Endomorphisms of the random graph

Martyn Quick

York Semigroup Seminar
7th March 2018
This is joint work with:

- Bob Gray (UEA)
- Jay McPhee (formerly St Andrews)
- James Mitchell (St Andrews)
- Igor Dolinka (Novi Sad)

All graphs considered are **countable simple** graphs: No multiple edges and no loops.
The random graph R

[Arises in model theory]

Start with vertices: v_1, v_2, \ldots.

For each pair of vertices, toss a coin:

If H the vertices are joined; if T the vertices are not joined by an edge.

With probability 1, the resulting graph, the **random graph** R, is **existentially closed**:

If A and B are disjoint finite sets of vertices, there exists some vertex v that is joined to all the vertices in A and to none of the vertices in B.

This property uniquely characterises R.

A back-and-forth argument shows that any two countable graphs satisfying the condition are isomorphic.
More properties of the random graph

\(R \) is homogeneous:

Every isomorphism \(\phi : \Gamma_1 \to \Gamma_2 \) between finite subgraphs of \(R \) can be extended to an automorphism \(\hat{\phi} \) of \(R \).

\(R \) is the Fraïssé limit of the finite graphs

The class \(C \) of finite graphs satisfy the hereditary property, joint embedding property and amalgamation property. Fraïssé’s Theorem says \(C \) has a Fraïssé limit. This is the random graph \(R : \ \text{age}(R) = C \).

Theorem (Truss, 1985)

The automorphism group of \(R \) is simple.
Construction of the random graph

If \(\Gamma = (V, E) \) is any countable graph, enumerate the finite subsets of \(V \) as \((A_i)_{i \in \mathbb{N}}\). Define \(G(\Gamma) \) to be the graph with vertices

\[
V \cup \{ v_i \mid i \in \mathbb{N} \},
\]

edges \(E \) plus new edges joining each \(v_i \) to each vertex in \(A_i \) for all \(i \in \mathbb{N} \). Then

- \(\Gamma \) is a subgraph of \(G(\Gamma) \),
- given two disjoint finite subsets \(A \) and \(B \) of \(V \), there exists some \(v \) joined to every vertex of \(A \) and to none of the vertices in \(B \) (namely \(v_i \) when \(A = A_i \)).

Now define \(\Gamma_0 = \Gamma \) and \(\Gamma_{n+1} = G(\Gamma_n) \) for each \(n \).

Observation

\(\Gamma_\infty = G^\infty(\Gamma) = \lim_{n \to \infty} \Gamma_n = \bigcup_{n=0}^\infty \Gamma_n \) is isomorphic to the random graph \(R \).
Green’s relations on $M = \text{End } R$

\[
f \mathcal{L} g \quad \text{when } Mf = Mg \quad \text{(R sim.)}
\]

\[
\mathcal{H} = \mathcal{L} \cap \mathcal{R}
\]

\[
\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}
\]

- **Maximal subgroups** of $\text{End } R$ are the \mathcal{H}-classes of idempotents $(f^2 = f)$.
- **Regular** \mathcal{D}-classes are those that contain group \mathcal{H}-classes.
- If f is an idempotent, then $f|_{\text{im } f} = \text{id}$ and

\[
H_f \cong \text{Aut(\text{im } f)}.
\]

Indeed, if $g \in \text{Aut(\text{im } f)}$, then $fg \in \text{End } R$ satisfies

\[
(fg^{-1})(fg) = f, \quad (fg)f = fg, \quad (fg)(fg^{-1}) = f, \quad f(fg) = fg
\]

so $fg \mathcal{H} f$. The isomorphism is $fg \leftrightarrow g$.
Idempotents in $\text{End } R$

Upshot: Need to understand the idempotent endomorphisms f of R.

Note that since R is existentially closed, it is also algebraically closed:

a.c.: If A is any finite set of vertices, there exists some vertex v joined to all vertices in A.

This is inherited by images: $\text{im } f$ is algebraically closed. Conversely, if Γ is a.c., we can extend the identity map to a homomorphism $G^\infty(\Gamma) \to \Gamma$.

Theorem (Bonato–Delić, 2000)

There is an idempotent endomorphism f of R with $\text{im } f \cong \Gamma$ if and only if Γ is a.c.
Uncountably many idempotent endomorphisms with given image

Suppose $\Gamma_0 = \Gamma$ is a.c. \hspace{1cm} $\Gamma_{n+1} = \mathcal{G}(\Gamma_n)$.
Assume we’ve constructed $f_n : \Gamma_n \to \Gamma$ with $f_n|_{\Gamma} = \text{id}$.

In Γ_{n+1} have vertices v_i corresponding to finite $A_i \subseteq V(\Gamma_n)$.

Extend f_n as follows:

- Assume images of v_1, v_2, \ldots, v_k have already been specified; i.e.,
 have defined f_{n+1} on the subgraph induced by $V \cup \{v_1, v_2, \ldots, v_k\}$.
- Γ is a.c. $\Rightarrow \exists w$ adjacent to every vertex of
 $(A_{k+1} \cup \{v_1, \ldots, v_k\})f_{n+1}$.
- Extend: Define $v_{k+1} \mapsto w$.

There are infinitely many choices for w. (Need only more than one!)

\textbf{Conclusion:} 2^{\aleph_0} extensions to $\Gamma_{\infty} \cong \mathbb{R}$.
Let Γ be any countable graph and $S \subseteq \{2, 3, 4, \ldots\}$.

Construct L_S:

Write \dagger to denote the complement. Then

$$(\Gamma \cup L_S)^\dagger$$

is a.c.

and, provided $L_S \not\cong \Gamma$,

$$\text{Aut}(\Gamma \cup L_S)^\dagger \cong \text{Aut}(\Gamma \cup L_S) \cong \text{Aut} \Gamma \times \text{Aut} L_S \cong \text{Aut} \Gamma.$$

Conclusion: 2^{\aleph_0} a.c. graphs with specified automorphism group.
The maximal subgroups of $\text{End } R$

Theorem (DGMMQ)

(i) Let Γ be a countable graph. There are 2^{\aleph_0} regular \mathcal{D}-classes of $\text{End } R$ whose group \mathcal{H}-classes are isomorphic to $\text{Aut } \Gamma$.

(ii) Every regular \mathcal{D}-class of $\text{End } R$ contains 2^{\aleph_0} group \mathcal{H}-classes.

Every group that could appear as a maximal subgroup of $\text{End } R$ occurs and does so as many times as it possibly could.
The maximal subgroups of $\text{End } R$

Theorem (DGMMQ)

(i) *Let Γ be a countable graph.*

There are 2^{\aleph_0} regular \mathcal{D}-classes of $\text{End } R$ whose group \mathcal{H}-classes are isomorphic to $\text{Aut } \Gamma$.

(ii) *Every regular \mathcal{D}-class of $\text{End } R$ contains 2^{\aleph_0} group \mathcal{H}-classes.*

Proof.

(i) Take $S \subseteq \{2, 3, \ldots \}$ with $L_S \not\cong \Gamma$. There is an idempotent f_S with image $\cong (\Gamma \cup L_S)^\dagger$. Then

$$H_{f_S} \cong \text{Aut}(\text{im } f_S) \cong \text{Aut } \Gamma.$$

For $S \neq T$, these lie in different \mathcal{D}-classes because $L_S \not\cong L_T$, so $\text{im } f_S \not\cong \text{im } f_T$.

(ii) For each a.c. graph Γ, there are 2^{\aleph_0} idempotents with image $\cong \Gamma$. □
Theorem (DGMMQ)

Every regular D-class in $\text{End} \, R$ contains 2^{\aleph_0} many L- and R-classes.

For f, g regular:

- $f \ L \ g$ iff $Vf = Vg$
- $f \ R \ g$ iff $\ker f = \ker g$
- $f \ D \ g$ iff $\text{im} \, f \cong \text{im} \, g$

[\Rightarrow holds without the regularity assumption.]

2^{\aleph_0} R-classes: Given an a.c. graph Γ, there are 2^{\aleph_0} idempotents with image $\cong \Gamma$ (extend the identity map on Γ).

All such f are L-related, but not R-related.
Uncountably many regular \mathcal{L}-classes

Start with an a.c. graph Γ (having vertices v_i).

Construct $\Gamma^\#$ with vertices

$$V^\# = \{ v_{i,0}, v_{i,1} \mid i \in \mathbb{N} \}$$

and edges

$$\{ (v_{i,0}, v_{j,0}), (v_{i,0}, v_{j,1}), (v_{i,1}, v_{j,0}), (v_{i,1}, v_{j,1}) \}$$

whenever (v_i, v_j) is an edge in Γ.

Note

- $\Gamma^\#$ is also algebraically closed.
- For any sequence $b = (b_i)$ with $b_i \in \{0, 1\}$, the subgraph Λ_b induced by $\{ v_{i,b_i} \mid i \in \mathbb{N} \}$ is isomorphic to Γ.

Build a copy of R (as $\mathcal{G}^\infty(\Gamma^\#)$) around $\Gamma^\#$.

Hence construct idempotent f in $\text{End} R$ with $\text{im} f = \Gamma^\#$. Given b, apply the map ϕ_b that maps $v_{i,0}, v_{i,1} \mapsto v_{i,b_i}$.

Note the $f\phi_b$ are \mathcal{D}-related but not \mathcal{L}-related.
What about non-regular \mathcal{D}-classes?

Our conclusions are less complete.

Write $R = (V, E)$.

If $f \in \text{End } R$, the key is understanding the difference between

$$\text{im } f = (Vf, Ef) \quad \text{vs.} \quad \langle Vf \rangle = (Vf, E \cap (Vf \times Vf)).$$

$f \in \text{End } R$ is regular if $\exists g$ with $fgf = f$.

$$f \text{ regular } \Rightarrow \text{ im } f = (Vf, Ef) = \langle Vf \rangle$$

Proposition (Cameron–Nešetřil, 2006)

Let $\Gamma = (V', E')$ be a countable graph. Then Γ is algebraically closed if and only if $(V', F) \cong R$ for some $F \subseteq E'$.

We use this to construct a injective homomorphism $f : R \to \Gamma$ such that $\text{im } f = (V', F) \neq \langle Vf \rangle = (V', E')$.
Let Γ be an a.c. graph with $\Gamma \ncong R$.
Create $\Gamma^\#$ with vertices $\{v_{i,0}, v_{i,1} \mid i \in \mathbb{N}\}$. Set $\Lambda_0 = \langle v_{i,0} \mid i \in \mathbb{N} \rangle \cong \Gamma$.
Build $R = \mathcal{G}^\infty(\Gamma^\#) = (V, E)$.

Use Cameron–Nešetřil: there is an injective endomorphism $f : R \rightarrow R$ with $Vf = \{v_{i,0} \mid i \in \mathbb{N}\}$. So $\text{im } f \cong R$ and $\langle Vf \rangle = \Lambda_0 \cong \Gamma$.
In particular, f is not regular.

If $b = (b_i) \in \{0, 1\}^\mathbb{N}$, the map $v_{i,j} \mapsto v_{i,j+b_i}$ is an automorphism of $\Gamma^\#$. It extends to an automorphism ψ_b of R.
Then $f \psi_b$ is R-related to f.
No pair of these are L-related.

Can also create 2^{\aleph_0} many R-classes in D_f.
Varying Γ yields 2^{\aleph_0} many \mathcal{D}-classes.
Summary for non-regular \mathcal{D}-classes

Theorem (DGMMQ)

(i) There exists a non-regular injective endomorphism f of R such that the \mathcal{D}-class of f contains 2^{\aleph_0} many L- and R-classes.

(ii) There are 2^{\aleph_0} many non-regular \mathcal{D}-classes in $\text{End } R$.

Questions

1. Can the injectivity condition in (i) be removed?
2. Does (i) hold for all non-regular \mathcal{D}-classes?
Schützenberger Groups

If the \mathcal{H}-class of $f \in \text{End} R$ is not a group, can create the Schützenberger group S_H.
This highlights the distinction between $\text{im } f = (Vf, Ef)$ and $\langle Vf \rangle$ for certain f arising via Cameron–Nešetřil:
Let $\Gamma_0 = (V_0, E_0)$ be a.c. and construct R as $R = G^\infty(\Gamma_0)$. There is an injective endomorphism f with $Vf = V_0$.

Proposition

Let $H = H_f$ for such f. Then

$$S_H \cong \text{Aut}(\text{im } f) \cap \text{Aut}\langle Vf \rangle.$$

By a suitable construction of Γ_0 around a particular graph Γ obtain:

Theorem (DGMMQ)

Let Γ be a countable graph. There are 2^{\aleph_0} many non-regular \mathcal{D}-classes in $\text{End} R$ that have Schützenberger groups isomorphic to $\text{Aut}\Gamma$.

Martyn Quick (St Andrews)
Directed graphs & bipartite graphs

Also have analogous results for the endomorphism of the countable universal homogeneous directed graph D and the countable universal homogeneous bipartite graph B.

Definition of bipartite graphs?
The partition is preserved by a homomorphism, but the parts may be interchanged.

Some unusual observations for bipartite graphs: e.g., the finite complete bipartite graphs are a.c.
Maximal subgroups / group \mathcal{H}-classes:

Theorem (DGMMQ)

1. Let Γ be a countable graph. There are 2^{\aleph_0} regular \mathcal{D}-classes of $\text{End } B$ whose group \mathcal{H}-classes are isomorphic to $\text{Aut } \Gamma$.

2. Let f be an idempotent.
 - If $\text{im } f \not\cong K_{1,1}$, then D_f contains 2^{\aleph_0} many group \mathcal{H}-classes.
 - If $\text{im } f \cong K_{1,1}$, then D_f contains \aleph_0 many group \mathcal{H}-classes (each $\cong C_2$).
Some results for bipartite graphs, II

\(\mathcal{L} \)- and \(\mathcal{R} \)-classes in regular \(\mathcal{D} \)-classes:

Theorem (DGMMQ)

Let \(f \) be a regular endomorphism of \(B \).

1. If \(\text{im} \ f \) is infinite, \(D_f \) contains \(2^{\aleph_0} \) many \(\mathcal{L} \)- and \(\mathcal{R} \)-classes.
2. If \(\text{im} \ f \) is finite but not \(K_{1,1} \), then \(D_f \) contains \(\aleph_0 \) many \(\mathcal{L} \)-classes and \(2^{\aleph_0} \) many \(\mathcal{R} \)-classes.
3. If \(\text{im} \ f \cong K_{1,1} \), then \(D_f \) contains \(\aleph_0 \) many \(\mathcal{L} \)-classes and one \(\mathcal{R} \)-class.

Martyn Quick (St Andrews)
Thank you for your attention!