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Symmetric Inverse Monoids

Definition (Symmetric Inverse Monoid)
Bijections between subsets of a set X.

IX = { bijections A 7→ B | A,B subsets of X }

The semigroup operation is “compose wherever possible”.

α =

β =

−→

−→

−→ −→ = αβ

Figure: Composition of the charts α and β in I4.
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Representation Theorem

Definition (Inverse Semigroup)
A semigroup S is inverse if

(∀x ∈ S)(∃!y ∈ S) xyx = x ∧ yxy = y.

Such a y is usually denoted by x−1.

Theorem (Wagner-Preston, 1952-1954)
If S is an inverse semigroup, then there is a faithful representation

ϕ : S 7→ IS .

That is, every inverse semigroup is isomorphic to a subsemigroup
of some symmetric inverse monoid.
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Topological Algebra

Definition (Topological Semigroup)
A semigroup S with a topology T such that the multiplication map

µ : S × S 7→ S : (x, y) 7→ xy

is continuous with respect to the product topology on S × S.

Definition (Topological Inverse Semigroup)
A topological semigroup S such that the inversion map

ι : S 7→ S : x 7→ x−1

is continuous with respect to the semigroup topology.

Definition (Topological Group)
A topological inverse semigroup that happens to be a group.
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Polish Topologies

A topological space (X, T ) is called Polish if it is:
1 Completely metrizable

There exists a complete metric on X, which induces T .
2 Separable

There exists a countable dense subset of X.

Examples of Polish Groups
(R,+) with the standard topology.
Sym(X) with the pointwise topology.
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The Pointwise Topology

The full transformation monoid XX equipped with the product
topology, where X has the discrete topology.

This topology and any of its subspace topologies are referred
to as the pointwise topology.

Subbasis for the Pointwise Topology

Ux,y = { f ∈ XX | (x)f = y }

Basic Open Sets in the Pointwise Topology

[σ : τ ] = { f ∈ XX | (σi)f = τi for all i ∈ n }

Where σ = (σ0, σ1, . . . , σn−1) and τ = (τ0, τ1, ..., τn−1) are
sequences of elements of X, and n ∈ ω.
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Polish Semigroup Topology

Claim
If X is countable, then the pointwise topology is Polish on XX .

Enumerate X over the natural numbers ω.
1 Let d(f, g) = 1

m+1 , where m = min(n ∈ ω | (xn)f 6= (xn)g).
2 Let Q = { f ∈ XX | |{x ∈ X | (x)f 6= x }| < ℵ0 }.

Then d is a complete metric on XX and Q is a countable dense
subset.

Theorem (Elliott et al., 2023)
If X is countable, then the pointwise topology is the unique Polish
semigroup topology on XX .
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The Topologies I2 and I3

The symmetric inverse monoid IX has two minimal Polish
semigroup topologies.

Subbasis for I2

Ux,y = { f ∈ IX | (x)f = y }

and Wx = { f ∈ IX | x /∈ dom(f) } .

Subbasis for I3

Ux,y = { f ∈ IX | (x)f = y }

and W−1
x = { f ∈ IX | x /∈ im(f) } .
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The Topologies I2 and I3

Theorem (Elliott et al., 2023)
Let X be an infinite set. Then the following hold:

1 I2 and I3 are distinct;
2 IX with I2 and IX with I3 are homeomorphic Hausdorff

topological semigroups;
3 every T1 semigroup topology for IX contains I2 or I3;
4 if X is countable, then I2 and I3 are Polish.

However, neither I2 nor I3 are inverse semigroup topologies!
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The Topology I4

The topology I4, which is generated by I2 ∪ I3, is the unique
Polish inverse semigroup topology on IX .

Subbasis for I4

Ux,y = { f ∈ IX | (x)f = y } , Wx = { f ∈ IX | x /∈ dom(f) } ,

and W−1
x = { f ∈ IX | x /∈ im(f) } .
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The Topology I4

Theorem (Elliott et al., 2023)
Let X be an infinite set. Then the following hold:

1 the topology I4 is a Hausdorff inverse semigroup topology for
IX ;

2 if T is a semigroup topology for IX and T induces the
pointwise topology on Sym(X), then T is contained in I4;

3 I4 is the unique T1 inverse semigroup topology on IX

inducing the pointwise topology on Sym(X);
4 if X is countable, then I4 is the unique Polish inverse

semigroup topology on IX .
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Topological Algebra

Definition (Left Semitopological Semigroup)
Semigroup S with topology T such that for all s ∈ S the left
multiplication map λs is continuous.

λs : S 7→ sS : x 7→ sx

Definition (Right Semitopological Semigroup)
Semigroup S with topology T such that for all s ∈ S the right
multiplication map ρs is continuous.

ρs : S 7→ Ss : x 7→ xs

Definition (Semitopological semigroup)
Semigroup S with topology T such that T is left and right
semitopological for S.
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The Topology I1

IX has a minimal T1 semitopological semigroup topology.

Subbasis for I1

Ux,y = { f ∈ IX | (x)f = y } and Vx,y = { f ∈ IX | (x)f 6= y }

Theorem (Elliott et al. 2023)
Let X be an infinite set. Then the following hold:

1 the topology I1 is compact, Hausdorff, and semitopological
for IX and inversion is continuous;

2 I1 is the least T1 topology that is semitopological for IX ;
3 if X is countable, then I1 is Polish.
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Relational Structures

Definition (Relation)
An n-ary relation on a set X is a subset R ⊆ Xn.

Definition (Relational structure)
A relational structure R is a set of relations on a common set X.

Theorem (P. J. Cameron, 1990)
A subgroup G of Sym(X) is closed in the pointwise topology if
and only if G is the group Aut(R) of automorphisms of a
relational structure R on X.

Theorem (Cameron & Nešeťril, 2006)
A submonoid S of XX is closed in the pointwise topology if and
only if S is the monoid End(R) of endomorphisms of a relational
structure R on X.
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Partial Automorphisms

Definition (Partial Automorphism)
A chart f ∈ IX is a partial automorphism of a relational structure
R if it is an isomorphism between induced substructures.

Proposition
The set pAut(R) =
{ f ∈ IX | (∀R ∈ R)(∀a ∈ dom(f)dim(R)) (a)f ∈ R⇔ a ∈ R }
of all partial automorphisms of a relational structure R is a full
inverse submonoid of IX .

Definition (Full Subsemigroup)
Given a semigroup S, a subsemigroup T ⊆ S is called full if T
contains all the idempotents of S.
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Partial Automorphisms Theorem

Restricting to the full submonoids of IX yields a result analogous
to those of Cameron and Nešeťril.

Theorem
Let X be an infinite set and M a full inverse submonoid of IX .
Then the following are equivalent:

1 M is closed in the topology I1;
2 M is closed in the topology I4;
3 There exists a relational structure R on X such that
M = pAut(R).

The topologies I1 and I4 coincide on these submonoids!
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Partial Automorphisms Proof

Proof of M ⊆ pAut(R): For each n ∈ ω and each a ∈ Xn we
take an n-ary relation Ra defined by

Ra = { (a)f ∈ Xn | f ∈M ∧ a ∈ dom(f)n } .

Let R = {Ra | a ∈
⋃

n∈ω X
n }. Take f ∈M and b ∈ dom(f)n.

Then (b)f ∈ Ra if and only if b ∈ Ra, since b ∈ Ra implies there
exists g ∈M such that (a)g = b (then (b)f = (a)gf) and M is
inverse (so if b /∈ Ra, then a /∈ Rb).
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Closed submonoids in I1

This makes a strong case for studying specifically the full inverse
submonoids of IX . The following result further enforces this idea.

Proposition
Let X be a countable set, EX ⊆ IX the semilattice of
idempotents, and S ⊆ IX a subsemigroup closed in the topology
I1. Then S′ = 〈S,EX〉 is also closed in I1.

The closed inverse subsemigroups if IX in the topology I1 are
equivalent to the monoids of partial automorphisms modulo the
semilattice of idempotents.
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Relative Rank

Definition (Relative Rank)
Given a semigroup S and A ⊆ S, then the relative rank of A in S,
denoted rank(S : A), is the minimum cardinality of a set B ⊆ S
such that 〈A,B〉 = S.

Theorem (Galvin, 1995)
If G ⊆ Sym(X), then either rank(Sym(X) : G) ≤ 2 or
rank(Sym(X) : G) > |X|.

Theorem (Sierpiński, 1935)
If S ⊆ XX , then either rank(XX : S) ≤ 2 or rank(XX : S) > |X|.

Theorem (Hyde & Péresse, 2012)
If M ⊆ IX , then either rank(IX : M) ≤ 2 or rank(IX : M) > |X|.
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Relative Rank Theorems

The following two results on relative rank hold when X is a
countably infinite set.

Theorem (Bergman & Shelah, 2006)
Let G be a closed subgroup of Sym(X) in the pointwise topology.
Then G has finite relative rank in Sym(X) if and only if for all
finite Γ ⊆ X the pointwise stabilizer subgroup G(Γ) has at least
one infinite orbit in X.

Theorem
Let R be a relational structure on X such that |R| is finite. Then
pAut(R) has finite relative rank in IX .
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Rooted Trees

Almost disjoint families.
Semigroups of path
bijections on rooted trees.
Trivial H-classes.
Used for counter-examples.
Easy to visualise.

Figure: Binary rooted tree T (2)
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Semigroups on Trees

T = { f ∈ pAut(T ) | dom(f), im(f) ∈ P and (r)f = r }

f
7−→
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Infinitary Rooted Trees

⟨⟩

⟨0⟩ ⟨1⟩ ⟨2⟩ ⟨3⟩ ⟨4⟩ . . .

⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨0, 3⟩ . . . ⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 2⟩ . . .

⟨0, 0, 0⟩ ⟨0, 0, 1⟩ . . .
...

...

...

...
...

Figure: Infinite rooted tree T (ℵ0).
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Classification of Trees

All rooted trees can be sorted into 3 distinct classes.

Theorem

Let T be a rooted tree on a countable set X with root r ∈ X and
P the set of all paths in T starting at r. Then one of the following
holds:

1 T contains a subtree for which every vertex has a descendent
of infinite degree and T ≈ IX .

2 T does not satisfy (i) but contains a subtree for which every
vertex has a descendent of degree at least 3 and T ≈ T (2).

3 P and T are countable.
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