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ABSTRACT. The study of the free idempotent generated semigroup IG(E) over a biordered
set F began with the seminal work of Nambooripad in the 1970s and has seen a recent revival
with a number of new approaches, both geometric and combinatorial. Here we study IG(E)
in the case E is the biordered set of a wreath product G 7,, where G is a group and 7T,
is the full transformation monoid on n elements. This wreath product is isomorphic to the
endomorphism monoid of the free G-act End F,,(G) on n generators, and this provides us with
a convenient approach.

We say that the rank of an element of End F,,(G) is the minimal number of (free) generators
in its image. Let ¢ = 2 € End F,,(G). For rather straightforward reasons it is known that
if ranke = n — 1 (respectively, n), then the maximal subgroup of IG(E) containing ¢ is free
(respectively, trivial). We show that if ranke = r where 1 < r < n — 2, then the maximal
subgroup of IG(E) containing ¢ is isomorphic to that in End F,,(G) and hence to G1S,, where
S, is the symmetric group on r elements. We have previously shown this result in the case
r = 1; however, for higher rank, a more sophisticated approach is needed. Our current proof
subsumes the case r = 1 and thus provides another approach to showing that any group occurs
as the maximal subgroup of some IG(F). On the other hand, varying r again and taking G
to be trivial, we obtain an alternative proof of the recent result of Gray and Ruskuc for the
biordered set of idempotents of 7,.

1. INTRODUCTION

Let S be a semigroup and denote by (E) the subsemigroup of S generated by the set of
idempotents E = E(S) of S. If S = (FE), then we say that S is idempotent generated. The
significance of such semigroups was evident at an early stage: in 1966 Howie [15] showed
that every semigroup may be embedded into one that is idempotent generated. To do so,
he investigated the idempotent generated subsemigroups of transformation monoids, showing
in particular that for the full transformation monoid 7, on n generators (where n is finite),
the subsemigroup of singular transformations is idempotent generated. Erdos [8] proved a
corresponding ‘linearised’ result, showing that the multiplicative semigroup of singular square
matrices over a field is idempotent generated (see also [19]). Fountain and Lewin [10] subsumed
these results into the wider context of endomorphism monoids of independence algebras. We
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note here that sets and vector spaces over division rings are examples of independence algebras,
as are free (left) G-acts over a group G.

For any set of idempotents £ = FE(S) there is a free object IG(F) in the category of
semigroups that are generated by F, given by the presentation

IG(E) = (E:ef =, e, [ € B, {e, [} N {e], fe} # &),

where here E = {¢ : ¢ € E}. We say that IG(FE) is the free idempotent generated semigroup
over E. The relations in the presentation for IG(E) correspond to taking basic products in E,
that is, products between e, f € E where e and f are comparable under one of the quasi-orders
<; or < defined on S. In fact, E has an abstract characterisation as a biordered set, that
is, a partial algebra equipped with two quasi-orders satisfying certain axioms. Biordered sets
were introduced in 1979 by Nambooripad [21] in his seminal work on the structure of regular
semigroups, as was the notion of free idempotent generated semigroups IG(F). A celebrated
result of Easdown [6] shows every biordered set E occurs as E/(.S) for some semigroup S, hence
we lose nothing by assuming that our set of idempotents is of the form F(S) for a semigroup
S.

For any semigroup S and any idempotent e € E(S), there is a maximal subgroup of §
(that is, a subsemigroup that is a group) having identity e; standard semigroup theory, briefly
outlined in Section 2, tells us that this group is the equivalence class of e under Green’s relation
H, usually denoted by H,.. The study of maximal subgroups of IG(E) has a somewhat curious
history. It was thought from the 1970s that all such groups would be free (see, for example,
20, 22, 23]), but this conjecture was false. The first published example of a non-free group
arising in this context appeared in 2009 [1]; an unpublished example of McElwee from the
earlier part of that decade was announced by Easdown in 2011 [7]. Also, the paper [1] exhibited
a strong relationship between maximal subgroups of IG(F) and algebraic topology: namely, it
was shown that these groups are precisely fundamental groups of a complex naturally arising
from S (called the Graham-Houghton complex of S). The 2012 paper of Gray and Ruskuc
[13] showed that any group occurs as a maximal subgroup of some IG(£). Their approach is
to use existing machinery which affords presentations of maximal subgroups of semigroups,
itself developed by Ruskuc [24], refine this to give presentations of IG(E), and then, given a
group G, to carefully choose a biordered set E. Their techniques are significant and powerful,
and have other consequences in [13]; we use their presentation in this article. However, to
show that any group occurs as a maximal subgroup of IG(E), a simple approach suffices [12].
We also note here that any group occurs as IG(E) for some band, that is, a semigroup of
idempotents [5].

The approach of [12] is to consider the biordered set E of non-identity idempotents of a
wreath product G7,, or, equivalently, of the endomorphism monoid End F,,(G) of a free (left)
G-act on n generators {z1,...,x,} (see, for example, [18, Theorem 6.8]). It is known that for
a rank r idempotent ¢ € End F,,(G) we have H. = G S,. For a rank 1 idempotent ¢ € F,
the maximal subgroup Hz is isomorphic to H. and hence to G [12]. This followed a pattern
established in [2] and [14] showing (respectively) that the multiplicative group of non-zero
elements of any division ring () occurs as a maximal subgroup of a rank 1 idempotent in
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IG(E), where E is the biordered set of idempotents of M, (Q) for n > 3, and that any S,
occurs as a maximal subgroup of a rank r idempotent in IG(F'), where F' is the biordered set
of idempotents of a full transformation monoid 7, for some n > r 4+ 2. Another way of saying
this is that in both these cases, H; = H, for the idempotent in question.

The aim of this current article is to extend the results of both [12] and [14] to show that
for a rank r idempotent ¢ € End F,(G), with 1 < r < n — 2, we have that Hz is isomorphic
to H, and hence to G S,. We proceed as follows. In Section 2 we recall some basics of
Green’s relations on semigroups, and specific details concerning the structure of End F),(G).
In Section 3 we show how to use the generic presentation for maximal subgroups given in [13]
(restated here as Theorem 3.3) to obtain a presentation of Hz; once these technicalities are
in place we sketch the strategy employed in the rest of the paper, and work our way through
this in subsequent sections. By the end of Section 6 we are able to show that for 1 <r <n/3,
H: = H. (Theorem 6.3), a result corresponding to that in [4] for full linear monoids. To
proceed further, we need more sophisticated analysis of the generators of H-. Finally, in
Section 9, we make use of the presentation of G S, given in [17] to show that we have the
required result, namely that H= = H,, for any rank r with 1 <r <n—2 (Theorem 9.13). It is
worth remarking that if G is trivial, then F),(G) is essentially a set, so that End F,,(G) = T,.
We are therefore able to recover, via a rather different strategy, the main result of [14].

2. PRELIMINARIES: GREEN’S RELATIONS, AND
ENDOMORPHISM MONOIDS OF FREE G-ACTS

In the course of studying the general structural features of semigroups, amongst the most
basic tools are the five equivalence relations that capture the ideal structure of a given semi-
group S, called Green’s relations. We define for a,b € S:

aRbsaS' =bS", aLlLbe Sla=S" aJbe S'asS' =SS!,

where St denotes S with an identity element adjoined (unless S already has one); hence, these
three relations record when two elements of S generate the same right, left, and two-sided
principal ideals, respectively. Furthermore, we let H = R N L, while D = Ro L = Lo R is
the join of the equivalences R and L. As is well known, for finite semigroups we always have
D = J, while in general the inclusions H C R, L C D C J hold. The R-class of a is usually
denoted by R,, and in a similar fashion we use the notation L,, J,, H, and D,.

It is also well known that a single D-class consists either entirely of regular elements, or of
non-regular ones, see [16, Proposition 2.3.1]. If a € S is regular, that is, a = aba for some
b € S, then, for any such b, it is clear that ab,ba € E(S) and ab R a L ba. Therefore, regular
D-classes are precisely those containing idempotents, and for each idempotent e, the H-class
H. is a group with identity e. In fact, this is a maximal subgroup of the semigroup under
consideration and all maximal subgroups arise in this way.

There are natural orders on the set of R- and L-classes of S, respectively, defined by R, < R,
if and only if aS* C bS*, and L, < L, if and only if S'a C S'b. In turn, these orders induce
quasi-orders <r and <, on S (mentioned in the introduction), given by a <x b if and only
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if R, < Ry, and a < b if and only if L, < L;. Further details of Green’s relations and other
standard semigroup techniques may be found in [16].

Let S be a semigroup with £ = FE(S). The semigroup IG(F) defined in the introduction
has some pleasant properties, particularly with respect to Green’s relations. It follows from
the definition that the natural map ¢ : IG(E) — S, given by é¢ = e, is a morphism onto
S" = (F). Since any morphism preserves L-classes and R-classes, certainly so does ¢. In fact,
the structure of the regular D-classes of IG(F) is closely related to that in S, as the following
result, taken from [9, 21, 6, 2, 13], illustrates.

Proposition 2.1. Let S, 5", F = E(S),IG(E) and ¢ be as above, and let e € E.

(i) The restriction of ¢ to the set of idempotents of IG(E) is a bijection onto E (and an
isomorphism of biordered sets).
(ii) The morphism ¢ induces a bijection between the set of all R-classes (respectively L-
classes) in the D-class of € in IG(E) and the corresponding set in (E).
(iii) The restriction of ¢ to Hz is a morphism onto H..

We now turn our attention to F,(G) and the structure of its endomorphism monoid. The
following notational convention will be useful: for any u,v € N with v < v we will denote
{u,u+1,--- jv—1v}and {u+1,--- ,v—1} by [u,v] and (u,v), respectively.

Let G be a group, n € N,n > 3, and let F,,(G) = |J;_, Gz; be a rank n free left G-act. We
recall that, as a set, F},(G) consists of the set of formal symbols {gz; : g € G,7 € [1,n]}, and
we identify z; with 1z;, where 1 is the identity of G. For any g.h € G and 1 < 4,57 < n we
have that gz; = hz; if and only if g = h and 7 = j; the action of G is given by g(hx;) = (gh)z;.
Let End F,(G) denote the endomorphism monoid of F,,(G) (with composition left-to-right).
The image of o € End F,(G) being a (free) G-subact, we can define the rank of o to be the
rank of im a.

Since F,(G) is an independence algebra, a direct application of Corollary 4.6 [11] gives a
useful characterisation of Green’s relations on End F,(G).

Lemma 2.2. [11] For any «, 5 € End F,,(G), we have the following:
(i) ima =im B if and only if o L B;
(i) ker v = ker 3 if and only if a R B,
(iii) rank o = rank 3 if and only if D B if and only if o T p.

Each a € End F,(G) depends only on its action on the free generators {x; : i € [1,n]} and
it is therefore convenient to write

T = W5 Tjg

for j € [1,n]. This determines a function @ : [1,n] — [I,n] and an element ag =
(wg,...,we) € G™. It will frequently be convenient to express « as above as

st ) Ce Tp
o= [e] a [} :
Wi Tig Wylog ... W,Tny
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Theorem 2.3. [25, 18] The function
Y End F,(G) — G T, a— (ag,@)
s an isomorphism.

Let 1 <r <nand set D, = {a € End F,,(G) | rank o = r}, that is, D, is the D-class in
End F,(G) of any rank r element. We let I and A denote the set of R-classes and the set of
L-classes of D,., respectively. Thus, [ is in bijective correspondence with the set of kernels, and
A with the set of images, of rank r endomorphisms, respectively. It is convenient to assume [
1s the set of kernels of rank r endomorphisms, and that

A={(up,ug,...;u) 1 <up <ug<...<u,<n} C[l,n]".

Thus a € R; if and only if kera =7 and o € Ly, ... .4, if and only if

ima =Gz, UG, U...UGz,,.

For every: € I and A € A, we put H;, = R; N L, so that H;) is an H-class of D,.. Where H,)
is a subgroup, we denote its identity by €;5. It is notationally standard to use the same symbol
1 to denote a selected element from both I and A. Here welet 1 = ((x1,2;) : r+1 <i<n) €I,
that is, the congruence generated by {(x1,z;) : r+1 < i <n},and 1 = (1,2,...,7) € A.
Then H = Hy; is a group H-class in D,., with identity £1;.

A typical element of H looks like

o = T ) c. Ty Tpryq Tn
wiTig WSTag ... Wilrg W Tig ... WiTig
which in view of the following lemma we may abbreviate without further remark to:
Tt ) c.e Ty
o= « [ [ )
Wi Trag Wylog ... W,Try

where here we are regarding @ as an element of S,.

Lemma 2.4. The groups H and Aut F,.(G) are isomorphic under the map

T ) c. Ty Tpraq c. Tn -~ T ) . Ty
[P [P [P [P [P [P Qe [P
U)l T1a 'U}2 o .- U}T Tra wl Tia - - U)l Tla U)l Tla w2 Tow --- U}T Tra

Under this convention, the identity € = €17 of H becomes

<£L‘1 o xr)
€= :
Ty ... X

With the aim of specialising the presentation given in Theorem 3.3, we locate and distinguish
elements in H;y and H;; for each A € A and i € I. For any equivalence relation 7 on [1,n| with
r classes, we write 7 = {B], -+, Bl'} (that is, we identify 7 with the partition on [1, n] that it
induces). Let [],-- {7 be the minimum elements of B],--- , BT, respectively. Without loss of
generality we suppose that [f < --- <. Then [[ =1 and [T > j, for any j € [2,7]. Suppose
now that « € End F,(G) and rank a = r, that is, @ € D,. Then ker@ has r equivalence
classes. Where 7 = ker@ we simplify our notation by writing Bf*"® = B® and [} = [¢. If
there is no ambiguity over the choice of av we may simplify further to B; and [;.
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Lemma 2.5. Let o, € D,. Then keraw = ker 8 if and only if ker@ = ker 5 and for any
J € [1,r] there exists g; € G such that for any k € By = B; = Bf, we have wi = wfgj.

Moreover, we can take g; = (wf;)_lwg forjel,r].

Proof. If ker o = ker 3, then clearly ker@ = ker 3. Now for any j € [1,7] and k € B} = Bf,
we have that ((wf) 'z, )a = ((wi)'zp)a and so ((wp) 'ay,)B = ((wi) 'ax)B, giving that
we = wf((wlﬁj)_lwl";). We may thus take g; = (wfj)_lwf;.
Conversely, suppose that ker @ = ker 3 (and has blocks {B,--- , B,}) and for any j € [1,7]
there exists g; € G sastisfying the given condition. Let uzy, vzy € F,,(G). Then
(uzp)a = (vrg)a < h,k € B; for some j € [1,r] and uwy = vwy
& h,k € B; for some j € [1,7] and uwfgj = vw,fgj
& h,k € B for some j € [1,7] and ww] = vw) ’

& (uxy)p = (veg) B
so that ker o = ker 8 as required. U

For the following, we denote by P(n,r) the set of equivalence relations on [1,n] having r
classes. Of course, |P(n,r)| = S(n,r), where S(n,r) is a Stirling number of the second kind,
but we shall not need that fact here.

Corollary 2.6. The map T : I — G"" x P(n,r) given by
iT = ((wy,. .., Wy |, W g, W, Wy, ., wy), ker @)
where o € R; and wi} = ¢, for all j € [1,7], is a bijection.
Proof. For i € I choose € R; and then define a € End F,(G) by zpa = w,f(wlﬂj)*lxj,
where k € Bf. It is clear from Lemma 2.5 that kera = ker f and so a € R;. Now T =

wfj (wlfj )"'x; = x;, so that i is defined. An easy argument, again from Lemma 2.5, gives that

7 is well defined and one-one.

For € P(n,r) let v, : [1,n] — [L,7] be given by kv, = j where k € B}. Now for
((h1y- . hp—y), ) € G x P(n,r), define

a = ((1G7 hh R hl‘;—% IG7 hlg—b teey hlﬁ—ﬂ 1G7 hlf—r—f—l’ ceey hnfr)7 V,u)l/)_l'
It is clear that if « € R;, then iT = ((h1,...,hy—r), ). Thus 7 is a bijection as required. [J
Corollary 2.7. Let © be the set defined by
©={aeD xpa=uz;je€lr]}

Then © is a transversal of the H-classes of L.
Proof. Clearly, ima = Gx; U ---UGz,, for any a € O, and so that © is a subset of L.

Next, we show that for each i € I, |[H;; N©| = 1. Suppose that «, 8 € © and ker a = ker f.

Clearly ker@ = ker 8 and so B = B; = Bf for any j € [1,7], and by definition of O,

(s wlﬁj = 1lg. It is then clear from Lemma 2.5 that for any k& € B; we have

SN ¢ S
T = WRT; = WL T; = T3,
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so that a = .

It only remains to show that for any ¢ € I we have |H;; NO| # @. By Corollary 2.6, fori € I
we can find o € R; such that wj} = 1g for all j € [1,r]. Composing o with 3 € End F;,(G)
where ;58 = x; for all j € [1,r] and 8 = 2, else, we clearly have that a8 € H; N ©. [

For each i € I, we denote the unique element in H;; N © by r;. Notice that r; = ¢.
On the other hand, for A = (uy,us, ..., u,.) € A, we define

_ _(m om T T @y \ (T @2
A = Aug,ur) = = .
xul xu2 PP qu qul P Iul xul xuz P qu
It is easy to see that q) € Hiy, as kerqy = ((z1,2;) : v+ 1 <7 < n). In particular, we have
. B r1 Lo o Xy _ .
q1 - q(1727 ,T’) - :Cl :L.Q e xr - :

At this point we invoke once more a little standard semigroup theory. Let K be a group,
let J,I' be non-empty sets and let M = (m.;) be a I' x J matrix with entries from K U {0}
(where 0 is a new symbol), with the property that every row and column of M contains at
least one entry from K. A Rees matriz semigroup M°® = MO(K; J,T'; M) has underlying set

(Jx K xT')u{0}
with binary operation given by

(j7 a, >\)<k7 b7 M) = (j? am}\kba M) if Mk # 07

all other products being 0.
By [11, Theorem 4.9] if we put

DY = D, U {0}
and define a binary operation by

04~B_{ af ita,f € D, and rankaf =r

0 else

)l

then DY is a semigroup under - which is completely O-simple. We do not need to give the
specifics of what the latter property entails, since, by the Rees Theorem (see [16, Chapter I11]),
D? is isomorphic to M? = M°(H; I, A; P), where P = (py;) and py; = (qur;) if rank qur; = 7,
and is 0 else. Our choice of P will allow us at crucial points to modify the presentation given
in Theorem 3.3.

3. PRESENTATION OF MAXIMAL SUBGROUPS OF IG(FE)

Let E be a biordered set; from [6] we can assume that £ = E(S) for some semigroup S.
An E-square is a sequence (e, f, g, h,e) of elements of E with e R f L g R h L e. We draw

f

g} . The following results are folklore (cf. [12]).

such an F-square as Lez



8 IGOR DOLINKA, VICTORIA GOULD, AND DANDAN YANG

Lemma 3.1. The elements of an E-square [Z ﬂ form a rectangular band (within S) if and

only if one (equivalently, all) of the following four equalities holds: eqg = f, ge = h, fh =€ or
hf=g.

Lemma 3.2. Let M° = MO K; J,T; M) be a Rees matriz semigroup over a group K with
sandwich matriz M = (my;). For any j € J, X € I write e, for the idempotent (7, m;jl, ).

€ix  Cip .
RLE

] is a rectangular band if and only if m;ilm,\j =m
€in €;
ix Cin

Then an E-square [

An E-square (e, f, g, h,e) is singular if, in addition, there exists k € F such that either:

ek=e, fk=f ke=h,kf=gor
ke=e, kh=h,ek=f, hk=g.

We call a singular square for which the first condition holds an up-down singular square, and
that satisfying the second condition a left-right singular square.

For e € E we let H be the maximal subgroup of € in IG(E), (that is, H = Hg). We now
recall the recipe for obtaining a presentation for H obtained by Gray and Ruskuc [13]; for
further details, we refer the reader to that article.

We use J and I' to denote the set of R-classes and the set of L-classes, respectively, in the
D-class D = Dg of € in IG(E). In view of Proposition 2.1, J and I' also label the set of R-
classes and the set of L-classes, respectively, in the D-class D = D, of e in S. For every i € J
and X € T, let H;, and H;y denote, respectively, the H-class corresponding to the intersection
of the R-class indexed by i and the L-class indexed by X in IG(F), respectively S, so that
H;, and H;, are H-classes of D and D, respectively. Where H; (equivalently, H;y) contains
an idempotent, we denote it by €, (respectively, e;,). Without loss of generality we assume
leJNT andeé=e; € Hyy = H, so that e = ey; € Hy; = H. For each A € ', we abbreviate
H,) by Hy, and Hyy by Hy, and so, H; = H and H; = H.

Let hy be an element in E" such that Hihy, = H,, for each A € . The reader should be
aware that this is a point where we are most certainly abusing notation: whereas hy lies in
the free monoid on E, by writing H1hy = H, we mean that the image of h, under the natural
map that takes £ to (right translations in) the full transformation monoid on IG(FE) yields
Hihy, = H,. In fact, it follows from Proposition 2.1 that the action of any generator f € E
on an H-class contained in the R-class of € in IG(E) is equivalent to the action of f on the
corresponding H-class in the original semigroup S. Thus Hhy = Hy in IG(E) is equivalent to
the corresponding statement Hyhy = H), for S, where h, is the image of hy, under the natural
map to (F)'.

We say that {hy | A € I'} forms a Schreier system of representatives, if every prefix of hy
(including the empty word) is equal to some Eﬂ, where i € I'. Notice that the condition that
E,\Ew = Eu is equivalent to saying that E,\Ew lies in the Schreier system.

Define K = {(i,A\) € J xI': H;, is a group H-class}. Since D, is regular, for each i € J we
can find and fix an element w(i) € I" such that (i,w(i)) € K, so that w : J — I is a function.
Again for convenience we take w(1) = 1.
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Theorem 3.3. [13] The mazximal subgroup H of € in IG(E) is defined by the presentation
P=(F:%)

with generators:
F={fix: (i,\) € K}

and defining relations X:

(R1) fix= fip (M€= hy);

(R2) fiwey=1 (i€ J);

(R3) fix fiss = FonSom < {ei/\ ei“} is a singular square).

’ ’ €kA  Chy

For the remainder of this paper, E will denote E(End F,,(G)). In addition, for the sake
of notational convenience, we now observe the accepted convention of dropping the overline
notation for elements of E . In particular, idempotents of IG(E) carry the same notation as
those of End F,,(G); the context should hopefully prevent confusion.

In order to specialise the above presentation to E, our first step is to identify the singular
squares.

gl
§

Proof. The proof of necessity is standard. We only need to show the sufficiency. Let {~,d, v, £}
be a rectangular band so that vyv = §,vy = £,06 = v and &6 = v. Suppose im~vy = imé =
(Tm)men and imé = imv = (x,)pen, where |M| = |[N| = r. Put L = M U N. Define a
mapping 0 € End F,,(G) by

xl-@:{ x; ifi€eL;

Lemma 3.4. An E-square { i] is singular if and only if {v,0,v,&} is a rectangular band.

;v else.

Since im0 = (x;);cr, and for each | € L, 2,0 = x;, we see that 0 is an idempotent. It is also
clear that v0 = v and 66 = 9, as imy U imd C im 6.

Next, we will show 0y = ¢. If ¢ € M, then z,0y = z;vy = x; = ;€. If i € N, but i ¢ M, then
xi0y = vy = vovy = ;€. i & L, then 0y = xvy = ;€. So, 0y = €. For the remaining
equality 60 = v required in the definition of a singular square, observe that, for each ¢ € N,
;00 = x; = x;v. On the other hand if ¢« € M, then 2,00 = x;0 = x;yv = x;v, since 6 = yv by
assumption. For i ¢ L we have x;00 = z;v0 = x;v, since § Lv.

We have proved that v = v, 00 = 0, 6 = £ and 06 = v, so that B ﬂ is an up-down

singular square. U
The proof of Lemma 3.4 shows the following:
Corollary 3.5. An E-square is singular if and only if it is an up-down singular square.

The next corollary is immediate from Lemmas 3.2 and 3.4.
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Corollary 3.6. Let P = (py;) be the sandwich matriz of any completely 0-simple semigroup
isomorphic to DP. Then (R3) in Theorem 3.8 can be restated as:

(123) fi,_,\lfi,u = fk_ifku (p;z‘lpAk = P;z'lpuk’)-

We focus on the idempotent € = €1, of Section 2. For the presentation P = (F': ¥) for our
particular H = H, we must define a Schreier system of words {hy : A € A}. In this instance,
we can do so inductively, using the restriction of the lexicographic order on [1,n]" to A. Recall
that we are using the same notation for hy, € E* and its image under the natural morphism
to the set of right translations of IG(E) and of End F,,(G).

First, we define h(; ..,y = 1, the empty word in E*. Now let (u1,us,...,u,) € A with
(1,2,--,r) < (uy,us,...,u,), and assume for induction that h,, v, . ) has been defined for
all (v1,va,...,v,) < (u1,us,...,u,). Taking uy = 0 there must exist some j € [1,7] such that
u; —u;—1 > 1. Letting ¢ be largest such that u; —u;—; > 1 observe that

(ula ey Uj—1, Uj — 1aui+17 s 7u7“> < (u17u27 s 7u7")-

We now define

h(“l:"' ur) h(ﬂl,-" i1, — L1, ue) Xug, o ur) s

where
a( ) . :L"l PR 'T’U,l 'T'U,1+1 PR 'T’U,Q PR xu771+1 PR I‘UT qu+1 .. xn .
Ug, = ,u - )
T xul e xul xu2 e xu2 e qu . xur qu xur
notice that oy, ... u,) = €ius,...,u,) for some [ € 1.
Lemma 3.7. For all (ui,...,u,) € A we have eh(y, ) = Q(ui,....u)- Hence right translation

by hy, ... u,) induces a bijection from L ... ;y onto Ly,.... u,) in both End F,,(G) and IG(E).

i

Proof. We prove by induction on (ug,...,u,) that eheu,,.u) = Qui,...u). Clearly the state-
ment is true for (uy,...,u,) = (1,...,r). Suppose now result is true for all (vq,...,v,) <
(w1, ..., ), 50 that ey, . w,ywi—Luisr ) = Dlun, i g i— L, up) - SINCE Ty, = T, for
all j € {1,...,7} and z,,_1& = x,,, it follows that

5h(U17---,ur-) = gh(ulv'“7ui—17ui_17ui+17“'7ur)a(ulv---7ur) = Qur, - uim1,ui =L, ue) X eur) = Dur,.ur)

as required.
Since by definition, qu,,...u,) € L(ui,-u,), the result for End F,(G) follows from Green’s
Lemma (see, for example, [16, Chapter II}), and that for IG(E) by the comments in Section 3.
O

It is a consequence of Lemma 3.7 that {hy : A € A} forms the required Schreier system
for a presentation P for H. It remains to define the function w: we do so by setting w(i) =
(04,050 = (1,15, ..., %) for each ¢ € I. Note that for any ¢ € I we have q,;)r; = ¢,

Le. Pu(),i = €.

Definition 3.8. Let P = (F : 3) be the presentation of H as in Theorem 3.3, where w and
{hy : A € A} are given as above.
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Without loss of generality, we assume that H is the group with presentation P.

In later parts of this work we will be considering for a non-zero entry ¢ € P, which ¢ €
I,\ € A yield ¢ = py;. For this and other purposes it is convenient to define the notion of
district. For ¢ € I we say that r; lies in district (17", 15, -+ ,I%) (of course, 1 = [7*). Note that
lying in the same district induces a partition of ©. The next lemma follows immediately from
the definition of r;,i € I.

Lemma 3.9. For any i € I, if v; lies in district (1,1y,--- 1), then ls > s for all s € [1,r].
Moreover, for k € [1,n], if zxr; = ax;, then k > 1;, with k > l; if a # 1.

We pause to consider which elements of H can occur as an entry ¢ of P; with abuse of
terminology, we will say that ¢ € P. As indicated before Lemma 2.4, we can write ¢ € H as

d) - ( T ) e Ty )
alxlg a2$2$ e CLf,.Irg
where ¢ € S, and (ay,...,a,) € G'. If $ = py; € P, where A\ = (uq,...,u,) and r; lies in
district (I1,...,l,), then the u;s and lxs are constrained by

l=h<b<...<l, uy <us<...<u,
Lz <wjforall j € [1,7] with L5 < w; if a; # 1g,
and
Iy, = u; implies k = jé and a; = 15 for all k,j € [1,7].

Conveisely, if these constraints are satisfied by ly,..., 0, u1,...,u,. € [1,n] with respect to
some ¢ € S, and (ay,...,a,) € G", then it is easy to see that if £ € End F),(G) is defined by
21,6 = Tk, 1, § = agyg, k€ [1,7]

and
vi& =y for j & {li,.... L, ur,...,u},
then & = r; for some i € I, where r; lies in district (Iy,ly,- - ,1.). Clearly, py; = ¢.

Lemma 3.10. If |G| > 1 then every element of H occurs as an entry in P if and only if
2r <n. If |G| =1 then every element of H occurs as an entry in P if and only if 2r < n+ 1.

Proof. Suppose first that |G| > 1. If 2r < n, then given any a = ( = 2o )
1Tz Q2T ... Qrlyg

in H, we can take (ly,...,l,) = (1,2,...,r) and (uy,...,u,.) = (r+1,...,2r). Conversely,

if2r>n,then(x1 2o

, where a # 1, cannot lie in P, since we would need
ar, Typ_1 ... X1

lla = lr < Up.
. . al ) R 179
Consider now the case where |G| = 1. If 2r < n+1, then given any o = ( )

Tia T2a --- Tra
in H, let 1o =t and choose

(ly,..., L) =(1,...,r)and (uy,...,u,) = (t,r+1,...,2r —1).
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It follows from the discussion preceding the lemma that o € P. Conversely, if 2r > n 4 1,

T1 ) P .. . .
then ( ") cannot lie in P, since now we would require iz = I, < u;.
Ty Tr—1 X1

O

We are now in a position to outline the proof of our main theorem, Theorem 9.13, which
states that H is isomorphic to H, and hence to G S,.

We first claim that for any 7,5 € I and A\, p € A, if py; = p,;, then f; \ = f;,,. We verify our
claim via a series of steps. We first deal with the case where py; = ¢ and here show that f; 5
(and f;,) is the identity of H (Lemma 4.1). Next, we verify the claim in the case where 1 = A
(Lemma 5.1) or 4 = j (Lemma 5.3). We then show that for » < & — 1, this is sufficient (via
finite induction) to prove the claim holds in general (Lemma 6.1). However, a counterexample
shows that for larger r this strategy will fail.

To overcome the above problem, we begin by showing that if py; = p,; is what we call a
simple form, that is,

r1 T2 0 Tg-1 Tk  Tk+1 °° Thtm-1 Lk+m Lk+m+1 --- Tp
b
ry Ty - Xg—1 Tkl Tg42 - Thtm ary  Tkt+m+1 --- Tp

for some k > 1,m > 0,a € G, then f; » = f;,. We then introduce the notion of rising point
and verify by induction on the rising point, with the notion of simple form forming the basis
of our induction, that our claim holds. As a consequence of our claim we denote a generator

fix with px; = ¢ by fs.

For r < § it is easy to see that every element of H occurs as some py; and for r < 2
we have enough room for manoeuvre (the reader studying Sections 5 and 6 will come to an
understanding of what this means) to show that f,f, = f,s and it is then easy to see that
H = H (Theorem 6.3).

To deal with the general case of r < n —2 we face two problems. One is that for r > 7, not
every element of H occurs as some element of P and secondly, we need more sophisticated
techniques to show that the multiplication in H behaves as we would like. To this end we
show that H is generated by a restricted set of elements f; y, such that the corresponding py;
form a standard set of generators of H (regarded as a wreath product). We then check that
the corresponding identities to determine G S, are satisfied by these generators, and it is then
a short step to obtain our goal, namely, that H = H (Theorem 9.13). We note, however, that
even at this stage more care is required than, for example, in the corresponding situation for
T [14] or PT,, [3], since we cannot assume that G is finite. Indeed our particular choice of

Schreier system will be seen to be a useful tool.

4. IDENTITY GENERATORS

As stated at the end of Section 3, our first step is to show that if (i, A\) € K and py; = €, then
fix = 1. To this end we make use of our particular choice of Schreier system and function
w. The proof is by induction on A € A, where we recall that A is ordered lexicographically.

Lemma 4.1. For any (i,\) € K with py; = €, we have f; x = 13.
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Proof. If pa12,..i = €, that is, qq 2. ,T; = €, then by definition of q(5.... ») we have xr; =

x1,- -+, 2, r; = x,.. Hence r; lies in district (1,2,--- ,7), so that w(i) = (1,2, --- ,7). Condition
(R2) of the presentation P now gives that f; 1.2.. ) = fiwe = L7

Suppose now that Py, us,..u)e = € Where (1,2,...,7) < (u,u2, - ,u,). We make the
inductive assumption that for any (vi,va, -+ ,v,) < (up, U2, -, ur), if Py vy, v, = €, for

any | € I, then fi (v, v,...0,) = 157
With uy = 0, pick the largest number, say j, such that u; —u;—; > 1. By our choice of
Schreier words, we have

h(u1,U27'“7ur) - h(umm,'“7uj717uj—1,uj+1,“',ur)a(m,mf'wur)v

where Ay, ug, - uy) = El(ur,us,. o)
By definition,

= X . xul xu1+1 e xu2 e qu—l+1 N xur qu+1 e T
| — .
X X X9 To b b X, b

By choice of j we have u; 1 < u; —1 < uy so that z,;, 11, = z;, giving

Purug, w10 —1ujp1, ur)l = €-

Since
(Ul,UQ, U1, Uy — 1>Uj+1>"‘ ,Ur) < (Ul,u2, Crr Ui, Uy Uy, ,Ur)>

we call upon our inductive hypothesis to obtain fi (u; us, - uj_1u;~1uj41, u) = lg- On the
other hand, we have fi (u, up - u) = Ji, (1m0 uj—105—Luji1, ) PY (R1), and so we conclude
that fl,(ul,uz,---,ur) = lg.

Suppose that r; lies in district (1,02, ,1;). Since qu, uy, ,u)ti = €, We have x,,r; =
X, so that I, < wy by the definition of districts, for all £ € [1,7]. If [, = wu for all
k e [1,7], then fi(u, .w) = fiwe = lg by P. Otherwise, we let m be smallest such
that [, < wu,, and so (putting ug = lp = 0) we have uy_1 = L1 < lpn < Uy. Clearly
(g, U2, s U1, by Ums1, -+ u) € A and as up,1 <l < U, we have x;, r; = x,, by the
definition of r;. We thus have the matrix equality

( q(ulyu27"' ,’LLT)I‘Z q(“l»“?v"' 7ur)ri ) _ ( € ¢ )
q(ul,UZ,“' ,U77L717lm7um+17'“ 7“7‘)1‘1 q(u17u27"' ,U77L717lmyum+1:'“ :ur)ri € ¢

Remember that we have already proven f (u, us,...u,) = lz. Furthermore, as [,, < u,, by

assumption,
(Ul,UQ, oy Ump—1, lm7um+17 e 7“7“) < (u17u27 e 7u’m—17u’m7um+l7 T 7u7‘)7
so that induction gives that fi:(ulvu%"'7Um—1’lmvum+17'”7u'r) = fl:(ulvum'“7Um—1’lmvum+17'”7uT) =1

ﬁ.
From (R3) we deduce that f; s, ) = 17 and the proof is completed. O
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5. GENERATORS CORRESPONDING TO THE SAME COLUMNS OR ROWS, AND CONNECTIVITY

The first aim of this section is to show that if py;, = p,; # 0 where A = p or ¢ = j, then
fir = fju- We begin with the more straightforward case, where ¢ = j.

Lemma 5.1. [f Pxi = Pui, then fi,/\ = fi»#'

Proof. Let A = (uq,--- ,u,) and p = (v1,...,v,). By hypothesis we have that qy, ... u,)Ti =
d(v;, )i = ¥ € H. By definition of the qxs we have x,,r; = z,,r; for 1 < j < r, and
as rankr; = r it follows that u;,v; € B}/ where j — j’ is a bijection of [1,7]. We now
define o € End F,,(G) by setting z,,a = z; = z,;« for all j € [1,7] and zpa = 21 for all
pel,n\{u, - u,v, -0}

Clearly a € D, indeed o € L;. Since wg, = 1¢ for all m € [1, n] and min{u;, v;} <min{u.v;}
for 1 < j < k <r, we certainly have that o = r; for some [ € I. By our choice of r; we have

the matrix equality
( q(u1,~~~,ur)ri q(u1,~~- ,ur)rl ) _ < ¢ g >
Q(v1,~~ ,fur)ri Q(vl,m ,vr)rl ¢ g
Using Lemma 4.1 and (R3) of the presentation P, we obtain f; u, ... .u,) = fi,(u1,-,0,) a8 required.
O

We need more effort for the case py; = py;. For this purpose we introduce the following
notions of ‘bad” and ‘good’ elements.

For any i,j € I, suppose that r; and r; lie in districts (1, kq,--- , k) and (1,15, --- 1),
respectively. We call u € [1,n] a mutually bad element of r; with respect to r;, if there exist
m,s € [1,r] such that u = k,, = l5, but m # s; all other elements are said to be mutually
good with respect to r; and r;. We call u a bad element of r; with respect to r; because,
from the definition of districts, r; maps xy,, to ,,, and similarly, r; maps z;, to xs. Hence, if
u = k,, = l5 is bad, then it is impossible for us to find some r; to make both r; and r; ‘happy’
in the point x,,, that is, for ry (or, indeed, any other element of End F,,(G)) to agree with both
r; and r; on z,.

Notice that if m is the minimum subscript such that v = k,, is a bad element of r; with
respect to r; and k,, = [,, then s is also the minimum subscript such that [ is a bad element of
r; with respect to r;. For, if [y < [, is a bad element of r; with respect to r;, then by definition
we have some k,,,» such that [, = k,,» where s’ # m’. By the minimality of m, we have m’ > m
and so ly = k,y > k,, = ls, a contradiction. We also remark that since [y = k; = 1, the
maximum possible number of bad elements is r — 1.

Let us run a simple example. Let n = 7 and r = 4, and suppose r; lies in district (1, 3,4, 6)
and r; lies in district (1,4,6,7). By definition, z4r; = x5 and zer; = x4, while z4r; = 29 and
xer; = x3. Therefore, r; and r; differ on 24 and xg, so that we say 4 and 6 are bad elements
of r; with respect to r;.

Lemma 5.2. For any i,j € I, suppose that r; and r; lie in districts (1, kg, --- ,k,) and
(1,1y,--- 1), respectively. Let qu, ... u,)Ti = Q(uy, u)t; = ¥ € H. Suppose {1,15,--- 15} is a
set good elements of r; with respect to rj such that 1 <ly < - - <ly < ksp1 <--- <k,. Then
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there exists p € I such that vy, lies in district (1,1a,- -+ ls,kep1, - Kp), Qeuy,e un)Xp = ¥ and
Tt un) = fis(us oo un) - Further, if s = r then we can take p = j.

Proof. We begin by defining o € D, starting by setting zy, o = z,,, m € [1,r]. Now for
m € [1,s] we put z;, & = z,. Notice that for 1 < m < s, if k,y = [,, for m' € [1,7],
then by the goodness of {1,ly,---,ls} we have that m' = m. We now set x,, a = z,,1;
for m € [1,r]. Again, we need to check we are not violating well-definedness. Clearly we
need only check the case where u,, = [,y for some m’ € [1,s], since here we have already
defined z; ,a = x,y. We now use the fact that by our hypothesis, x,, r; = w,,,1r; for all
m € [1,7], so that x,,r; = x,,r; = 2 _,T; = Tyy. Finally, we set z,,a = z1, for all m €
(L, \ {1, 0, ls, ko, kpyug, -+ u b

We claim that a = r; for some t € . First, it is clear from the definition that a € D,., indeed,
a € L. We also have that for 1 <m < s, ;, o =z}, a = x,, and also for s+ 1 < m < r,
Ty, 0 = Tp,. We claim that for m € [1, s] we have {% = v, where v,, = min {k,,,[,,} and for
m € [s+ 1,n] we have {2 = k,,. It is clear that 1 = [{. Suppose that for m € [2,r]| we have
Ty, = ATy,. By definition, z,, r; = ax,, = x,,r;, so that k,,,l,,, < ug and our claim holds. It
is now clear that a = r; for some ¢ € I and lies in district (vy, -+, Vs, ksy1, - 5 ky).

Having constructed ry, it is immediate that

( A1k, k)i A(1ko, k)Tt ) _ ( € & )

Q(ul,u2,---,ur)ri q(ul,ug,m,u,«)rt w w ’

so that in view of Corollary 3.6 and (R3) we deduce that f; (u, us u) = fe(usus un)-
Notice now that if s = r then

( A(10z, )Tt A(Lle, 1)L > _ ( € ¢ >

s uzy ) Tt A un, )T v oY)

which leads to fi (u, us, ur) = fi(uius, up)s a0d 80 that f5 e, . ) = fi(us, u) @s required.
Without the assumption that s = r, we now define r, in a similar, but slightly more

straightforward way, to r;. Namely, we first define § € End F,,(G) by putting z;, 8 = z,

for m € [1,s], x4, 0 = xm for m € [s + 1,7], ,,,f = xy,,1; for m € [1,r] and 2,0 = x for

m e [Ln]\{L,l, -, ls, kst1, -, kpyur, -+ ,u, }. It is easy to check that 8 = r, where r,, lies

in district (1,1y, -+ ,ls, ksy1,- -+ , k). Moreover, we have

( A2, s skstr, k)Tt ALy s ko1, k) Ip > _ ( € ¢ >
- )
Qur,uz, ur) e A(ur,uz, - ur)Tp w w
which leads to fi (uus, ur) = fouruz, ur)> a0A 80 0 fp (s o ) = fi(ur o u) @s required. [

Lemma 5.3. If py; = Pyj, then fix = fja.

Proof. Suppose that r; and r; lie in districts (1, ko, - -+ , k) and (1,15, -+ , (), respectively. Let
A= (u1,...,uy) 50 that qu, . u )i = A(us, ) = ¥ € H say. We proceed by induction on
the number of mutually bad elements. If this is 0, then the result holds by Lemma 5.2. We
make the inductive assumption that if py; = py and r;,r; have £ — 1 bad elements, where
O<k<r-— 1, then fl,/\ = ft7)\.



16 IGOR DOLINKA, VICTORIA GOULD, AND DANDAN YANG

Suppose now that r; has k£ bad elements with respect to r;. Let s be the smallest subscript
such that [; is bad element of r; with respect to r;. Then there exists some m such that
ls = k,,. Note, m is also the smallest subscript such that k,, is bad, as we explained before.
Certainly s, m > 1; without loss of generality, assume s > m. Then 1 = [y,l5,--- ,l,_1 are all
good elements and 1 < lp < --- <y < kg < --- < k.. By Lemma 5.2, there exists p € I such
that r, lies in district (1,0, -+, ls—1, ks, -+, Kr), Qug e u)Tp = ¥ A0 [y 0y o ) = Si(ur,oe ur)-

We consider the sets B and C' of mutually bad elements of r; and r,, and of r; and r;,
respectively. Clearly B C {ls,ls11, -+ ,1.}. We have I, = k,, < ks, so that I ¢ B. On the
other hand if [, € B where s +1 < ¢ < r, then we must have [, = k, for some ¢’ > s
with ¢’ # ¢, so that [, € C. Thus |B| < |C]. Our inductive hypothesis now gives that
Tt ) = Fisur o up) and we deduce that fi .. w,) = fj (1, u) @S required. O

Definition 5.4. Let i, j € I and A, x € A such that py; = p,;. We say that (i, \), (4, 1) are
connected if there exist

i:io,il,...,im:jEIand)\:)\Q,)\l,...,Am:/LGA
such that for 0 <k <m we have pyi, = Papins: = Phsting:
The following picture illustrates that (i, \) = (ig, Ag) is connected to (j, 1) = (i, Am):
p)\il

Piiiy

p/\oio

pAmflimfl pAmflim,

p)\mim
Lemmas 5.1 and 5.3 now yield:

Corollary 5.5. Let i,5 € I and A\,;n € A be such that py;, = p,; where (i, ), (j, p) are
connected. Then f;x = fj,.-

6. THE RESULT FOR RESTRICTED 1

We are now in a position to finish the proof of our first main result, Theorem 6.3, in a
relatively straightforward way. Of course, in view of Theorem 9.13, it is not strictly necessary
to provide such a proof here. However, the techniques used will be useful in the remainder of
the paper.

Let a = py; € P and suppose that A = (uy, -+ ,u,) and r; lies in district (I1,--- ,[.). Define
UNi)={ly, - lpup, - ,u.} and S(A2) = [1,n] \ U.

Step D: moving /s down: Suppose that [; <t < [;1; and t € S(A, ). Define ry by

2, = Tjpq and xsr; = z,r; for s # .
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It is easy to see that ry € ©, py; = pax and ry, lies in district (I1,...,1;,t, 142, ...,1.). Clearly,
(7, A) is connected to (k, ).

Step U: moving us up: Suppose that u; <t < ujqq or u, < t, where t € S(\,4). Define r,,
by

T4y, = Ty, T; and .1y, = .1y for s # 1.
It is easy to see that r,, € O, py; = Pam and r,, lies in district (l3,l2,...,l.). Let p =
(w1, .. w1, U1, - .-, uy). Clearly, Pam = Pum S0 that (i, A) is connected to (m, p).

Step U’: moving us down: Suppose that ¢ < u;; and [t,u;41) C S(A, 7). Define r; by
Tyrp = Ty, T and x,ry, = x,r; for s # ¢

It is easy to see that r; € ©, py, = pn. Further, r; lies in district (Iy,1ls,...,[,) unless
ujr1 = lgiina, in which case [(jy1)s is replaced by t. Let u = (ur,...,uj,t, ujro,...,U,);
clearly, px; = p,u, so that (i, ) is connected to (, ).

Lemma 6.1. Suppose that n > 2r + 1. Let A = (uy,--- ,u,) € A, and i € I with py; € H.
Then (i, \) is connected to (j, ) for some j € I and p= (n—r+1,---,n). Consequently, if
Prxi = Puk for any i,k € I and \,v € A, then fix = fi..

Proof. Suppose that r; lies in district (I3, -- ,l.). For the purposes of this proof, let W(\,i) =
Sopi(ur — l); clearly W(A,i) takes greatest value T where (I1,...,l.) = (1,...,r) and
(ug,...,uy) = (n—r+1,...,n). We verify our claim by finite induction, with starting
point T', under the reverse of the usual ordering on N. We have remarked that our result holds
it W) =T.

Suppose now that W (\,i) < T and the result is true for all pairs (v,l) where W(\,1) <
Wiv,l) <T.

If u, < n, then as certainly [, < 51 < u,, we can apply Step U to show that (i, ) is
connected to (I,v) where v = (u,...,u,_1,u, + 1) and r; lies in district (I1,...,l.). Clearly
WA, i) < W(v,1).

Suppose that u, = n. We know that [; = 1, and by our hypothesis that 2r+1 < n, certainly
S(\,i) # @. If there exists t € S(A,7) with ¢t < [, for some w € [1,r], then choosing k with
lp <t < lgy1, we have by Step D that (i, A) is connected to (I, \), where r; lies in district
(I, oy by by lgsa, - .o, 1); clearly then W (A7) < W(A,l). On the other hand, if there exists
t € S(A, i) with u,, <t for some w € [1,r], then now choosing k € [1, 7] with u, <t < w41, we
use Step U to show that (i, \) is connected to (m,v) where v = (uy, ..., Up_1,t, Ups1, ..., Up),
and r,, lies in district (I4,...,[,). Again, W(\,i) < W(v,m).

The only other possibility is that S(A, i) C (I, u1), in which case, W(\,i) = T, a contradic-
tion. U

In view of Lemma 6.1 we may define, for r < ”T_l and ¢ € H, an element f, € H, where

fo = [ for some (any) (i, \) € K with py; = ¢.
Lemma 6.2. Let r <n/3. Then for any ¢,0 € H, we have fs9 = fofs and fy—1 = f(;l
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Proof. Since n > 3 and r < n/3 we deduce that 2r + 1 < n. Define r; by
xr; = x5, € [L,r]; xr; =x;_.¢0,j € [r+1,2r]; 1, = x;_9.0,7 € [2r + 1, 3r]
and
x;r; =x1,j € [3r+1,n].
Clearly, r; € © and r; lies in district (1,---,r). Next we define r; by
ity =2, € [L,r]; xjrp =200, € [r +1,2r]; 21, = 2 9., € [2r + 1, 3r];
and
x;r =x1,J € [3r+1,n].

Again, r; is well defined and lies in district (1,--- ,r). By considering the submatrix

( Aer+1,-20)T1  AQr+1,-- 20T ) _ ( ¢ ¢ )
Ader+1,-,30)r1 d2r+1,--,3r) T e 0 7
of P, Corollary 3.6 gives that f; 1. 2r) = fi,@r+1,- 3 J1,(-+1,--- 2r), Which in our new notation
says fg0 = fofs, as required.
Finally, since 17 = f. = fgp-1 = fo-1fs, we have fy,1 = f¢_1. 0

Theorem 6.3. Let r < n/3. Then H is isomorphic to H under 1, where fotp = o7t

Proof. We have that H = {fs : ¢ € H} by Lemma 6.2 and 1) is well defined, by Lemma 6.1.
By Lemma 3.10, 4 is onto and it is a homomorphism by Lemma 6.2. Now f41) = € means that
¢ = ¢, so that f; = 17 by Lemma 4.1. Consequently, 9 is an isomorphism as required. O

7. NON-IDENTITY GENERATORS WITH SIMPLE FORM

First we explain the motivation for this section. It follows from Section 6 that for any
r and n with n > 2r 4+ 1, all entries in the sandwich matrix P are connected. However,
this connectivity will fail for higher ranks. Hence, the aim here is to identify the connected
entries in P in the case of higher rank. It turns out that entries with simple form are always
connected. For the reason given in abstract, from now on we may assume that 1 <r <n — 2.
We run an easy example to explain the lack of connectivity for r > n/2.

Let n =4, r =2, and
o — X1 T2
\ axy bxry )’

with a,b # 1 € G. It is clear from Lemma 3.10 that there exists ¢ € I, A\ € A such that
a = py; € P, in fact we can take
< 1 T2 T3 Ty )
r, =
1 X9 ar; bxo
and A = (3,4).

How many copies of a occur in the sandwich matrix P? Suppose that oo = p,,; where r; lies
in district (I1,l2) and g = (uy,us). Since @ is the identity of Sy, and a,b # 15, we must have



FREE IDEMPOTENT GENERATED SEMIGROUPS 19

=1 <ly, uy < ug, Iy <uy,ly <ug and {ly,lo} N {uy,us} = @. Thus the only possibilities

are
(I1,02) = (1,2), (ug,uz) = (3,4) = A

and
(I1,1) = (1,3), (ug,uz) = (2,4) = p.

In the first case, & = py; and in the second, o = p,; where r; = ( Z axle Z) be42 )

Clearly then, py; = p,; € H but (4, ) is not connected to (j, ).

We know from Lemma 3.10, that in case r > n/2, not every element of H lies in P. However,
we are guaranteed that for » < n — 2 certainly all elements with simple form

o=

1 T2 0 Tg-1 Tk Tk+1 ° Thtm-1 Lk+m Lk+m41 --- Lp
)
Ty T2 0 Tg—1 T4l T2 - Tk+m aZli  Tk4+m4+1 --- Tp

where kK > 1,m > 0,a € G, lie in P. In particular, we can choose

r, = ( Ty T2 v Th-1 Tk Tkl 0 Thtm Thtm+l Thmt2 0 Trgl Trp2 00 Tp
Ty T2 cr Tg—1 Tk Tk4+1 - Tk4+m aZy Thtm+1 - Ty o I |

and p=(1,--- ,k—1,k+1,--- ,r+1) to give p,y = q,r; = ¢. We now proceed to show that

if pyi = ¢ # ¢, then (i, \) is connected to (j, ) for some j € I and hence to (I, ).

Lemma 7.1. Let ¢ # ¢ be as above and suppose that ¢ = py; where A = (uy,- -+ ,u,) and r;
lies in district (I,--- ,1.). Then (i, \) is connected to (j,u) for some j € I.

Proof. Notice that as ¢ = py;, we have x,, 7 = 3¢, so that z,,r; = rx41 if m > 0, and so
U > lg+1 > I by Lemma 3.9; or if m = 0 and a # 1q, 2,7 = axy so that u; > [, by Lemma
3.9 again. Further, from the constraints on (lj,--- 1) it follows that

Lh<ly<- o<l <l <uy.

We first ensure that (i, \) is connected to some (j,x) where K = (1,...,k — L ug, ..., u,),
by induction on (ly,--- ,l;—1) € [1,n]" under the lexicographic order.

If (L, ,lg—1) = (1,- -+ , k—1), then clearly (i, \) = (4, k). Suppose now that (I, ,lx_1) >
(1,--- ,k — 1) and the result is true for all (},---,l,_;) € [1,n]"” where (I}, -+ ,l,_;) <
(I, ,lk—1), namely, if p,y = ¢ with r; in district ({,--- , 1), then (I,7) is connected to some
(j7 Ii)'

By putting v = ({1, -+, lp_1,ug, - ,u,) we have p,; = py;. Since we have (I3, ,lx_1) >
(1,--- ,k —1), there must be a t € (I5,ls41) N S(v, 1) for some s € [0, k — 2|, where [y = 0. We
can use Step D to move l441 down to t, obtaining r, in district (ly,...,ls, ¢, ls42,...,(,) such

that p,; = pyp. Clearly (Iy,- -, ls,t, 512, -+, lg—1) < (l1,-- -, lk—1), so that by induction (p,v)
(and hence (i, \)) is connected to some (j, k).

We now proceed via induction on (uy, ..., u,) € [k+ 1,n]" under the lexicographic order to
show that (7, k) is connected to some ([, u) where p = (1,--- ,k—1,k+1,--- ;r+1). Clearly,
this is true for (ug,...,u,) =(k+1,--- ,r+1).
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Suppose that (ug,...,u,) > (k+1,...,r + 1), and the result is true for all (vg,--- ,v,) €
[k +1,n]" where (vg,---,v,) < (u1,--- ,u,). Then we define r,, by:

oty = 21,1 € [1,k], 2y, Ty = x4,r5,1 € [k, 7] and z,r,, = 2 for all other z,.

It is easy to see that r, € O, r,, lies in district (1,2, , &, ug, * , Uktm—1, Uktmits > Upr)
and py; = Pxw- There must be a ¢t < uy, for some h € [k, r] with [¢t,u) C S(k,w). By Step U,
we have that (w, k) is connected to (v, p) where p = (1,..., k=1, ug, ..., Up_1,t, Upi1,- -, Up).
Clearly, (tg, ..., Up—1,t,Ups1y. oy Up) < (U, Up—1, Up, Upy1, -+ 5 Ur), SO that by induction
(v, p) is connected to (I, ). The proof is completed. O

The following corollary is immediate from Lemma 4.1, Corollary 5.5 and Lemma 7.1.

Corollary 7.2. Let py; = pui have simple form. Then fix = fi..

8. NON-IDENTITY GENERATORS WITH ARBITRARY FORM

Our aim here is to prove that forany o € H,if4,j € I and \, p € A withpy, = p,; = € H,
then f;» = f;,. This property of a is called consistency. Notice that Corollary 7.2 tells us
that all elements with simple form are consistent.

Before we explain the strategy in this section, we run the following example by the reader,
which shows that if |G| > 1, we cannot immediately separate an element o € H into a product,
B~ or 75, where 3 is essentially an element of S,, and 7 is the identity in S,.

Let1g;«£a,n:6andr:4,sothatoz:(I1 T2 x4)€H. By putting
T3 Ao T4 X1

. Ty T2 I3 T4 Ty Tg
ri_(l’l To X3 Ax2 T4 Il)
and A = (3,4,5,6), clearly we have py; = a.

Next we argue that ¢ € I and A\ € A are unique such that py;, = a. Let pu = (uy, ug, us, uy)
and r; lie in district (I1,ls,03,{4) with p,; = «; we show that r; = r; and ¢ = A. Since
Z,,rj = i = x3 by assumption, we must have l; < Iy < l3 < uy, so that uy > 3. As
3 < u < up < uz < uy < n =06, wehave up = (uy,us,us,uy) = (3,4,5,6) = A, and
(l1,12) = (1,2). Clearly then r; =r;.

Certainly a = v = B with

. Tr1 T2 T3 T4 ﬁ . I T2 T3 T4
v= T3 Ty x4 x1 ) \ 1 axe w3 x4 )
Our question is, can we find a sub-matrix of P with one of the following forms:
T o fa )
e p g 7y

Clearly, here the answer is in the negative, as it is easy to see from the definition r; that there
does not exist v € A with p,; = 3 or p,; = 7.
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Now it is time for us to explain our trick of how to split an arbitrary element « in H into
a product of elements with simple form (defined in the previous section), and moreover, how
this splitting matches the products of generators f;  in H.

Our main strategy is as follows. We introduce a notion of ‘rising point” of &« € H. Now,
given py; = «, we decompose « as a product a = fv depending only on « such that ~ is
an element with simple form, 8 = p,; has a lower rising point than «, v = p,; for some
Jj €I, € A such that our presentation gives f; x = fi .fjx-

Definition 8.1. Let a € H. We say that « has rising point r + 1 if x,,a = ax, for some
m € [1,7] and a # 1¢g; otherwise, the rising point is k < r if there exists a sequence
1<i<p<jo<--<jop<r
with
T = Ty Tj1 X = L1, Tjo O = Tfey2, " , X4, Q&= Tp
and such that if [ € [1,r] with 2,0 = axy_1, then if | < i we must have a # 1.

It is easy to see that the only element with rising point 1 is the identity of H, and elements
with rising point 2 have either of the following two forms:

(i)a:( R xT),Wherea#lg;

ary To - Ty

.. ry To9 -+ TXp—1 X Tky1 - T
(il) o = * " |, where k > 2.
o T3 --- T ary Tg+1 - Ty

Note that both of the above two forms are the so called simple forms; however, elements
with simple form can certainly have rising point greater than 2, indeed, it can be r + 1. From
Lemma 4.1 and Corollary 7.2 we immediately deduce:

Corollary 8.2. Let a € H have rising point 1 or 2. Then « is consistent.

Next, we will see how to decompose an element with a rising point at least 3 into a product
of an element with a lower rising point and an element with simple form.

Lemma 8.3. Let « € H have rising point k > 3. Then a can be expressed as a product of
some 3 € H with rising point no more than k — 1 and some v € H with simple form.

Proof. Case (0) By definition of rising point, if £ = r + 1, then we have x,,a = az, for some
a # 1g and m € [1,r]. We define

- Ty T2 - Tp—a Ly
T= 1 To -+ Tpr_1 Ay
and 8 by x,,8 = z, and for other j € [1,r|, x;5 = z;a. Clearly, a = v, v is a simple form,
and [ has rising point no greater than r.
On the other hand, if £ < r there exists a sequence
I<i<jp<jo - <jrx<T

with
T,00 = Tk, l’jl(l/ = ZL‘k+1,ZL‘j2O[ = T2, ,IL‘jT_kO[ = Ty
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such that if [ € [1,r] with ;a0 = axy_4, then if [ < i we must have a # 1. We proceed by
considering the following cases:
Case (i) If | < i, so that a # 1¢, then define

- Ty Tz rr Tg—2 Tg—1 Tk - Ty
xry Tz rr Tg—2 aTg—1 T -~ Ty

and put 8 = ay~!. It is easy to check that z;8 = zjay™ = x5, and 2,8 = z,a, for other
pellr]
Case (i1) If i <1 < j;, then define

= ry T2 r Tk-2 Tk-1 Ty Tiy1 - Ty
Ty X o Tg—2 Tk ATg—1 Tkl Ty

and again, we put 8 = ay~!. By easy calculation we have

T =xp_1, 018 = T, 05, 0 = Tpgr, -+ T, B =X

and for other p € [1,7], 2,0 = z,a.
Case (i) If j._p < I, then define

. ry xTo -+ Tg—2 Tg—1 T Tgy1 - Tp-1 Ty
Ty T2 -0 Tg—2 Tk Tkl Tkt2 - Ty ATE—1

and again, we define 8 = ay~!. It is easy to see that

T = Tp_1, leﬁ = Tk, 33;'25 = Th41, """ a%,kﬁ =T,_1, 0P = x,
and for other p € [1,7], ,0 = z,a.
Case () If j, <1 < jy41 for some u € [1,7 — k — 1], then define
_f *T1 X2 - T2 Tk—1 T 0 Thtu-1 Tktu LTktutl -~ Ty
ry T2 - Tp—2 T T4 - Thtu  OTk—1 Th4ut+1 - Ty

and again, we put 3 = ay~!. Then we have

T = g1, 05, = Tky -+, T, B = Thyu—1, 0B = Thus Tjp 1 B = Thut 15+ -5 Tj_ B = Tp
and for other p € [1,7], 2,0 = z,a.

In each of Cases (i) — (iv) it is clear that v has simple form, a = vy and ( has a rising
point no more than k£ — 1. The proof is completed. O

Note that in each of Cases (ii) — (iv) of Lemma 8.3, that is, where i < [, we have z,5 = z,a
for all p < 1.

Lemma 8.4. Let o, 3,7y € H with a = [~ and (3,7 consistent. Suppose that whenever

a = py;, we can find (t, ), (j, 1) € K with B = prxe,y = Puj and fix = fiufir. Then o is
consistent.

Proof. Let a, 3, satisty the hypotheses of the lemma. If @ = p); = pyj, then by assumption

we can find (2, A), (7, ), (¢, N), (7', ') € K with = pae = Py, 7 = Ppg = Puryts [in = Finlin
and fj x = fj [ x. The result now follows from the consistency of 3 and ~. O
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Proposition 8.5. Every o € P is consistent. Further, if a = py; then f; is equal in Htoa
product fi, n, -+ fi, ., Where Py, 1S an element with simple form, t € [1, k].

Proof. We proceed by induction on the rising point of a. If « has rising point 1 or 2, and
Pai = «, then the result is true by Corollary 8.2 and the comments preceding it. Suppose for
induction that the rising point of a is £ > 3, and the result is true for all 5 € H with rising
point strictly less than &k and all f; , € F' where p,; = (.

We proceed on a case by case basis, using v and 3 as defined in Lemma 8.3. Since ~ has
simple form, it is consistent by Corollary 7.2 and as (8 has rising point strictly less than k,
is consistent by our inductive hypothesis.

Suppose that o = py; where A = (uy, ..., u,) and r; lies in district (I1,...,1).

Case (0) If k = r + 1, then we have x,,a = ax, for some a # 1g. We now define r; by
Ty, Tt = T, and z,r, = z,rj, for other s € [1,n]. As z,, r; = ax,, it is easy to see that r, € ©.
Notice that I,y < I, = lya < up,. Then by setting p = (1,1, -+ , l,_1, u,) we have

(P,\t p/\j>:(6 04)
Put Puj e 7
and our presentation gives f;\ = fj [t
We now suppose that k& < r. By definition of rising point there exists a sequence
I<i<pn<jge - <Jgrk<r

such that
TiQt = Tp, Tjy O = Ty, Tjy O = Thy2, "+, Tj, 00 = Ty
such that if [ € [1,7] with ;o0 = axg_1, then if | < ¢ we must have a # 1¢.
We consider the following cases:

Case (i) If | < i we define r; by z,,r: = x,_; and for other p € [1,n], x,r; = x,r;. As by
assumption x,,r; = rjo0 = axy_1, clearly r, € ©. Then by putting

n = (17127' o ,lk_g,Ul,Ui,Ujl,' o aujr_k)
( Pxt Pxj > _ ( p o« )
Put Ppuj € 7

Case (i1) If i <1 < j; we define ry by

we have

which implies f;x = fj.fer

xprs = x,r; for p < u;, y,,rs = 0 for i <w <r and z,ry = 27 for all other v € [1,n].
We must argue that ry € ©. Note that from the comment following Lemma 8.3, for any v < ¢
we have that

Ty, Ts = Ty, Tj = Ty = Tp[53,

so that in particular, rank ry = r. Further,

Ty, Ts = xzﬁ = Th—1, Ty T's = ZL'Z/B = karujl rs = xﬁﬁ = Tk+1, - - - 7$UjT rs = xj,«_kﬂ = Tr

—k
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so that
(Tugs Ty Ty 3 Ty, )Ts = (Tpe1, They *+ T).
Thus for any v # {i, 1, j1,  jri}s TusTs = 28 € (21, , Tk o).
As xy,r; =, wehave 1 =1 <ly < -+ <lp—1 <l < u,. Let h be the largest number with
l=h <l < o <lpoy <lp <lpyr <+ <lgp—1)4n < ;.
Clearly here we have h € [0,r — k + 1]. Now we claim that ry; € © and lies in district

(11, ly, - ,l(k71)+h, Ujp s Ujp gy 7ujr—k)'

To simplify our notation we put

(Zla l2> e 7l(k71)+h7 Ugp, 5 ujh+17 T 7ujr,k) = (Zla 22yt Bk=1)4hs Rk+hy " ZT‘)?

where jo = [. Clearly, by the definition of r,, we have z, ry = z, for all v € [1,r]. Hence,
to show ry € O, by the definition we only need to argue that for any m € [1,n] and b € G,
TyTs = bxy implies m > z;.

Suppose that ¢t € [1, (k — 1) + h], so that z; = [; < u;. If m < z;, then from the definition of
r, we have z,,ry = x,,r;, so that z,,r; = bx;. Asr; € © and z;,r; = x4, we have 2, = [, <m,
a contradiction, and we deduce that m > z;.

Suppose now that ¢ € [k + h,r]. Note that m > w;; because, if m < u;, then x,,r; = z,,,r, =
br;. Asr; € ©, 1, <m < u; and sot < (k—1)+h, a contradiction. Thus m > ;. Now, by the
definition of r, we know there is exactly one possibility that x,,r; = bx; with ¢t € [k + h, 7],
that is, x,,rs = x4, so that m = 2, and b = 1. Thus ry € O.

Now set

n= (17l27”' 7lk727ui7ul7u.7’1’.” 7ujT*k)
( Pxs Pxj ) — ( B @ )
Pns  Pnj e v )’

Case (i) If j._j < [, then, defining r, as in Case (i), a similar argument gives that ry € ©

then we have

which implies fjx = fjnfsa

and z,,rs = x,0 for all v € [1,7] (of course here (3 is defined differently to that given in Case
(i1) and the district of rs will have a different appearance.). Moreover, by setting

0= (Ll Loy wi, wjy, -+, g, W)

(PAS ij):(B 04)
Pss  Psj e 7

Case (i) If j, <1 < ju41 for some u € [1,7 — k — 1], then again by defining ry as in Case (ii),
we have ry € © and x,,rs = z,0 for all v € [1,r]. Take

we have

implying f;x = fjs/fs -

0= (1al2a T 7lk—2>uiauj17ujuvulvuju+17'" 7ujr—k)'
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( Pxs Pij ) _ ( B« )
Pos poj e 7
so that f;x = fiofs

In each of the cases above, the consistency of « follows from Lemma 8.4. The result now

Then we have

follows by induction. O

In view of Lemma 8.4, we can now denote all generators f; » with py;, = a by f,, where
(i,\) € K.

9. THE MAIN THEOREM

Our eventual aim is to show that H is isomorphic to H and hence to the wreath product
G S,. With this in mind, given the knowledge we have gathered concerning the generators
fix, we first specialise the general presentation given in Theorem 3.3 to our specific situation.

We will say that for ¢, ¢, 1,0 € P the quadruple (¢, @, 1, ) is singular if ¢~' = o' and
we can find 4,5 € I, A\, up € A with ¢ = Py, ¢ = Pui, ¥ = Py; and 0 = p,;.

In the sequel, we denote the free group on a set X by X. For convenience, we use, for
example, the same symbol f; y for an element of F and H. We hope that the context will
prevent ambiguities from arising.

Lemma 9.1. Let I be the group given by the presentation Q = (S : I') with generators:

S={fs: ¢€P}

and with the defining relations I :

(P1) qulfw = fw_lfg where (¢, p, 1, 0) is singular;
(P2) f-=1.

Then H is isomorphic to H.

Proof. From Theorem 3.3, we know that H is given by the presentation P = (F : X), where
F={fir: (i,\) € K} and ¥ is the set of relations as defined in (R1) - (R3), and where the
function w and the Schreier system {hy : A € A} are fixed as in Section 3. Note that (R3) is
reformulated in Corollary 3.6. o

By freeness of the generators we may define a morphism 6 : F—H by fi\@ = fs, where
¢ = pxi- We show that ¥ C ker 8. It is clear from (P1) that relations of the form (R3) lie in
ker 6.

Suppose first that hye;, = h, in E*. Then ehye;, = €h, in End F,(G), so that from
Lemma 3.7, qx&i, = q,. Hence q,r; = qxg;ur; = qur;, so that p,; = py and f;,0 = f;,0.
Now suppose that ¢ € I; we have remarked that p,;) = €, so that f; ,;)0 = f. = 16.

We have shown that X C ker@ and so there exists a morphism 0 : H — H such that
fma = f¢> where ¢ = py;.

Conversely, we define a map v : S H by fs1 = fix, where ¢ = py;. By Lemma 8.4, ¢
is well defined. Since f.19 = f; » where p); = €, we have f.9 = 157 by Lemma 4.1. Clearly
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relations (P1) lie in ker 1), so that I' C ker1p. Consequently, there is a morphism ) : H — H
such that f¢$ = fix, where ¢ = py;.
It is clear that 01 and 1 0 are, respectively, the identity maps on the generators of H and
H, respectively. It follows immediately that they are mutually inverse isomorphisms. U
We now recall the presentation of G S, obtained by Lavers [17]. In fact, we translate his
presentation to one for our group H.
We begin by defining the following elements of H: for a € G and for 1 < ¢ < r we put

L= O . T L2 = N7 S
a,r — y
Ty - Tj—1 AT Tig1 vt Ty

for 1 <k <r—1weput

(kk+1--k+m)= ( T T Te ot Tegmet Tham Thamgl cct I )
ry - Tg—1 Tk41 - Thtm Tk Tktm4+1 Ly
and we denote (k k + 1) by 7.
It is clear that G" has presentation V = (Z : II), with generators

Z =Ata;:i€[1l,r],a e G}

and defining relations II consisting of (W4) and (W5) below. Using a standard presentation
for S,, we employ the recipe of [17] to obtain:

Lemma 9.2. The group H has a presentation U = (Y : T), with generators
Y =Arite;: 1<i<r—1,1<j<racG}

and defining relations Y :
Wl nm=1,1<i<r—1;
2) Ty =TT, jE1# 0 # j;
3) TiTis1Ti = Tix1TiTiv1, 1 <1 <1 —2;
4) Laithj = tpjlai, &, b€ G and 1 <i#j <r;
5) ta,itbi = tabi, 1 <1 <r anda,be G;
6) taiTj = Tjlag, 1 <i# j,j+1<r;
7) LaiTi = Titait1, 1L <i<r—1anda € G.

S====%

Now we turn to our maximal subgroup H. From Lemma 9.1, we know that H is isomorphic
to H, and it follows from the definition of the isomorphism and Proposition 8.5 that

H = (f, : « has simple form).

We now simplify our generators further. For ease in the remainder of the paper, it is convenient
to use the following convention: for u,v € [1,r+2] with u < v, we denote by —(u, v) the r-tuple

(L~ ,u—Lu+1,...;,0—Lv+1,-- r+2).
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Lemma 9.3. Consider the element

o — ry 0 Tk-1 Tk 0 Tktm—1 LThtm Lk+m+l 0 Ty
Ty 0 Thk—1 Thk+1 " LTk4m alr  Thktm+1 - Tp

in simple form, where m > 1. Then fo, = f,fs in ﬁ, where B = tgpym and v = (k k +
L k+m).

Proof. Define r; by
1 0 Tp—1 Tk Tky1  Thim  Thtm+l Thkim42 Lh4m43 "0 Trg2 Tpgp3 00 Tp
Ty - Tg—1 Tk Tg41 - Tktm Ty axy Trtm+1 - Ty . 0 I
Let A\=—(k,k+m+1) and p = —(k,k +m+2). Then py, = @ and p,; = 7.
Next we define r, by
ry 0 Tk Tk Tgg1 Titm  Thtmt+1 LTk+m+2 LThim+3 ° Try2 Tpg3
Ty Tg—1 Tk—1 Tk - Tk+m—1  LTk+m ATp4+m  LTk4m4+1 " Ty T

Then pys = B and p,s = €. Notice that o = v and

( Pxs Pxt ) _ ( B« )
p,us p,ut e
which implies f, = f, f3. O

Lemma 9.4. Leta = (k k+1 --- k+m), wherem > 1. Then fo = fr fr, = frpp, 0 H.

Proof. We proceed by induction on m: clearly the result is true for m = 1. Assume now that
m>2 a=(kk+1- - k+m)and that fi 1 .. kys) = frofrors = frop. . for any s < m.
It is easy to check that o = 74,17, Where

y=(kk+1 - k+m—1).
Now we define r; by
( T1  Thtm—1 Thktm Thtm+1l Thim42 Thtm43 7 Try2 Trg3 00 Ty )
Ty o Thtm—1 Tk Thtm Tk Thtm+l - °° Ty T T
Let A = =(k,k +m) and = —(k,k +m +2). Then py; = a and p,; = 7.
Next we define r; by

Ty - Tg—1 Tk Tg41 - Ti+m  Thtm+1 LTk+m+2 Thk4m+3 - Try2 Tpg3
Ty - Tg—1 T T o Thym—-1  Tk+m  Th4m—-1 Thtm41 - Ty T

Then py = Trym—1 and p; = €. Thus we have

( Px Py ) _ ( Tk+m—-1 )
Pui Puj € Y

implying fo = fyfr..,._, and so fo = fr, -+ [, ,, using our inductive hypothesis applied to
V- =
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It follows from Lemmas 9.3 and 9.4 that
H={frfu,: 1<i<r=1,1<j<r1,0€G).

Now it is time for us to find a series of relations satisfied by these generators. These correspond
to those in Lemma 9.2, with the exception of a twist in (W5).

Lemma 9.5. For alli € [1,r —1], f,.fr, =1, and so f' = f..
Proof. Notice that 7,7; = €. First we define rg by

X1 0 Ti—1 Ty X1 T2 Ti43 Ligda - Tpy2 Tp43 0 Ip
Ty ot Ti-1 Lp Xy Tyl Ly T2 ot Ty ry 0 I

Let A==(4,1+ 1) and p = —(7,7 + 3). Then p); = 7; and p,s = €.
Next, we define r; by

Ty - X1 Ty Tipl Tip2 L4300 Tp42 Tpy3 oo Tp
Ty 0 Tie1 Ty Tigr o T Tigr ot Ty Ty I

(PAS th):<ﬂ'€>

p,us put € T

which implies f;, f., = 1. O
Lemma 9.6. For any j £ 1 # 1 # j we have fr, fr. = [, [~

Then py = € and p,y = 7, SO

Proof. Without loss of generality, suppose that ¢ > j and ¢ # j + 1. First, define r; by

Ty - Tjy1 Tj42 Ti43 Xy Tigl T2 Ti43 Tipa 0 Tpy2 Tp43 00 Tp
Ty 0 Tiv1 Tj Tiv2 -1 T Tkl Li Tipe 0 Iy N |

Note that if ¢ = j + 2 then the section from j + 3 to i is empty. Let A = —(j,7 4+ 1) and
= —(j,i+ 3), so that py, = 7;7; and p,; = 7;. Next define r, by

Ty - Xy Tjp1 Tjy2 Ty Tip1 Tip2 Tig3 Tipds " Tpg2 Tpg3 00 Ty
ry -0 T Tj Tigr o &i-1 Ly Tipl Ly Ty ot Dp ry 0 I

Then pys = 7; and p,s = €. Thus we have

( Pxs Pit ) _ ( Ti TiT; )
pus p,ut € Tj
lmplylng fTiTj = ijfTi'

To complete the proof, we define r; by

Ty - Tjp1 Tij42 Tie3 o X Tipl T2 Tig3 Tipa 0 Tpg2 Tpg3 0 Ip
Iy -0 Tijyr Tj T2 o Ti-l T4 Ti  Titl Tiy2 - Ty ry I

Then py = 7. Put n = =(j + 2,9+ 1). Then p,; = ¢ and p,y = 74, so

(p/\l Pxt ) _ < T T;T )
pnl pnt £ T;

which implies f, -, = f f-,, and hence f.. fr. = f-, f+,. d
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Lemma 9.7. For any i € [1,r — 2] we have fr, fr., fr. = frops frfriir-

Proof. Let p=1,1mi = (i i+ 1i+2)sothat p> = (1i+2i+1).
First, we show that f, = f,f,. For this purpose, we define r; by

Ty - Xy Tyl T2 Ti43 Lita Tigs 0 Tp42 Trg3 c 0 T
Ty - Xy Tip1 Tig2 Ty Tigl Tig3 vt Ty ry 0 I

Let A = —(i,i+1) and u = —(i,i+4), so that py; = (i i+2i4+1) = p? and p,; = (i i+1i+2) = p.
Next we define r; by

Ty 0 Ty Tip1 Tit2 Tip3 Tipd Tits 0 Tpg2 Tpg3 t 0 T
Ty 0 Ty Xy Tyl Tiyz Ly T3 ot Xy ry - 21

Then py = (¢ i+ 17+ 2) = p and p,; = €, so here we have
(p/\l ij>_(p P2>
Pyt Ppuj € p
Hence we have f, = f,f,.

Secondly, we show that f, = f, fr.,,. Note that 7,,1p = 7. Now we define r, by

Ty - i1 T Tigl Ti42 Ti43 Tiga Tiys ~° Tpy2 Tpy3 00 Tp
Ty 0 X1 Ty Tipl Tig2 Xy Tig2 T3 Ly ry -

Let v = =(i,i+2) and £ = (4,7 +4). Then p,s =7, and pgs = p = (i ¢ + 1 i +2). Next, define
| by

Ty - Ti—1 Ty Tigl Ti42 Ti43 Tita Tigs " Tpg2 Tpy3 0 Ty
Ty 0 XTi1 Ty Xy Tipr Tip2 Tipl Lig3 Ty Ty 0 I

Then p,; = 7i41 and pg = €, and so we have

( Put Pus ) _ ( Ti+1 Ti )
Pet Pes e p
implying fr, = fpfr,1, 80 fp = fr.[r,, by Lemma 9.5.
Finally, we show that f,2 = f,.,, f. Note that p?> = (i i +2 i + 1) = 1;7341. Define r,, by
< Ty -0 Ti-1 Ty Tipl Tip2 Ti43 Litd Lits 0 T2 Tpy3 0 Tp )
Ty oo Tl T Tl Tiv2 Ti LTipl Tig3 o Xy Ty 0 I

Let 7 = —(i,i+ 1) and § = —(i + 1,7 + 3). Then p,, = p? and ps, = ;1. Define r, by

Ty 0 Ti-1 Ty Tip1r Tip2 Tip3 Lipd 0 Tpg2 Tpg3 tcr T
Ty - T Ty Tipl Ty Xy Tig2 v Ty rr -

Then p,, = 7; and ps, = €, SO we have
(pTU p’ru>:(7—i ,02>
Psv  Psu € Ti+1
Hence f, = f;,., fr,. We now calculate:

fTifTiJrlfTi = fﬁfﬂ2 = fﬁfpfp = fTifTifTinTz'fTiﬂ = sz‘+1sz‘fTi+1>
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the final step using Lemma 9.5. O

We warn the reader that the relation we find below is a twist on that in (W5).
Lemma 9.8. For alli € [1,7], a,b € G, f,, fi,; = fip,.s and so f 1 =f, ., .
Proof. Define r; by

Ty - X1 Ty Tipl Tig2 Ti43 0 Tpg2 Teg3 o Tp
Ty o wiy x bry abry wip - Ly ry - I '

Let A= (4,7 +2) and p = —(4,7 + 1), then py; = t; and p,; = tapi- Next, we define r; by

Ty o Ti1 Ty Tipr Tiy2 T3 0 Ty Tpg3 o Tp
Ty 0 Ti-1 Ty Xy ar; Liy1 -t Ty r 0 I

Then py; = € and py = 4, S0 we have

< Put Puj ) _ ( lai laby )

Px Pyj € by

implying f,.,, = fu,.;fia.- t
Lemma 9.9. For all i # j and a,b € G we have f,, . f.,. = fu,;fia:-

Proof. Without loss of generality, suppose that ¢ > j. Recall that ¢q;ts; = t4jta;. First define

r; by

Ty 0 Tj1 Ty T T2 o Tipl Tid2 Tig3 o Teg2 Teg3 0 Ty
Ty o Tj-1 Ty b.CCj Tjy1 = T ar; Tiy1 - T T R |

Let A==(j,i+ 1) and g = —(j,i +2). Then px = taite; and put = tp,;-
Next, we define r, by

Ty - Tj1 Ty Tijp1 Tiy2 o Tip1l Tip2 L4300 Tp42 Tpg3 0 Tp
X1 - IL‘j_l CCj l’j I’j+1 ZT; ax; Tivr1 - Ty I I

Then pys = tq; and p,s = €. Thus we have

Pxs Pxt . lai  la,ilb,j
Pus Put € Ly,j

implying fbb,j fLa,i = fba,iLb,j'

Define r; by
Ty -0 Tj1 Ty Tijp1 Tijp2 o Tipl Lip2 T3 0 Tp42 e300 T
Ty o mier oy bry xiy oo @m Ti  Tipr o Ty Ty 21

Then py = ;. On the other hand, by putting n = —(j + 1,7 + 1) we have p,; = ¢ and

Pt = lai, and so
Px Px \ [ Wi lbjlag
Py Pyt € la,i

which implies f,, ... = f...f,,, and hence f,, . f,, = [, fi..- =
Lemma 9.10. For any i,j with i # j,j+ 1 and a € G we have f,,, fr, = [+ fi..-
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Proof. Suppose that ¢ < j; the proof for j < ¢ is entirely similar. Then

B 2 = R e S A A e R e
a77’ J - *
Ty 0 L1 AT Tjpr v Tjo1 Tjpr Ty Ty o Ty
Define r; by
Ty - X1 Ty Tigl Tig2 Tj  Tjy1 Tj42 Tj43 Tjpa - Tpy2 Tpg3
Ty - Ty Ty GT; Tip1 v Ti-1 o Ty T4l Ty Tyjp Ty a1

Let A==(4,j+1)and p=—(i+ 1,5+ 1). Then py; = t;7; and p,: = 7;.
Define r, by

Ty - X1 Ty Tigl Ty v Tj  Tjy1 Tj42 Tj43 Tjpa 0 Ty Tpg3
ry o Ti—1 Ty ATy Tig1l vt Tj—q € Z; Tjyr1 Tjqg2 - Ty T

Then pys = tq; and p,s = €. Hence we have

( Pxs Pt ) _ ( laji  la,iTj )
Pus Put € Tj
lmplylng fLa7iTj - fT]’fba’i'

Next we define n = = (4, j + 3), so that p,; = tq;. Now let r; be

Ty - X1 Ty Tigl Ty v Tj  Tjy1 Tj42 Tj43 Tjpa 0 Ty Tpg3
Ty v Ti-1 Ty Ty Tkl o Ti-1 Ty Tipr Ty T2 o Ty 21

( Px Px ) _ ( Tj Tilay )
Pyt Pyt € la,i

lmplylng ijL(m = fLa,iija S0 ij fLa,i = fLayi.ij-

Then py = 7; and p,; = ¢, so

Lemma 9.11. For any i € [1,7 — 1] and a € G we have f,,, fr, = fr.[iii1-
Proof. We have

_f T1 o Ty T Tiv1 Tiy2 - Ty | _
ba,iTy = = Tila,i+1-
Ty - Ti—1 ATi41 Ty Tipo 0t Ty
Define r; by
Ty - Tiw Ty Tipl LTi2  Lig3 Lipd 0 Tegp2 Tpg3 o0t Tp
Ty - X1 Ty Tip1l OTi41 Ty Ty vt Ty ry - 1

Define A = =(¢,i + 1) and p = —(i,7 + 2). Then py, = ¢,,;7; and p,; = 7;. Define ry by

Ty - X1 Ty T4l Tig2 T3 0 Tpg2 Tpg3 0 Tp
Ty v Tyl Xy Xy ATy Tigr vt Ty Ty I

Then pys = tq; and p,s = €, so we have

( Pxs Pxt ) _ ( lai laiTi )
p,us p,ut € Ti

S0 fLa’iTi = fTifLayi'
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Now put n = —(i + 1,7+ 3), so that p,; = t4,i41. Define r; by

Ty 0 Tie1 T Tigl LTiy2 Li43 Tiva 00 Try2 L3 0 Tn
Ly s Tl XLy Ty Tipr Li T2 0 Iy {5 IS |

Then py = 7; and p,; = €, so
( Px DPx ) _ ( Ti Tilai+1 )
Pyt Pyt € lai+l
so that fr., .., = fieisJr- Thus fr fi.. = [ Jr and so f,, . fr. = fr [ia.y» Dearing in mind
Lemmas 9.5 and 9.8. U

We denote by €2 all the following relations we have obtained so far on the set of generators

T={frfu, 1<i<r-1,1<j<racG}

of H:

(T1) frfr =1,1<i<r—1.

(TQ)f fTJ ngfTiv]il% 7&]

(T3) frifrisfri = Friafrifr, L<i<r—2.

(T4) fruifun, = Fro; frasr @b € Gand 1 <ij <r.
(T'5) Joifiwi = i 1 <1 <randa,beG.

(T6) fipifr; = frifro 1<i# 5,5 +1<T,

(T7) fooifri = frifrnsnrs 1 <i<r—1landac€G.

We now have all the ingredients in place to prove the following.

Proposition 9.12. The group H with a presentation @ = (S : T') of Lemma 9.1 is isomorphic
to the presentation U = (Y : T) of H given in Lemma 9.2, so that H = H.

Proof. We define a map 6 : Y 0 by
71'9 - f;l(: fn)a La,je = .fL;lJ(: fLa_1,]-)

where 1 <1 <r—1, 1 <j<r,a€ G. Now we claim that T C ker 8. Clearly, the relations
corresponding to (W1) — (W4) and (W6) and (W) lie in ker 8. Moreover, considering (W5)
(La,its,i)0 = 14,i01,0 = fm L,” fL -1 be 1, be_la_lﬂ. = fL(ab)_l’i = Lab,i0

so that T C ker @, and hence there exists a well defined morphism 0 : H — " given by
T,E:f;il and Lad’a:f;lj, where 1 <i<r—1,1<j<ra€d.

Conversely, we define 1 : S — H by fsp = ¢~'. We show that I' C kerep. Clearly,
fep = 71 = e = 14p. Suppose that (¢, p,1,0) is singular, giving ¢pp ! = o~!. Then

(f5 fo) = (fop) T fop = 0~ =o' = (fu) " fob = (f fo)¥

so I' C kerp. Thus there exists a well defined morphism 1) : H—H given by f¢a = ¢ L

Then
70 = [ = (fr) ' =7
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and

La,ie ¢ = f;i"p - (fLa,i’Qb)_l = lgi
hence @ 1) is the identity mapping, and so @ is one-one. Since T is a set of generators for ﬁ,
it is clear that @ is onto, and so

IR
|
It

H H=~=GQs,.

O

We can now state the main theorem of this paper.

Theorem 9.13. Let End F,(G) be the endomorphism monoid of a free G-act F,(G) on n
generators, where n € N and n > 3, let E be the biordered set of idempotents of End F,,(G),
and let IG(E) be the free idempotent generated semigroup over E.

For any idempotent ¢ € E with rank r, where 1 < r < n — 2, the mazimal subgroup H of

IG(E) containing € is isomorphic to the mazimal subgroup H of End F,,(G) containing € and
hence to GUS,.

Note that if ¢ is an idempotent with rank n, that is, the identity map, then H is the trivial
group, since it is generated (in IG(E)) by idempotents of the same rank. On the other hand,
if the rank of € is n — 1, then H is the free group as there are no non-trivial singular squares
in the D-class of € in End F,(G).

Finally, if G is trivial, then End F),(G) is essentially 7, so we deduce the following result
from [14].

Corollary 9.14. [14] Let n € N with n > 3 and let IG(FE) be the free idempotent generated
semigroup over the biordered set E of idempotents of T,.

For any idempotent € € E with rank r, where 1 < r < n — 2, the maximal subgroup H of
IG(F) containing € is isomorphic to the mazximal subgroup H of T, containing €, and hence

to S,.
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