Closed Submonoids of the Symmetric Inverse Monoid

Martin Hampenberg Christensen

University of Hertfordshire

York Semigroup Seminar, January 31 2024

Definition (Symmetric Inverse Monoid)

Bijections between subsets of a set X.

 $I_X = \{ \text{ bijections } A \mapsto B \mid A, B \text{ subsets of } X \}$

The semigroup operation is "compose wherever possible".

Figure: Composition of the charts α and β in I_4 .

Definition (Inverse Semigroup)

A semigroup \boldsymbol{S} is *inverse* if

$$(\forall x \in S)(\exists ! y \in S) \quad xyx = x \land \ yxy = y.$$

Such a y is usually denoted by x^{-1} .

Theorem (Wagner-Preston, 1952-1954)

If S is an inverse semigroup, then there is a faithful representation

$$\varphi: S \mapsto I_S.$$

That is, every inverse semigroup is isomorphic to a subsemigroup of some symmetric inverse monoid.

Definition (Topological Semigroup)

A semigroup S with a topology ${\mathcal T}$ such that the multiplication map

$$\mu:S\times S\mapsto S:(x,y)\mapsto xy$$

is continuous with respect to the product topology on $S\times S.$

Definition (Topological Inverse Semigroup)

A topological semigroup \boldsymbol{S} such that the inversion map

$$\iota: S \mapsto S: x \mapsto x^{-1}$$

is continuous with respect to the semigroup topology.

Definition (Topological Group)

A topological inverse semigroup that happens to be a group.

Martin Hampenberg Christensen Closed Submonoids of the Symmetric Inverse Monoid

A topological space (X, \mathcal{T}) is called *Polish* if it is:

- Completely metrizable
 - There exists a complete metric on X, which induces \mathcal{T} .
- Separable
 - There exists a countable dense subset of X.

Examples of Polish Groups

- $(\mathbb{R},+)$ with the standard topology.
- $\operatorname{Sym}(X)$ with the pointwise topology.

The full transformation monoid X^X equipped with the product topology, where X has the discrete topology.

• This topology and any of its subspace topologies are referred to as the *pointwise topology*.

Subbasis for the Pointwise Topology

$$U_{x,y} = \{ f \in X^X \mid (x)f = y \}$$

Basic Open Sets in the Pointwise Topology

$$[\sigma:\tau] = \{ f \in X^X \mid (\sigma_i)f = \tau_i \text{ for all } i \in n \}$$

Where $\sigma = (\sigma_0, \sigma_1, \dots, \sigma_{n-1})$ and $\tau = (\tau_0, \tau_1, \dots, \tau_{n-1})$ are sequences of elements of X, and $n \in \omega$.

Claim

If X is countable, then the pointwise topology is Polish on X^X .

Enumerate X over the natural numbers ω .

1 Let
$$d(f,g) = \frac{1}{m+1}$$
, where $m = \min(n \in \omega \mid (x_n)f \neq (x_n)g)$.

$$e Let Q = \{ f \in X^X \mid |\{ x \in X \mid (x) f \neq x \}| < \aleph_0 \}.$$

Then d is a complete metric on X^X and Q is a countable dense subset.

Theorem (Elliott et al., 2023)

If X is countable, then the pointwise topology is the unique Polish semigroup topology on X^X .

The symmetric inverse monoid I_X has two minimal Polish semigroup topologies.

Subbasis for
$$\mathcal{I}_2$$

$$U_{x,y} = \{ f \in I_X \mid (x)f = y \}$$
and $W_x = \{ f \in I_X \mid x \notin \operatorname{dom}(f) \}.$

Subbasis for \mathcal{I}_3

$$U_{x,y} = \{ f \in I_X \mid (x)f = y \}$$

and $W_x^{-1} = \{ f \in I_X \mid x \notin im(f) \}.$

Theorem (Elliott et al., 2023)

Let X be an infinite set. Then the following hold:

- **1** \mathcal{I}_2 and \mathcal{I}_3 are distinct;
- I_X with I₂ and I_X with I₃ are homeomorphic Hausdorff topological semigroups;
- every T_1 semigroup topology for I_X contains \mathcal{I}_2 or \mathcal{I}_3 ;
- if X is countable, then \mathcal{I}_2 and \mathcal{I}_3 are Polish.

However, neither \mathcal{I}_2 nor \mathcal{I}_3 are inverse semigroup topologies!

The topology \mathcal{I}_4 , which is generated by $\mathcal{I}_2 \cup \mathcal{I}_3$, is the unique Polish inverse semigroup topology on I_X .

Subbasis for \mathcal{I}_4

$$U_{x,y} = \{ f \in I_X \mid (x)f = y \}, \quad W_x = \{ f \in I_X \mid x \notin \text{dom}(f) \},$$

and $W_x^{-1} = \{ f \in I_X \mid x \notin \text{im}(f) \}.$

Theorem (Elliott et al., 2023)

Let X be an infinite set. Then the following hold:

- the topology I₄ is a Hausdorff inverse semigroup topology for I_X;
- if \mathcal{T} is a semigroup topology for I_X and \mathcal{T} induces the pointwise topology on Sym(X), then \mathcal{T} is contained in \mathcal{I}_4 ;
- **3** \mathcal{I}_4 is the unique T_1 inverse semigroup topology on I_X inducing the pointwise topology on Sym(X);
- if X is countable, then I₄ is the unique Polish inverse semigroup topology on I_X.

Definition (Left Semitopological Semigroup)

Semigroup S with topology ${\mathcal T}$ such that for all $s\in S$ the left multiplication map λ_s is continuous.

 $\lambda_s: S \mapsto sS: x \mapsto sx$

Definition (Right Semitopological Semigroup)

Semigroup S with topology \mathcal{T} such that for all $s \in S$ the right multiplication map ρ_s is continuous.

 $\rho_s: S \mapsto Ss: x \mapsto xs$

Definition (Semitopological semigroup)

Semigroup S with topology T such that T is left and right semitopological for S.

The Topology \mathcal{I}_1

 I_X has a minimal T_1 semitopological semigroup topology.

Subbasis for \mathcal{I}_1

$$U_{x,y} = \{ f \in I_X \mid (x)f = y \}$$
 and $V_{x,y} = \{ f \in I_X \mid (x)f \neq y \}$

Theorem (Elliott et al. 2023)

Let X be an infinite set. Then the following hold:

- the topology I₁ is compact, Hausdorff, and semitopological for I_X and inversion is continuous;
- **2** \mathcal{I}_1 is the least T_1 topology that is semitopological for I_X ;
- **()** if X is countable, then \mathcal{I}_1 is Polish.

Relational Structures

Definition (Relation)

An *n*-ary relation on a set X is a subset $R \subseteq X^n$.

Definition (Relational structure)

A relational structure \mathcal{R} is a set of relations on a common set X.

Theorem (P. J. Cameron, 1990)

A subgroup G of Sym(X) is closed in the pointwise topology if and only if G is the group $Aut(\mathcal{R})$ of automorphisms of a relational structure \mathcal{R} on X.

Theorem (Cameron & Nešetřil, 2006)

A submonoid S of X^X is closed in the pointwise topology if and only if S is the monoid $End(\mathcal{R})$ of endomorphisms of a relational structure \mathcal{R} on X.

Martin Hampenberg Christensen Closed Submonoids of the Symmetric Inverse Monoid

Definition (Partial Automorphism)

A chart $f \in I_X$ is a *partial automorphism* of a relational structure \mathcal{R} if it is an isomorphism between induced substructures.

Proposition

The set $pAut(\mathcal{R}) = \{ f \in I_X \mid (\forall R \in \mathcal{R}) (\forall a \in dom(f)^{dim(R)}) \ (a)f \in R \Leftrightarrow a \in R \}$ of all partial automorphisms of a relational structure \mathcal{R} is a full inverse submonoid of I_X .

Definition (Full Subsemigroup)

Given a semigroup S, a subsemigroup $T \subseteq S$ is called *full* if T contains all the idempotents of S.

Restricting to the full submonoids of I_X yields a result analogous to those of Cameron and Nešetřil.

Theorem

Let X be an infinite set and M a full inverse submonoid of I_X . Then the following are equivalent:

- *M* is closed in the topology \mathcal{I}_1 ;
- **2** M is closed in the topology \mathcal{I}_4 ;
- There exists a relational structure R on X such that M = pAut(R).

The topologies \mathcal{I}_1 and \mathcal{I}_4 coincide on these submonoids!

Proof of $M \subseteq pAut(\mathcal{R})$: For each $n \in \omega$ and each $a \in X^n$ we take an *n*-ary relation R_a defined by

$$R_a = \{ (a)f \in X^n \mid f \in M \land a \in \operatorname{dom}(f)^n \}.$$

Let $\mathcal{R} = \{ R_a \mid a \in \bigcup_{n \in \omega} X^n \}$. Take $f \in M$ and $b \in \text{dom}(f)^n$. Then $(b)f \in R_a$ if and only if $b \in R_a$, since $b \in R_a$ implies there exists $g \in M$ such that (a)g = b (then (b)f = (a)gf) and M is inverse (so if $b \notin R_a$, then $a \notin R_b$). This makes a strong case for studying specifically the full inverse submonoids of I_X . The following result further enforces this idea.

Proposition

Let X be a countable set, $E_X \subseteq I_X$ the semilattice of idempotents, and $S \subseteq I_X$ a subsemigroup closed in the topology \mathcal{I}_1 . Then $S' = \langle S, E_X \rangle$ is also closed in \mathcal{I}_1 .

The closed inverse subsemigroups if I_X in the topology \mathcal{I}_1 are equivalent to the monoids of partial automorphisms modulo the semilattice of idempotents.

Definition (Relative Rank)

Given a semigroup S and $A \subseteq S$, then the *relative rank* of A in S, denoted rank(S : A), is the minimum cardinality of a set $B \subseteq S$ such that $\langle A, B \rangle = S$.

Theorem (Galvin, 1995)

If $G \subseteq \text{Sym}(X)$, then either $\text{rank}(\text{Sym}(X) : G) \le 2$ or rank(Sym(X) : G) > |X|.

Theorem (Sierpiński, 1935)

If $S \subseteq X^X$, then either $\operatorname{rank}(X^X : S) \le 2$ or $\operatorname{rank}(X^X : S) > |X|$.

Theorem (Hyde & Péresse, 2012)

If $M \subseteq I_X$, then either rank $(I_X : M) \le 2$ or rank $(I_X : M) > |X|$.

The following two results on relative rank hold when X is a countably infinite set.

Theorem (Bergman & Shelah, 2006)

Let G be a closed subgroup of Sym(X) in the pointwise topology. Then G has finite relative rank in Sym(X) if and only if for all finite $\Gamma \subseteq X$ the pointwise stabilizer subgroup $G_{(\Gamma)}$ has at least one infinite orbit in X.

Theorem

Let \mathcal{R} be a relational structure on X such that $|\mathcal{R}|$ is finite. Then $pAut(\mathcal{R})$ has finite relative rank in I_X .

- Almost disjoint families.
- Semigroups of path bijections on rooted trees.
- Trivial *H*-classes.
- Used for counter-examples.
- Easy to visualise.

Figure: Binary rooted tree $T^{(2)}$

Semigroups on Trees

 $\mathcal{T} = \{ f \in pAut(T) \mid \operatorname{dom}(f), \operatorname{im}(f) \in P \text{ and } (r)f = r \}$

Martin Hampenberg Christensen Closed Submonoids of

Closed Submonoids of the Symmetric Inverse Monoid

Infinitary Rooted Trees

Figure: Infinite rooted tree $T^{(\aleph_0)}$.

All rooted trees can be sorted into 3 distinct classes.

Theorem

Let T be a rooted tree on a countable set X with root $r \in X$ and P the set of all paths in T starting at r. Then one of the following holds:

- T contains a subtree for which every vertex has a descendent of infinite degree and $T \approx I_X$.
- **2** T does not satisfy (i) but contains a subtree for which every vertex has a descendent of degree at least 3 and $T \approx T^{(2)}$.
- \bigcirc P and \mathcal{T} are countable.