLC and a,b € A and suppose that Sa N Sb # (). Then a and b lie in
the same indecomposable component say C', since this is locally cyclic, a,b € Sc for some
ceC,ie. SaUSbhC Se.

Conversely, let U be an indecomposable component of A. Let u,v € U so that asu ~ v
there exists a sequence

u = s1a1, t1a1 = SaoQo, "+ ,lpGy =V

where n € N,a; € A, s;,t; € Sfor1 <i <n. If n =1, then u,v € Sa; where clearly
ay € U.
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Suppose inductively that 1 < k <n and Sa; U---U Sa, C Swy for some w;, € U. With
ap = rwy we have tprw, = spii1arpr1 and again we call upon our assumption to obtain
Swy U Sagy1 € Swygyq for some wiy; € U. Hence Sa; U --- U Sai; € Swiyq and finite
induction gives the result. 0

Finally in this section we consider three further classes of left S-acts, namely SF, P, and
WPF, consisting of the strongly flat, Condition (P) and weakly pullback flat left S-acts
respectively. We recall that a left S-act A is strongly flat if it is a direct limit of finitely
generated free left S-acts, and this is equivalent to satisfying Conditions (P) and (E):

(P) for all s,t € S and a,b € A, if sa = tb then su = tv,a = uc and b = vc for some
u,v € S and ¢ € A,

(E) for all s,t € S and a € A, if sa = ta then su = tu and a = uc for some u € S and
ce A

Condition (E)" is defined as follows:

(E) for all s,t,z € S and a € A, if sa = ta and zs = zt, then a = uc and su = tu for
some v € S and ¢ € A.

A left S-act A is weakly pullback flat if it satisfies (P) and (E)’. It is known that Pr C SF
and, using Lemma 4.2, it is clear that

SF=1LSF CWPF=1IWPF CP=1IP CILILC.

5. THE GENERAL RESULT FOR COVERS

We now consider the question of existence of covers. The proof of our result is easy,
since the hard steps all follow from Lemma 2.2.

Theorem 5.1. Let X be a property of left S-acts such that ZX C ZLC, that is, X is
stronger than being locally cyclic. Then S s left ZX -perfect if and only if every cyclic left
S-act has an ZX -cover and Condition (A) holds.

Proof. Suppose that every left S-act has an ZX-cover and let A be a left S-act. It follows
from (ii) [4, Theorem 2.2] (and is easy to see from the definition of cover), that

A=JA, Az JAiforall jeT,
iel i#j

where each A; is the image of an indecomposable S-act B; with property X. Hence B; is
locally cyclic and consequently, A; is locally cyclic. From Lemma 2.2, S satisfies Condition
(A).

Conversely, suppose that every cyclic left S-act has an ZX-cover and Condition (A)
holds. By Lemma 2.2, every locally cyclic left S-act is cyclic, hence has an ZX-cover.

Let A be a left S-act. Since S satisfies Condition (A), Lemma 2.2 gives

A=JA, A;g|JAiforall jel,
iel i#j
where each A; = Saq; is a cyclic S-subact of A. Now each A; has an ZX-cover B; (which
must actually be cyclic), so there is a co-essential S-morphism 6; : B; — A;. Let B be the
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disjoint union Uie] B;, sothat B € ZX, and let 6 : B — A restrict to ; on each B;. If 0 is
not co-essential, there is some j € I and (possibly empty) proper S-subact C; of B; such
that 6 : {J,.; BiUC; — A is onto. Hence either a; = cf; for some ¢ € C; (contradicting
0; being co-essential) or a; = bf; for some b € B; with i # j, contradicting A; Z (J;; Ai-
Hence 6 is co-essential. ]

We immediately have our promised characterisation of Condition (A) by covers.

Theorem 5.2. The following conditions are equivalent for a monoid S':
(i) S has Condition (A);
(ii) S is left ZLC-perfect;
(iii) S is left ZC-perfect.

Proof. Every cyclic left S-act is its own ZLC-cover and ZC-cover. U
We now proceed to deduce some known results.
Corollary 5.3. [4, Corollary 2.3] A monoid is left Fr-perfect if and only if it is a group.

Proof. As pointed out in [4], it is clear that the trivial left S-act © has a free cover if and
only if S is a group, and groups satisfy Condition (A). Moreover, if S is a group then S is
a free cover of S/p via the natural S-morphism, for any left congruence p. O

Corollary 5.4. [5] A monoid S is left perfect if and only if every cyclic left S-act has a
projective cover and Condition (A) holds.

A submonoid T of S is right unitary if for any s,t € S, if st,t € T, then s € T. From
[5, 1.3], a submonoid is right unitary (referred to as a block in that article) if and only if it
is the class of the identity for some left congruence on S. It is well known and easy to see
that if pp = (T x T'), that is, pr is the left congruence generated by T x T', then T = [1].

We observe that if a cyclic left S-act S/p has a projective cover, this must necessarily be
cyclic, hence of the form Se for some idempotent e € S. Let 6 : Se — S/p be co-essential.
We cannot immediately deduce that e € [1]. However, if (pe)f = [1], then it follows from
the co-essentiality of 6 that gpe = e for some g € S. It is easy to check that peq € E(S)N[1]
and peq D e. Isbell goes on to show:

Proposition 5.5. [5] Every cyclic left S-act has a projective cover if and only if S satisfies
Condition (D):
(D) every right unitary submonoid has a minimal idempotent generated left ideal.

Thus Corollary 5.4 and Proposition 5.5 completely describe left perfect monoids. Foun-
tain [2] shows that the conjunction of Conditions (A) and (D) is equivalent to S satisfying
Condition (A) and Mg, thus providing an alternative description of left perfect monoids.
Further, he showed that a monoid is left perfect if and only if SF = Pr.

Choosing X to be strongly flat or Condition (P) immediately yields:

Corollary 5.6. [4] A monoid S is left SF-perfect (left P-perfect) if and only if every cyclic
left S-act has a strongly flat cover (Condition (P) cover) and Condition (A) holds.
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A monoid S is said to be left reversible if for all s,t € S there exists p,q € S with sp = tq
and right collapsible if for all s,t € S there exists r € S with sr = tr. Further, S is said to
be weakly right collapsible if for any p,q,r € S with rp = rq there exists u € S such that
pu = qu.

The next lemma follows from the definition of pr, [10, Lemma 1.4] and [8, Lemma 7].
Note that if T' is left reversible, then pr takes on the simpler form that a pr b if and only
if au = bv for some u,v € T.

Lemma 5.7. (Cf. [6, 8, 10]) Let T' be a right unitary right collapsible (left reversible and
weakly right collapsible, left reversible) submonoid of S. Then S/pr is strongly flat (weakly
pullback flat, Condition (P)) and [1] =T.

For comparison with what follows we recall the next result from [10, 11]:

Proposition 5.8. [10, Theorems 3.2, 4.2], [11, Theorem 4.3] Every cyclic left S-act has
a SF-cover (WPF-cover, P-cover) if and only if every right unitary submonoid T of
S contains a right collapsible (left reversible and weakly right collapsible, left reversible)
submonoid R such that for all u € T we have SuN R # ().

There appears to exist no natural chain conditions binding those of Proposition 5.8 with
Condition (A), as in Fountain’s result for left perfect monoids.

6. LEFT ZX-PERFECT MONOIDS

The aim of this section is to give new and non-trivial applications of Theorem 5.1.

We begin with some notation. For an element a of a left S-act A we denote by L(a)
the set {t € S : ta = a}, the (right unitary) submonoid of left identities of a, and by ¢(a)
the set {(u,v) € S x S : ua = va}, the left annihilator congruence o, of a. It is clear that
Sa is isomorphic to S/o, under the S-isomorphism sa + [s|]. The next lemma slightly
reformulates results in Section 2 of [10].

Lemma 6.1. (Cf. [10, Section 2]) Let D be a class of left S-acts. Then the following
conditions are equivalent:
(1) every cyclic left S-act has a D-cover;
(13) for every right unitary submonoid T' of S there is a cyclic left S-act Sa € D such
that €(a) C pr and for all uw € T we have SuN L(a) # 0;
(13i) for every right unitary submonoid T of S there is a left congruence o on S such
that S/o € D, o C pr and for each u € T there is a v € S with vuo 1.

Proof. (i) = (ii) Let T be a right unitary submonoid. Then 7' = [1] where [1] is the
pr-class of the identity. By assumption, S/pr has a D-cover, which must be cyclic as S/ pr
is. There is therefore a cyclic S-act Sa € D and a co-essential S-morphism 6 : Sa — S/pr.
By co-essentiality we may assume that af = [1]. Since 6 is well defined we have ¢(a) C pr.
If w € T then
af = [1] = [u] = u[l] = u(ab) = (ua)0,

so that 0|gy, : Sua — S/pr is onto. By co-essentiality we have Sua = Sa and so a = vua
for some v € S. Hence Su N L(a) # 0.
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(i1) = (i) Let p be a left congruence and let 7' = [1], the p-class of the identity, so that
T is a right unitary submonoid. Notice that 7' x T" C p and so pr C p. Pick Sa satisfying
the given conditions. Since ¢(a) C pr C p we have 0 : Sa — S/p given by (ta)d = [t] is
a well defined onto S-morphism. If 0|g,, : Sya — S/p is onto, then we must have that

(xya)d = [ry] = [1] for some z € S. From u = zy € [1] = T we obtain v € S with
vu € L(a) and so vrya = a. This gives that Sa = Sya and 6 is co-essential as required.
(1) < (2ii) This follows from the remarks preceding the lemma. O

As an immediate consequence of Theorem 5.1 and Lemma 6.1 we have our first de-
scription of left ZX -perfect monoids for suitable X, and, in particular, of left ZPa-perfect
monoids.

Corollary 6.2. (1) Let X be a property of left S-acts such that ZX C ZLC. Then S is
left ZX -perfect if and only if S satisfies Condition (A) and for every right unitary
submonoid T of S there is a cyclic left S-act Sa € ZX such that ¢(a) C pr and for
all uw € T we have SuN L(a) # 0.

(19) Every cyclic left S-act has an TPa-cover if and only if for every right unitary
submonoid T of S there is an element s € S such that {(s) C pr and for allu € T
we have Sun L(s) # 0.
(17i) A monoid S is left TPa-perfect if and only if it satisfies Condition (A) and the
condition in (ii) above.
We note that under the conditions in (ii) of Corollary 6.2 above, we immediately have
that L(s) C T. Unfortunately, from this latter condition we cannot deduce that ¢(s) C pr.

This is essentially because L(s) x L(s) need not generate £(s) nor a suitable ¢(t) (compare
with the analogous situations in [10]).

Example 6.3. Let X be a set and let S be the null semigroup on X with an identity
adjoined (so that S = X U{1,0}). Let p be the Rees congruence associated with the ideal
S\ {1}. Pick any v € X. The map 6 : Sz — S/p given by (uz)f = [u] is an onto S-
morphism which is clearly co-essential. However, L(z) = 1 and the congruence generated
by L(z) x L(z) is not £(z) (nor indeed ¢(u) for any u € S such that there is a co-essential
S-morphism from Su onto S/p).

We now present a construction which will allow us to improve upon the description of
left ZX-perfect monoids in Corollary 6.2, in particular in the case where S is commutative.
Let T' be a submonoid of S. Let F' be the free left S-act on {x, : a € T}, let p be the
congruence on F' generated by H = {(x,,bxs) : a,b € T} and put F(T) = F/p.
Lemma 6.4. Let T' be a right unitary submonoid of S and let F(T) be constructed as
above. Then
(i) for any s,t € S and a,b € T we have [sz,] = [tzy] if and only if s = t,a = b or
there exist uy,...,u, € S and vy,...,V,,C1,d1,...,Cn,d, €T such that

S = u1cy, Urdy = UsCay ..., Upd, =1

and
a = vicy, v1d] = VaCa, ..., Upd, = b;
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(ii) if T is left reversible, then [sx,| = [txy] if and only if sh = tk and ah = bk for some

hkeT:
(iii) of T is right collapsible, then [sx,] = [txp] if and only if sw = tw for some w € T';
(iv) if T has a right zero z, then [sx,| = [txy] if and only if sz = tz.

Proof. (i) If s =t and a = b then clearly [sz,| = [tx}]. On the other hand, if uy,...,u, € S

and vy, ...,Upn,C1,dy, ..., Cp,dy, €T exist connecting s to t and a to b as given, then
[s20] = [ur1c1Z0,0,] = [1T0,] = [1d1Z0,0,] = [U2C2T050,] = - - = [UndnTy,a,] = [tzy)].
Conversely, if [sz,] = [tz}], then either sz, = txy, so that s =t and a = b, or there exists

a p-sequence connecting [sz,] to [tzp]. If the length of this sequence is 1, then

ST, = WY, wz = 1Ty
for some w € S and (y, z) € HUH~'. Without loss of generality suppose (i, 2) = (Zu, VTy)
for some u,v € T. Then s = wl, wv =t and a = ul,uv = b so the result is true with
n=1w=wu,u=7v,c =1and d; =v. Suppose for induction that sz, is connected to
txy by a p-sequence of length n, and the result is true for all shorter sequences; moreover,
we assume that a p-sequence of length m < n is replaced by a pair of sequences of length
m. Then

STy = WY, WZ = T'T,
for some w € S and (y,z) € HU H~! where rz,. is connected to tz, via a p-sequence of

length n — 1. From the above and our inductive hypothesis we have uo,...,u, € S and
Vo, ..., Un, Ca,da,...,Cpn,d, €T such that

T = UsCo, Usdy = U3C3 . .., Upd, =1
and
C = VCy, Vady = U3C3, ..., Upd, = b

and u; € S, vy,c1,d; € T with s = ujcq,u1dy = r, a = vicq,v1d; = ¢. The result is just a
matter of glueing the two pairs of sequences together.
(ii) If sh = tk for some h, k € T with ah = bk then

s=sl,sh=tk,tl =t and a = al, ah = bk, bl = b,

so that [sz,] = [tz] by (i).
Suppose now that T is left reversible and [sz,| = [tx,]. If s =t and a = b, take h = k = 1.

Otherwise there exist uq,...,u, € S and v1,...,v,,c1,d1,...,c,, d, €T such that
S = u1Cy, Urdy = UsCo, ..., Upd, =1

and
a = vic1, v1dy = UaCo, ..., Upd, = b.

If n = 1 then use right reversibility of T" to choose h,k € T with ¢c;h = dik, so that
sh = ujcth = uydik = tk and similarly ah = bk. If n > 1 we use induction to obtain
h,k,p,q € T with sh = uscok, ah = vocok, urdip = tq, vidip = bq. Now pick z, 2’ € T such
that kz = pz’ and we see that shz = tqz’,ahz = bgz’ as required.
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(iii) If 7" is right collapsible then it is certainly left reversible. If sw = tw, where w € T,

then choose 2/ € T with az’ = bz’ and then 2" € T with wz” = 22" = z say, to obtain
sz =tz and az = bz so that [sz,] = [tz}] by (ii).

Conversely, if [sz,] = [tzp] then we have in particular that sh = tk for some h,k € T
and so take z € T" with hz = kz to obtain sw = tw where now w = hz.

(iv) Follows directly from (iii). O

The above result can be used to obtain a description of left ZX-perfect monoids (for
suitable X), a little tighter than Corollary 6.2. For ease of notation, if s,¢,a and b are
connected as in (i) of Lemma 6.4, then we write (s,a) =r (t,b).

Theorem 6.5. Let X be a property of left S-acts such that ZX C ZLC. A monoid S is left
TZX -perfect if and only if it satisfies Condition (A) and for every right unitary submonoid
T of S, there is a cyclic left S-act Sa with property X and ¢ € T such that for any
(p,q) € L(a) we have (p,c) =7 (q,¢) and for all u € T we have SuN L(a) # .

Proof. 1f S is left ZX-perfect then it satisfies Condition (A) by Theorem 5.1. Let T be a
right unitary submonoid of S and consider F/(T'). By assumption, and the fact that locally
cyclic left S-acts are cyclic, it has an ZX-cover G = | J,.;Sa; where each Sa; has property
X. Let 6 : G — F(T) be co-essential and choose any i € I. Then a0 = [uz,] say, where
[z.] = (wa;)0 for some w € S and j € I. By co-essentiality ¢ = j and Swa; = Sa;; we may
therefore assume that a;0 = [z].

Write a = a;. If (p,q) € ¢(a), then p[z.] = ¢[z.] and so (p,c) =r (¢,¢) by Lemma 6.4.
Let uw € T. From (A) we have that Su™ = Su"*! for some n € N and with u" = zu"*! we

see that

L eun] = 2ulze],

[ze] = u"[xeyn] = 2zu
so that by co-essentiality of 6 we have that Sa = Szua, giving that a = vzua and
vzu € L(a), for some v,z € S.

The converse is clear from Corollary 6.2, since if (p, ¢) =7 (g, ¢), then certainly p prq. O

We now specialise to the case of commutative S, where we can make more satisfactory
progress. Where S is commutative, we drop the adjectives ‘left, right’, where appropriate.
The reader could compare our next result with [4, Proposition 1.7].

Lemma 6.6. Let S be commutative and let X be a property of left S-acts such that
ZX CIC. Then every strongly flat S-act which has a cover in X lies in TX.

Proof. Suppose first that S/p is strongly flat and cyclic. Let Sa be a cover with property
X and let 6 : Sa — S/p be a co-essential S-morphism with af = [1]. If (ua)f = (va)f then
[u] = [v] so that u[l] = v[1] and by Condition (E) we have uh = vh for some h € S with
[1] = h[1]. Hence O|spn, : Sha — S/p is onto, giving us that kha = a for some k € S. From
uhka = vhka we obtain ua = va, so that 6 is an S-isomorphism as required.

Now consider a strongly flat S-act A having an ZX cover. Write A as a disjoint union of
indecomposable strongly flat S-acts and let B be one of these indecomposable components.
By [12, Theorem 3.7}, B is locally cyclic. Clearly B has an ZX cover |J,.; Sa; where each
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Sa; has property X and the union is disjoint. By [4, Lemma 1.4], |I| = 1, so that B is
cyclic. The result follows. O

Example 7.1 demonstrates that Lemma 6.6 need not be true if S is not commutative.
We recall from [2] that S is left perfect if and only if every strongly flat left act is
projective. Our next result is analogous.

Theorem 6.7. Let S be commutative and let X be a property of S-acts such that ZX C ZC.
Then the following are equivalent:

(i) S is X -perfect;

(ii) every strongly flat S-act is in ZX;

(iii) S satisfies Condition (A) and for any unitary submonoid T, there exists a cyclic
S-act Sa with property X such that for any p,q € S, if pa = qa then pt = qt for some
t €T, and for any u € T we have SuN L(a) # 0.

Proof. (i) = (ii) This follows from Lemma 6.6.

(i1) = (i1i) Let a = (ay,as,...) be a sequence of elements of S and define F(a) to be
Fy/p, where Fy is the free S-act on {z; : © € N} and p is generated by {(x;, a;x;11) : i € N}.
From [2, Lemma 1] we have that F'(a) is strongly flat, hence in ZX" by assumption. It follows
that F(a) is cyclic. From [5, Lemma 1.2], as explicated in the ordered case in [3, Lemma
3.4], we deduce that S has Condition (A).

Suppose now that 7" is a unitary submonoid of S and let F'(T") be constructed as above.
We first claim that for any s,t € S and 0,0’ € T, we have [sxy] = [tzy] if and only
if sb’c = tbc for some ¢ € T. Indeed, if the latter condition holds, then with h = ¢
and k = bc we have sh = tk and bh = V'k, so that [sx;] = [tz}] holds by Lemma 6.4 (ii).
Conversely, if [sxp] = [txy] then by the same result, su = tv and bu = b'v for some u,v € T.
Then sb'u = tvb' = tbu as required.

We now show that F/p is strongly flat. If s,t € S and [uxy), [vey] € F/p with
sluxy] = tlvay], then from our proven claim we deduce sub'd = tvbd for some d € T.
Now [uzy| = [ubdapg] = ubdlzyyg) and [vey| = [vbdxyyg] = vbd[zwg), so that Con-
dition (P) holds and similarly, so does (E). Moreover, F'/p is locally cyclic, for given
[szp], [tzy] € F/p, we have [sxp] = sV [xpy] and [tay] = th[zyy]. Since Condition (A) holds,
we must have F'/p = S|x.| for some ¢ € T

Our assumption now gives that F'/p is isomorphic to some cyclic S-act Sa with property
X via an S-isomorphism 0 : Sa — F/p with a6 = [z].

Letu € T. Then [z.,] = w[z ] for some w € S, and af = [z.] = u[ze] = vwlz.] = (uwa)b
so that as € is an S-isomorphism, we have a = wua so that Sun L(a) # 0.

Finally, if pa = qa where p,q € S, then [pz.] = [gz.] so our claim gives that pcd = qcd
for some d € T, giving our result.

(14i) = (i) By Theorem 5.1 we need only show that every cyclic S-act has a (cyclic)
cover with property X.

Let p be a left congruence and let T' = [1], so that T is right unitary. Let Sa be the
S-act guaranteed by our hypothesis and define 6 : Sa — S/p by (ua)f = [u]. If ua = va,
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then by assumption, ut = vt for some ¢t € T and so

u=ulput =vtpvl =,
giving that € is well defined. Clearly 6 is an onto S-morphism. If k£ € S and 0|sx, : Ska — S/p
is onto, then we must have (hka)f = [1] for some h € S, that is, hk € T. By assump-

tion, whka = a for some w € S and it follows that Ska = Sa. Hence 0 is co-essential as
required. O

Remark 6.8. Theorem 6.7 can of course be applied to Fr and to Pr, and then refined to
produce existing results. The new applications of Theorem 6.7 are to ZPa and to ZC. In
the former case, the element a may of course be taken to be an element of S.

7. EXAMPLES

In this section we give a number of examples and counterexamples which we hope will be
of interest in their own right. We focus on ZPa-covers and left ZPa-perfect monoids, and
their relation to left perfect monoids. The first example is superceded by Example 7.13,
but contains a useful construction.

Example 7.1. Let ¥ = {xo, z1,22,...,} be an alphabet and let Q = X U {a}. If u € &7,
let i(u) be the highest z-index appearing in u, and define i(e) = 0 where € is the empty
word. Let ¢: X* — N and ¢: ¥* x ¥* — N be two injective maps having disjoint image
such that ¢(u) > i(u) and ¥(u,v) > i(u),i(v) for every u,v € ¥*. Let 7 be the congruence
on )* generated by the set

H = {(zyyua, a), (Uyup), V) : U, v € X} C QF x QF

Denote the monoid Q2*/7 by U. Then there is a strongly flat cyclic left U-act that has an
IPa-cover, but which does not lie in ZPa.

We justify the above via a series of lemmas.

Lemma 7.2. Let
U = WpaWy_1a . . . W1AWY, V = W, aW,, _1a. .. wiawy €

where wy, . .., Wy, Wy, ..., wh € X*. Then (u,v) € 7 if and only if n = m, (wy,wy) € T and
(wia, wia) € T for all 1 <i <mn.
As a consequence, if u,v € Q* such that (ua,va) € 7, then

ur = wru't and vr = wrV'T
where u', v € ¥*.

Proof. Note that the letters a appearing in any word partition it into subwords such that
elements of H can only be applied to the subwords. As a consequence we have that every
element of U can be uniquely written in the form

(wna)T - (Wp—1a)T - ...+ (W1a)T - WoT

where wy, ..., w, € X*. O
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Definition 7.3. We say that a word u € X* has Property (p) if for every factorisation
u = vx;w where 7 is not contained in the image of ¢, we have that v contains a letter x;
such that 7 > i and j is contained in the image of ¢.

Lemma 7.4. Let u,v € ¥* such that u has Property (p). Then if (u,v) € T or (ua,va) € T,
then v also has Property (p).

Proof. Observe that taking prefixes of a word, adding a as a suffix, or applying relations
from H, preserves (p). 0

Let M be the submonoid of U generated by {z¢7,x;7,..., }, denote by p the left con-
gruence generated by M x M, and let [w7] be the p-class of wr, where w € Q*. It is clear
from the definition of 7 that M is a (right) unitary submonoid of U, which implies that
ler] = M.

Lemma 7.5. The cyclic left U-act U/p is strongly flat.

Proof. Since p is generated by M x M, Lemma 5.7 tells us that it is enough to check that
M is right collapsible. For this let ur, v € M where u,v € X*. We have that x,,.,)7 € M,
(uxqp(uvv), VT yuw)) € H and consequently, ur - Ty(uw)T = VT * Ty(uw)T, as required. O

Lemma 7.6. The cyclic left U-act U/p is not in TPa.

Proof. We have that U/p € ZPa if and only if there exists s € U such that p = {(s).
Suppose that such an element s exists. Then s = (w,aw,_1a...wjawy)T for some n > 0
and wy, ..., wy € ¥*. If n > 1, then since the word z4(,,)wya has (p), but zow,a does not,
we have by Lemma 7.4 that (x¢(wn)wna, rowpa) € 7. However, by Lemma 7.2 this implies
that
(% () WnQWn—1 G . . . W1AW0, ToWnQWp—1a . . . W1 AW) & T,
that is,
(.Z‘d)(wn)T, SL’OT) ¢ K(S)

A similar argument holds if n = 0. Since Ty, )T, 20T € M we have (Ty(w,)T, ToT) € p, SO
p # ((s) for any s € U. d

Lemma 7.7. The cyclic left U-act U/p has an ITPa-cover.

Proof. We claim that U(ar) is an ZPa-cover of U/p. For this we have to check that
l(at) C p and that U(ur) N L(at) # 0 for every ur € [e7].
For the inclusion, let (ur,vr) € ¢(ar) where u,v € Q*. Thus (ua,va) € 7 which by
Lemma 7.2 implies that
ur = wt - u'T and v = w7 - V'T
where v/, v" € 3*. That is, (u'1,v'T) € p, so that
(ur,v7) = (wru'T, WwTV'T) € p,

which proves that ¢(at) C p.

Note that (zgwyu)r € U(ur) N L(at) for every u € X*, because (zywyua,a) € H.
Since [er] = M = {ur : u € ¥*}, this proves the lemma and ends the justification of
Example 7.1. O
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If every cyclic left S-act has an ZPa-cover, then by considering the trivial act, it is clear
that S has a minimal left ideal. To the converse, we can show the following.

Lemma 7.8. If S has the descending chain condition My on principal left ideals, then
every cyclic left S-act has a principal left ideal cover.

Proof. Let S/p be a cyclic left S-act. The natural S-morphism v, : S = Sa; — S/p is
onto, where a; = 1. Suppose we have constructed a sequence of elements aq,as,...,a, of
S such that Sa; D Sax O ... D Sa, and v,|s,, : Sa, = S/p is onto. If Sa, is a cover we
are done, but if not, there exists a,41 € S with Sa,41 C Sa, and v,|sa, , : Sani1 — S/p
onto. Since S has My, this process must stop after a finite number of steps, producing a
cover. Ul

Example 7.9. Let L be a left Baer-Levi semigroup, that is, L is left simple and left
cancellative with no idempotents, and let S = L'. Then S is left ZPa-perfect.

Proof. Clearly S has Condition (A) and My, so by Lemma 7.8 and Theorem 5.1 it is left
IPa-perfect. O

Isbell gives an example [5, page 106] of a left perfect monoid which does not have M.
In fact, his is one of the kind given below.

Example 7.10. Let S be a monoid with zero such that for any aj, as,... € S\ {1}, there
is an n € N such that ajas...a, = 0. Then S is left perfect.

Proof. 1t is clear from Lemma 2.2 (iii) that Condition (A) holds. If T" is a right unitary
submonoid, then either T" = {1}, or there is an a # 1 € T. By assumption, a" = 0 for
some n € N, so that 0 € T. Hence T satisfies Condition (D). O

We now present an example of a left ZPa-perfect monoid that is not left perfect, and
does not have M.

Example 7.11. Let L be a left Baer-Levi semigroup, and define the monoid M as in
Lemma 3.14. Then the monoid M is left ZPa-perfect, is not left perfect, and does not
have M;,.

Proof. Since L is left simple, by Lemma 3.14 M satisfies Condition (A) and does not have
M. Let p be a left congruence on M: we show that M/p has an ZPa-cover. We need
to find an element s € M such that £(s) C p such that Mun L(s) # 0 for all u € [1].
Note that if [1] = {1} then s = 1 satisfies these properties, and similarly, if p = M x M
(which happens if and only if 0 € [1]) then s = 0 does. So we can suppose that [1] # {1}
and p £ M x M. Let a = (i,7,5),b = (k,y,1) € [1]. Then a? ab € [1] also, because [1]
is a submonoid of M, and it follows that ¢ = j = k = [. As a consequence we have that
there exists i € N such that all non-identity elements of [1] are of the form (i,z,i). We
fix one such s = (i,2,i) € [1]. If (u,v) € £(s), then 1 p s implies that u p us = vs p v,
thus (u,v) € p, and we have that ¢(s) C p. Now let w € [1]; if w = 1 then clearly
lw € L(s). Otherwise, w = (i,y,4) for some y € L, and as L is left simple, x = zyx
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for some z € L. Hence (i, 2,7)(i,y,7)(¢,2,i) = (i,2,i) so with r = (7, z,7) we have that
rw € L(s) as required.

Finally we wish to show that M is not left perfect. First, we note that for any x € L we
have

cL' D2’ L' > 3L o L.
for if the sequence were to terminate, we would have n € N such that 2" R 2?" and as
certainly x £ 2?" (L being left simple), we would have that 2™ H 2" so that by Green’s
theorem, 2" H e for some e = €2, contradicting L being idempotent free. It is then easy to
see that
(1,z, )M > (1,2°,1)M D (1,2°, )M > ...,

so that M does not have Mg and hence is not left perfect. O

Remark 7.12. If we replace the Baer-Levi semigroup L in Example 7.11 by a group, then
from Lemma 3.14 the resulting monoid has Condition (A) but does not have M. An easy
calculation shows that it has Mg, so is left perfect.

We now show that the implication (i) = (ii) in Theorem 6.7 need not hold if S is not
commutative.

Example 7.13. Let
L={¢: N —= N: ¢ isone-one and im ¢ is infinite}

with composition of maps from right to left. Recall that L is an example of a Baer-Levi
semigroup, and hence left simple, left cancellative and without any idempotents. Let
S = L' = LU{Iy}. By Example 7.9, S is left ZPa-perfect. However, S has a strongly flat
cyclic left S-act that is not in Z'Pa.

Proof. Let N = |J;2, B; be a partition of N into infinite subsets, and for every 1 < i, let
A = U;iz B,
M; = {a € S : «a fixes every element of 4;},

and let M = J;2, M;. Note that My, Ms, ..., M are submonoids of S.

We first show that the submonoid M is right unitary and right collapsible.

To see that M is right unitary, let o, 8 € S such that 5, a8 € M. Then there exists an
1 such that 8, af € M;, that is, both § and af fix every element of A;. If x € A;, we have
a(z) = a(f(x)) = (af)(x) =z, so that o € M;. Thus M is indeed right unitary.

To see that M is right collapsible, let o, € M. Then there exists an ¢ such that
a, B € M;. Let v: N — N be such that 7 fixes all elements of A;;; (so that v € M;,1), and
maps N\ A;,; into B; = A; \ A;+1 injectively. Notice that the image of v is contained in
A;, so that v € § and ay = v = v, which proves that M is right collapsible.

Denote by p the left congruence generated by M x M. Lemma 5.7 and the above
argument imply that the cyclic left S-act S/p is strongly flat. In order to counter Theorem
6.7 we have to show that it is not contained in ZPa, that is, that p is not the left annihilator
congruence of any element of S.
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Let v € S and let x € N. Then there exists 0 < i such that y(z) € B;. Define a map
a such that it fixes all elements of A;,» and maps N\ A;;5 into By injectively. Then
B;N ima = (), so that « € L, and hence o € M;,» € M. Since p is generated by
M x M we conclude that («, In) € p. However, y(z) € B;, so y(z) € A2, and it follows
that a(y(z)) € Biy1 and hence that a(y(x)) # v(z). As a consequence oy # -, that is,
(cv, In) & £(7y), which shows that p # () and hence S/p cannot lie in ZPa. O
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