FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS
VICTORIA GOULD AND DANDAN YANG

ABSTRACT. We study the general structure of the free idempotent generated semigroup IG(B)
over an arbitrary band B. We show that IG(B) is always a weakly abundant semigroup with
the congruence condition, but not necessarily abundant. We then prove that if B is a normal
band or a quasi-zero band for which IG(B) satisfies Condition (P), then IG(B) is an abundant
semigroup. In consequence, if Y is a semilattice, then IG(Y) is adequate, that is, it belongs to
the quasivariety of unary semigroups introduced by Fountain over 30 years ago. Further, the
word problem of IG(B) is solvable if B is quasi-zero. We also construct a 10-element normal
band B for which IG(B) is not abundant.

1. INTRODUCTION

Let S be a semigroup with a set of idempotents E = FE(S). The structure of the set
E equipped with the restriction of the quasi-orders <z or <, defined on S, can naturally
be described as a biordered set, a notion arising as a generalisation of the semilattice of
idempotents in an inverse semigroup. Moreover, Easdown [6] shows every biordered set E
occurs as F(S) for some semigroup S. Given a biordered set E, i.e. the set F of idempotents
of some semigroup S, there is a free object in the category of semigroups that are generated by
E, called the free idempotent generated semigroup over E, given by the following presentation:

IG(E)=(E:ef =ef, e.f € E{e. fin{ef fe} #0),

where E = {¢ : e € E}.' Note that {e, f} N {ef, fe} # 0 implies both ef and fe are
idempotents of E. Clearly, there is a natural morphism ¢ from IG(E) to (F), the subsemigroup
of S generated by E. In fact, E(IG(E)) = E, and the restriction p|z : £ — E is an
isomorphism of biordered sets [6]. We refer our readers to [14] for other properties of IG(E).

Given the universal nature of free idempotent generated semigroups, it is natural to enquire
into their structure. A popular theme is to investigate their maximal subgroups. It has been
proved that every group is a maximal subgroup of IG(E) for some biordered set E [13,14] and
E may be taken to be a band [5].

Whereas much of the former work in the literature of IG(E) has focused on the maximal
subgroups, the aim of the current paper is to investigate the general structure of IG(B) for
a band B. Our main result is that for an arbitrary band B, IG(B) is a weakly abundant
semigroup with the congruence condition.

We proceed as follows. In Section 2 we recall some basics of Green’s relations and regular
semigroups, and of generalised Green’s relations and (weakly) abundant semigroups. We
briefly describe how IG(B) naturally induces a reduction system. In Section 3, we begin our
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investigation of IG(B) by looking at a semilattice Y. We prove that every element of IG(Y") has
a unique normal form. Consequently, we show that IG(Y") is abundant, and hence adequate.
We remark here that this result can be obtained as a corollary of Proposition 7.2, however,
the straightforward proof makes clear the strategies we subsequently use in other contexts.
In Section 4, we show that for any rectangular band B, IG(B) is regular. We then proceed
to look at a general band B in Section 5. Unlike the case of semilattices and rectangular
bands, here we may lose uniqueness of normal forms. To overcome this problem, the concept
of almost normal forms is introduced. It is proved that for any band B, IG(B) is a weakly
abundant semigroup with the congruence condition, but need not be abundant.

We then consider some sufficient condition for IG(B) to be abundant. In Section 6, we
introduce a class of bands B, which are in general not normal, for which the word problem of
IG(B) is solvable. Then in Section 7, we show that if B is a quasi-zero band or a normal band
for which IG(B) satisfies a condition we label (P), then IG(B) is an abundant semigroup. We
then find two classes of normal bands satisfying Condition (P). One would naturally ask here
that whether IG(B) is abundant for an arbitrary normal band B. In Section 8, we construct
a 10-element normal band with 4 D-classes for which IG(B) is not abundant.

2. PRELIMINARIES: (WEAKLY) ABUNDANT SEMIGROUPS AND REDUCTION SYSTEMS

Throughout this paper, for n € N we write [1,n] to denote {1,--- ,n} C N. The free
semigroup on a set A is denoted by A™.

We start by introducing an important tool for analysing ideals of a semigroup S and related
notions of structure, called Green’s relations. There are five equivalence relations that char-
acterize the elements of S in terms of the principal ideals they generate. The two most basic
of Green’s relations are £ and R, are defined by

a L b+ S'a=S,aR b aS'=0b5",

where S* denotes S with an identity element adjoined (unless S already has one.) Furthermore,
we denote the intersection £ N R by H, while, the join £ V R is denoted by D. It is known
that L o R=R o L,and hence D=L o R=R o L.

An element a € S is called regular if there exists x € S such that a = axa. A semigroup S
is called a regular semigroup if contains entirely of regular elements. We say that S is inverse
if it is regular and the set of all idempotents of S forms a semilattice. It is well known that
S is regular (inverse) if and only if each L-class (R-class) contains a (unique) idempotent.
The definition of regular semigroups is copied from von Neumann’s definition of regular rings;
regular semigroups are particularly amenable to analysis using Green’s relations.

As a generalisation of Green’s relations, the relations £* and R* are defined on a semigroup
S by the rule that

a L' = (Vo,y € S") (ax = ay & bx = by)
and
aR*b < (Vo,y €S (va=ya & xb=yb).
It is easy to see that £L C £*, R C R*, and if S is regular, then £ = £* and R = R*. We
denote by H* the intersection £* N R*, and by D* the join of £* V R*. Note that unlike

Green’s relations, generally £* o R* # R* o L*. A binary relation J* may also be defined on
S, which is not required here.
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A semigroup S is abundant if each L*-class and each R*-class contains an idempotent. An
abundant semigroup is adequate if its idempotents form a semilattice. In view of the comment
above, regular semigroups are abundant while inverse semigroups are adequate. In the theory
of abundant semigroups the relations £*, R*, H*, D* and J* play a role which is analogous
to that of Green’s relations in the theory of regular semigroups.

As an easy but useful consequence of the definition of £*, we have the following lemma (a
dual result holds for R*).

Lemma 2.1. [9] Let S be a semigroup with a € S and e* = e € E(S). Then the following
statements are equivalent:
(i) a L* e;

(11) ae = a and for any x,y € S, ax = ay implies ex = ey.

A third set of relations, extending the stared versions of Green’s relations, and useful for
semigroups that are not abundant, were introduced in [20].

Let E(S) be the set of idempotents of a semigroup S. The relations £ and R on a semigroup
S are defined by the rule

alLb < (VeeE(S)) (ae = a < be =b)

and
aRb < (Vee E(S)) (ca=a< eb=D)

for any a,b € S.

We remagk here that £ c L* C L and R C R* C R. Moreover, if S is regular, then
L=L=Land R=R*"=R

A semigroup S is weakly abundant if each L-class and each R-class contains an idempotent.
Whereas £* and R* are always right and left congruences on S, respectively, the same is
not necessarily true for £ and R. We say that a weakly abundant semigroup S satisfies the
congruence condition if Lisa right congruence and R is a left congruence.

The following lemma is an analogue of Lemma 2.1. Of course, a dual result holds for R.

Lemma 2.2. [20] Let S be a semigroup with a € S and €* = e € E(S). Then the following
statements are equivalent:

(i) a L e;

(ii) ae = a and for any f € E(S), af = a implies ef = e.

From easy observation, we have the following lemma.

Lemma 2.3. Let S be a semigroup with e, f € E(S). Then e L f if and only if e L f and
e R f if and only if e R f.

Lemma 2.4. Let S be a semigroup, and let a € S, f> = f € E(S) be such that a R f.
Then a is not R*-related to f implies that a is not R*-related to any idempotent of S.

Proof. Suppose that a R* e for some idempotent e € E(S). Then a R e, as R* C ﬁ, SO
that e R f by assumption, and so e R f by Lemma 2.3. Hence a R* f as R C R*, a

contradiction. O
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Lemma 2.5. Let S be a weakly abundant semigroup with a € S and € = ¢ € E(S) such
that a R e. Then a R* e if and only if for any x,y € S, xa = ya implies that re = ye.

Proof. Suppose that for all z,y € S, if xa = ya then xe = ye. By Lemma 2.1, we need only
show that if x € S and za = a, then ze = e. Suppose therefore that x € S and za = a. As

a R e, we have xa = a = ea, so that by assumption, xe = ee = e. 0

In the rest of this section we recall the definition of reduction systems and their properties.
As far as possible we follow standard notation and terminology, as may be found in [1].

Let A be a set of objects and — a binary relation on A. We call the structure (4, —) a
reduction system and the relation — a reduction relation. The reflexive, transitive closure of
— is denoted by —, while +— denotes the smallest equivalence relation on A that contains
— . We denote the equivalence class of an element = € A by [z]. An element z € A is said
to be irreducible if there is no y € A such that + — y; otherwise, x is reducible. For any
z,y € A, if + < y and y is irreducible, then y is a normal form of z. A reduction system
(A, —>) is noetherian if there is no infinite sequence xg, 1, -+ € A such that for all i > 0,
Ty — Tjg1.-

We say that a reduction system (A, —) is confluent if whenever w, z,y € A, are such that
w — z and w — y, then there is a z € A such that + — 2 and y — 2, as described by
the figure below on the left, and (A, —) is locally confluent if whenever w,z,y € A, are such
that w — x and w — y, then there is a z € A such that + — z and y — z, as described
by the figure below on the right.
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Lemma 2.6. [1] Let (A,—) be a reduction system. Then the following statements hold:

(i) If (A,—) is noetherian and confluent, then for each x € A, [z]| contains a unique
normal form.

(i) If (A, —) is noetherian, then it is confluent if and only if it is locally confluent.

Let E be a biordered set. We use E' to denote the free semigroup on £ = {€: e € E}.

Lemma 2.7. Let IG(E) be the free idempotent generated semigroup over a biordered set E,
and let R be the relation on E defined by

R={(ef,ef): (e f) is a basic pair}.
Then (FJr, —) forms a noetherian reduction system, where — is defined by
u—v<= (I (,r)€R) (T z,y €E+) u=zly and v = xry.

Proof. The proof follows directly from the definitions of the reduction system and the binary
relation —» . 0

We remark here that in the reduction system (F+, —) induced by IG(E), the smallest
. . * -+ .
equivalence relation <— on F is exactly the congruence generated by R.



FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS 5

3. FREE IDEMPOTENT GENERATED SEMIGROUPS OVER SEMILATTICES

We start our investigation of free idempotent generated semigroups 1G(B) over bands B,
by looking at the special case of semilattices. Throughout this section we will use the letter
Y to denote a semilattice. It is proved that IG(Y') is an adequate semigroup; however, it need
not be regular.

It follows from Lemma 2.7 that IG(Y') induces naturally a noetherian reduction system
Y", —).

Lemma 3.1. Let Y be a semilattice. Then every element in IG(Y) has a unique normal
form.

Proof. By Lemma 2.6, to show the required result we only need to argue that (7+, —) is
locally confluent. For this purpose, it is sufficient to consider an arbitrary word of length 3,
say € f g € 7+, where e, f and f, g are comparable. There are four cases, namely, e < f < g,
e>f>g,e<f,f>gande> f, f <g, for which we have the following 4 diagrams:

efg efg efyg efg
YN v N v N\ v N
eg ef fg eg eg L €9 Ia ef
NS NS NS N/
e g eyqg

Thus (?+, —) is locally confluent, so that every element in IG(Y) has a unique normal
form. O
Note that an element Zy --- 7, € IG(Y) is in normal form if and only if z; and z;;; are

incomparable, for all i € [1,n — 1]. By uniqueness of normal forms in IG(Y'), we can easily
deduce that two words of IG(B) are equal if and only the corresponding normal forms of them

are identical word in E+, and hence the word problem of IG(Y) is solvable.

Proposition 3.2. The free idempotent generated semigroup 1G(Y') over a semilattice Y is
an abundant semigroup.

Proof. Let Ty -+ Tn, 71+ Ym € IG(B) be in normal form. We begin with considering the
product (ZTy--+ Z,)("1 - Um). Either z,,y; are incomparable, =, > y; or z, < 3. In
the first case it is clear that z7--- @, y1--- ¥Um is a normal form. If z, > y;, then ei-
ther Ty-++ Tp,1 U1+ Ym is in normal form, or y; and z,_; are comparable. If y; and
Tp_1 are comparable, then y; < z,_;, for we cannot have xz, 1 < y; else z,_1 < z,, a
contradiction. Continuing in this manner we obtain (Z1--+ Z,)(1 -+ Um) has normal form
Ti++ Ty—1 Y1 Um, where 1 < t < m, x,,---,x; > y1, and either t = 1 (in which case
Ty -+ Ty_1 is the empty product) or x;_1,y; are incomparable. Similarly, if x, < y;, then
(ZT1--+ Tn)(W1 -+ Ym) has normal form =7 -+ T, Yig1 -+ Ym, where 1 <t <m, x,, < yp,-- -y,
and t = m or x,, Y11 are incomparable.

Suppose now that Ty -+ T, Z1 -+ Zx and 77 - -+ U, € IG(Y') are in normal form such that

in IG(Y). Here we assume n,k > 0 and m > 1. We proceed to prove that
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in IG(Y). If n = k = 0 there is nothing to show. Note that the result is clearly true if m = 1,
so in what follows we assume m > 2.

First we assume that n > 1 and k =0 (i.e. Z7--- Z is empty), so that

In view of Lemma 3.1, x,, and y; must be comparable. If x, > y;, then it follows from the

above observation that y; < x1,--- ,x,, so that z7--- 7, 1 = 7. On the other hand, if
T, < y1, then
for 1 <t < m such that z, < y1,---,y and t = m or z,,y:11 are incomparable. Then

Tn = Y, so that to avoid the contradiction y; < y;—1 we must have t = 1. Clearly then n =1
and 1 = x, = y; so that =7 77 = ;. Hence certainly holds for n + k +m < 3.

Suppose that n + k +m > 4 and the result is true for all n’ + k' +m' < n + k + m. Recall
we are assuming that m > 2 and in view of the above we may take n, k > 1.

If x,,y; and zg,y; are incomparable pairs, then it follows from uniqueness of normal form

Suppose now that y; < x,,. Then

so that our induction gives us
Ty Tnt Y1 =217 Ze Y1
and hence Z7--- T, y1 = Zz1 - - - Zr y1. A similar result holds for the case y; < z.

Suppose now that y; £ =, and y; £ z, and at least one of x,,¥y; or zx,y; are comparable.

Without loss of generality assume that z,, < y;. As above z, < yy, -,y for some 1 <t <m
with ¢ = m or z,,y:+1 incomparable. Further, there is an r with 0 < r < m such that
2k <Y1, -,y and r = m or 2, y,+1 incomparable. Thus both sides of

are in normal form and son —t =k —r. If n > k, then r < t, so x, = y;. To avoid the
contradiction y; < y,_1, we must have t = 1, but then z,, = y; a contradiction. Similarly,
we can not have k£ > n. Hence n = k, and hence z7--- T, = Z7--- Zx, so that certainly
Ty Tp Y1 = 21+ 2k Y1 as required. O

We remark here that Proposition 3.2 can also be obtained as a corollary of Proposition 7.2,
but for the sake of our readers, we have proved this special case to outline our strategy in a
simple case.

Corollary 3.3. The free idempotent generated semigroup 1G(Y) over a semilattice Y is an
adequate semigroup.

Proof. We have already remarked in the beginning of Introduction that the biordered set of
idempotents of IG(Y) is isomorphic to Y, which is a semilattice, so that IG(Y') is an adequate
semigroup. 0
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Example 3.4. Consider a semilattice Y = {e, f, g} with e, f > g and e, f incomparable.

First, we observe that
IGY)={e f.g. . (fe Efre(fe" f: neN}
It is easy to check that for any n € N, (e fr e IG(Y) is not regular, as for any w € IG(Y),
(e f'w(e f)" = g if w contains § as a letter; otherwise (e f)"w(e f)* = (e f)™ for some
m > 2n € N. Therefore, IG(Y') is not a regular semigroup.

On the other hand, by Proposition 3.2 we have that IG(Y') is an abundant semigroup.
Furthermore,

R ={{e,e /)", (e f)re: ne Ny {f.(fe),(fe)" f: neN}{g}}
and

£={{e(fer (e f)"e: neNL{f, (e /). (fe) f: neN} {7}}
Note that we have

D'=L"0oR*=R"oL"
in IG(Y), and there are two D*-classes of IG(Y'), namely,
{g} and {e,(e /)", (e )" e f,(fe)".(f&)" f:neN},

the latter of which can be depicted by the following so called egg-box picture:

n

e)"f
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4. FREE IDEMPOTENT GENERATED SEMIGROUPS OVER RECTANGULAR BANDS

In this section we are concerned with the free idempotent generated semigroup 1G(B) over
a rectangular band B. Recall from [16] that a band B is a semilattice Y of rectangular bands
B,, a € Y, and the B,’s are the D = J-classes of B. Thus B = |J B, where each B, is

acY
a rectangular band and B,Bg C B,g, Vo, 5 € Y. At times we will use this notation without

specific comments. We show that IG(B) is a regular semigroup. It follows that if B is a
semilattice Y of rectangular bands B,, a € Y, then any word in B_(;r is regular in IG(B).

Lemma 4.1. Let B be a rectangular band. Then every element in 1G(B) has a unique
normal form.

Proof. We have already remarked that the reduction system (§+, —) induced by IG(B) is
noetherian, so that according to Lemma 2.6, to show the uniqueness of normal form of elements
in IG(B), we only need to prove that (§+, —) is locally confluent.

For this purpose, it is sufficient to consider an arbitrary word of length 3, say € f g € 7+,

where e, f and f, g are comparable. Clearly, there are four cases, namely, e L f Lg,e R f R g,
elL fRgand e R f L g. Then we have the following 4 diagrams:
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€fg €fg €fg €fg
v N 74 AN v N s N
cg ef fg eg es  .eg Fg ]
NS NS NS NS
e g eqg
Hence (B*, R) is locally confluent. O

Lemma 4.2. Suppose that B is a rectangular band and uy --- u, € 1G(B). Then we have
U, LUy -+ U, R Uy, and hence IG(B) is a reqular semigroup.

Proof. Let w =1y -+ u, € IG(B). First we claim that
UL -+ Uy RUL -+ Up_q.

Observe that (u,, u,u,—1) and (t,_1, uyu,—1) are both basic pairs. Hence we have

Uy -+ Up—1 Uy UplUp—1 = Uy © Up—1 UpUpUnp—1
=Up ** Up—1 UplUp—1
=Up Uy 1UpUp—1
= Uy © Up—1,
so that uy --- u, R u --- U,_1. By finite induction we obtain that wy; --- w, R u;.
Similarly, we can show that @y wy -+ @, L u,. Certainly then IG(B) is regular. O

Corollary 4.3. Let B be a semilattice Y of rectangular bands B,, a € Y. Then for any
X1, Ty € By, T1 -+ Ty, is a reqular element of IG(B).

Proof. 1t is clear from the presentations of IG(B,) and IG(B) that there is a well defined
morphism

¥ 1G(B,) — IG(B), such that e ) =€
for each e € B,,. It follows from Lemma 4.2 that for any x1,--- , z, € Ba, Ty -+ Ty is regular
in IG(B,). Since ¢ preserves the regularity, we have that (77 --- T,) ¢ =71 -+ T, is regular
in IG(B). O

5. FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS

Our aim here is to investigate the general structure of IG(B) for an arbitrary band B.
We prove that for any band B, IG(B) is a weakly abundant semigroup with the congruence
condition. However, we demonstrate a band B for which IG(B) is not abundant.

Lemma 5.1. Let S and T be semigroups with biordered sets of idempotents U = E(S) and
V = E(T), respectively, and let 6 : S — T be a morphism. Then the map from U to V.
defined by € e, for all e € U, lifts to a well defined morphism 0 : 1IG(U) — IG(V).

Proof. Since 6 is a morphism by assumption, we have that (e_, f) is a basic pair in U implies
(e, f0) is a basic pair in V/, so that there exists a morphism 6 : IG(U) — IG(V) defined by
el =eb, foralleeU. O
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Let B be a band. Write B as a semilattice Y of rectangular bands B,, a € Y. The mapping
0 defined by

0:B—Y r— «

where z € B,, is a morphism with kernel D. Hence, by applying Lemma 5.1 to our band B
and the associated semilattice Y, we have the following corollary.

Corollary 5.2. Let B = |J B, be a semilattice Y of rectangular bands B,, o € Y. Then
acY

a map 0 : 1G(B) — IG(Y) defined by
@ T) =01 - T
is a morphism, where x; € By, for all i € [1,n].

To proceed further we need the following definition of left to right significant indices of
elements in IG(B), where B is a semilattice Y of rectangular bands B,,a € Y.

Let 77 Ty € B with a; € B,,, for all 1 <i <n. Then a set of numbers
{i1, - iy} C[1,n] with iy < -+ <,

is called the left to right significant indices of Ty - - - T, if these numbers are picked out in the
following manner:

1 : the largest number such that aq, -+, a;;, > auy;

Ky : the largest number such that o;, < a;,, @41, 5 Q.

We pause here to remark that a;,, o, +1 are incomparable. Because, if o, < g, 41, we add
1 to k;, contradicting the choice of ky; and if a;; > ag, 41, then aq, -+ oy, -+ g, > g 41,
contradicting the choice of 7;. Now we continue our process:

19 : the largest number such that ay, 1, -, @, > uy;
ko : the largest number such that o;, < oy, aiyt1, -, Q-

i, : the largest number such that ay, 11, -, 0, > ,;
k, = n: here we have o;, < o, .41, , . Of course, we may have ¢, = k, = n.

Corresponding to the so called left to right significant indices i1, - - - ,,, we have
7 RN O 7 e€v.

We claim that for all 1 < s < r —1, a;, and «;_,, are incomparable. If not, suppose that
there exists some 1 < s < r — 1 such that o, < a;,,,. Then a;, < ap, 41 as oy, < 41, a

contradiction; if oy, > ;. ,, then o, < oy, , 0, -1, , ag,_, 41 With ky = 0, contradicting
our choice of i5. Therefore, we deduce that @;, --- @, is the unique normal form of a7 --- @,
in IG(Y').
We can use the following Hasse diagram to depict the relationship among ay,--- , a;, :
all 1 a11+1 akl ak1+1 alz 1 ctt air—f—l‘ - Qg

N N\

Qg (077N 8 7]

r
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Dually, we can define the right to left significant indices {l1,--- ,ls} C [1,n] of the element
Ty--- x_n€§+,where [y <--- <ls. Note that as @;; --- @;, must equal to oy, --- oc_lsin§+,
we have r = s.

Lemma 5.3. Let 71+ Tn € B with z; € o, for alli € [1,n], and left to right significant
indices iy, -+ ,i,. Suppose also that §i--- U € B with y; € B, for all i € [1,m], and left to
right significant indices l1,- -+ ,ls. Then

in IG(B) implies s =r and a;y = By, -+, = B,

Proof. 1t follows from Lemma 5.2 and the discussion above that

i, -0 =0y - Q=01 - Bm=270y - B
in IG(Y). By uniqueness of normal form, we have that s = r and oy, = 5, -+ , 4. = 5. O

In view of the above observations, we introduce the following notions.

Let B = |J B, be a semilattice Y of rectangular bands B,,« € Y, and let w =77 --- T,

acY
be a word in B with z; € B,,, for all i € [1,n]. Suppose that w has left to right significant
indices 71, - - - ,%,. Then we call the natural number r the Y -length, and oy, , - - - , a;, the ordered

Y -components of the equivalence class of w in IG(B).

In all what follows whenever we write w ~ w’ for w,w’ € §+, we mean that the word w’
can be obtained from the word w from a single splitting step or a single squashing step.

Lemma 5.4. Let 77 --- T, € B with left to right significant indices iy, -+ ,i,, where
x; € By, for alli € [1,n]. Let i+ Um € B be an element obtained from xy --- T, from
a single step, and suppose that the left to right significant indices of Y1 -+ Ym are jy,--- , Jr.
Then for alll € [1,7], we have

Vi Y, =T 0 Ty, W
and y;, = v'z;u, where v =¢ oru' € B, with o0 > «;,, and either u = ¢, or u € Bs for some
0> aq, oru € B% and there exists v € By with 0 > «;,, vu = u and uwv = x;,.

Proof. Suppose that we split 2 = uv for some k € [1,n], where uv is a basic product with
u € B, and v € B;, so that o = p7. Then

I*_l e ﬁmz_l e Ik—lﬂﬂxkﬁ-l wn:m e ym
If k < 4, then clearly y;, = x;, and
Ul - Uy =1 - Thoi U0 Tpy1--- Ty = T1 *++ Ty

so we may take u = u' = e.
If k =14, then p7 = oy, If p > 7, then y;, = v and again

m...y_jl:x_l...xilflﬂﬁz 1...xil_
As z;, = uv L v, we have y;, = v = va;,. Also, x;, = uwv = uy;,.

On the other hand, if p < 7, then y;, = u. As uv is a basic product, uv = v = x;, or vu = u.
If wv = u = x;,, then

Ui Yj =TTyl U=T1" Ty,



FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS 11

and y;, = u = uv = x;,. If vu = v, then as z; = uv R v and u = uwvu,

Yl Y =T1 Ty U=T1 Tl WU=T1 T5 U
and y;, = x;u where vu = u. Also,
T{oo Ty =Ty Tl UWO=T1 ~ T, UO=T1 ~~+ Uj; ¥

and z;, = y;v.

Finally, suppose that & > ¢;. Then it is obviously that j; = 4;, x;, = y;, and

It follows immediately from Lemma 5.4 that

Corollary 5.5. Suppose that ;- Ym = Ty -+ T, € IG(B) with left to right significant
indices j1,- -+, jr and iy, - i, respectively, and suppose x; € By, for alli € [1,n]. Then for
alll € [1,7], we have

m y_”:x_l e xil Uq u_2... u_s
and yj, = ul - - - ujx;uy - - - us, where for allt € [1,s], uy = € or u; € By, for some o, > «,, and
either u, = € or u; € Bs, for some 0; > «;,, or uy € Bail and there exists v, € By, with 0, > o,
and viuy = u. Consequently, y1 --- y;, R Ty -+ @, and hence y; --- y;; R x1 -+ xy,.
Proof. The proof follows from Lemma 5.4 by finite induction. U
Note that the duals of Lemma 5.4 and Corollary 5.5 hold for right to left significant indices.

From Lemmas 3.1 and 4.1, we know that every element in IG(B) has a unique normal form,
if B is a semilattice or a rectangular band. However, it may not true for an arbitrary band
B, even if B is normal. Recall that a normal band

B = B(Y> Bou (ba,,b’)

is a semilattice Y of rectangular bands B,, a € Y, such that for all « >  in Y there exists a
morphism ¢, g : B, — Bs such that

(Bl) forall « € Y, ¢pp.0 = 1p,;
(B2) for all o, 8,7 € Y such that a > 8 > 7, ¢pu s~ = Pars
and for all a, 8 € Y and x € B,,y € B,
2y = (TPa,ap) (YPs,a8)-

Example 5.6. Let B = B(Y; B, ¢o3) be a strong semilattice Y = {a, 8,7,d} of rectan-
gular bands B,, o € Y (see the figure below), such that ¢, s is defined by a¢, s = b, the
remaining morphisms being defined in the obvious unique manners.

B, [a]
/ AN
Bs a5,
N /

Bs
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By an easy calculation, we have
cd=tad=cad=cad=>bd
in IG(B), so that not every element in IG(B) has a unique normal form.

Lemma 5.7. Let B = |J B, be a semilattice Y of rectangular bands B, € Y. Let
acY
Ty -+ Tn € 1G(B) with x; € B,,, for all i € [1,n], and let y € Bz with § < «;, for all

i € [1,n]. Then in IG(B) we have

x_l e x_n ? =T TpYTn - T1 * Tpn-1TnYTpTpn—1 TplYTn Y

and

YTi o Tp =Y DYT1 T2T1YT1Tg -+ T D1YT1 - Ty

Proof. First, we notice that for any « € B,,y € Bg such that o > 3, we have yz R y, so that
(y,yx) is a basic pair and (yx)y = y. On the other hand, as (yz)r = yx, we have that (z,yx)
is a basic pair, so that

TY=7 (yr)y=T YTy =TYT 7.
Thus, the first required equality follows from the above observation by finite induction. Dually,
we can show the second one. O

Corollary 5.8. Let B = B(Y; By, ¢a) be a normal band and let 71 --- T, € 1G(B) be
such that x; € B,,, for alli € [1,n]. Let y € Bg with 8 < «y, for alli € [1,n]. Then

xy - x_ny:x1¢a1,ﬁ anbocn,ﬁ y
and
yTl :B_n:yxlqboal,ﬁ xn¢an,ﬁ-

Corollary 5.9. Let B = |J B, be a chain'Y of rectangular bands B,, a € Y. Then 1G(B)

acY
18 a reqular semigroup.

Proof. Let uy --- W, be an element in IG(B). From Lemma 5.7 it follows that w; --- @, can
be written as an element of IG(B) in which all letters come from B.,, where 7 is the minimum
of {1, ,a,}, so that w7 --- 1, is regular by Lemma 4.3. O

Given the above observations, we now introduce the idea of almost normal form for elements

in IG(B).

Definition 5.10. An element@; --- T, € B is said to be in almost normal form if there
exists a sequence
1<y <ig<---<i1<n
with
{xla o 7xi1} C Ba17 {xi1+17 T 7xi2} S Ba2, T {xirq—i—la o xn} - Bar
where a;, vy are incomparable for all i € [1,r —1].

It is obvious that the element 77 --- T, € B" defined as above has left to right significant
indices 41,49, , i1, % = n (right to left significant indices 1,43 + 1, ,i,_o + 1,4,_1 + 1),
Y-length r and ordered Y-components aq,--- ,a,. Note that, in general, the almost normal
forms of elements of IG(B) are not unique. Further, if 77 -+ T, =71 -+ ¥, are in almost
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normal form, then they have the same Y-length and ordered Y-components, but the left to
right significant indices of them can be quite different.

The next result is immediate from the definition of significant indices and Lemma 5.7.
Lemma 5.11. Every element of IG(B) can be written in almost normal form.

We have the following lemma regarding the almost normal form of the product of two almost
normal forms.

Lemma 5.12. Let 77 -+ T, € IG(B) be in almost normal form with Y -length r, left to right
significant indices iy, -+ , i, = n and ordered Y -components aq, -+ , o, let g -+ Y, € 1G(B)
be in almost normal form with Y -length s, left to right significant indices ly,--- ,ls = m and
ordered Y -components By, -+, Bs. Then (with ig = 0)

(i) . and By incomparable implies that Ty --+ T;. Y1 -+ Y, 1S in almost normal form;
(i1) . > By implies

x-_l...l‘it xit+1...xiry1xir...xit+l mm e y_l6
is an almost normal form of the product T1 -+ T;. Y1 -+ Y., for some t € [0,r — 1] such that
Qpy - g > B and t =0 or oy, By are incomparable;

(111) o, < By implies

Ty o Ti P11 Y T Y Y Yo+t Ui
is an almost normal form of the product Ty --- T, 71 -+ Ui, for some v € [1,s] such that
a, < By, , By and v =5 or Byi1, . are incomparable;

Proof. Clearly, the statement (i) is true. We now aim to show (ii). Since o, > 1, we have

Ti, 41 0 Tip Y1 = Tipyp1 T, T, Ty 0 T 1T, Y
by Corollary 5.7. Consider a,_; and S, then we either have «,_; > [ or they are incom-

parable, as a,_; < [f; would imply «,. > «,_1, which contradicts the almost normal form of
71 --- T;.. By finite induction we have that

is an almost normal form of the product Ty --- T;, 77 -+ Ui, for some t € [0,r — 1], such
that ., - , 411 > 1 and t = 0 or ay, f; are incomparable. Similarly, we can show (iii). O

Theorem 5.13. Let B = |J B, be a semilattice Y of rectangular bands B,,« € Y. Then
acY
IG(B) is a weakly abundant semigroup with the congruence condition.

Proof. Let Z7 - -- T, € IG(B) be in almost normal form with Y-length r, left to right significant
indices i1,--- i, = n, and Y-components «ay,--- ,a,. Clearly 77 77 --- T, =% -+ T,. Let
e € Bs besuch that €77 --- T, = Z1 --- T. Then by Corollary 5.2, that applying § we have
60q -+ @y =aj --- a. It follows from Lemma 3.1 that § > a4, so that by Corollary 5.5 we
have
exry - x;y Rxy-xy.

On the other hand, x; - - - x;; R x1 so that ex; R z1, thus we have x; <r e. Thuse 77 =ex; =
T;. Therefore T; --- @, R T1. Dually, 77 -+ T, L Tn, so that IG(B) is a weakly abundant
semigroup as required.



14 VICTORIA GOULD AND DANDAN YANG

Next we show that IG(B) satisfies the congruence condition.

Let 71 --- T, € IG(B) be defined as above and let 57 --- T, € IG(B) be in almost normal
form with Y-length u, left to right significant indices Iy, - - - , , = m and ordered Y'-components
b1, , Bu. From the above and a comment in Section 1, we have 77 --- T, R Y1 -+ U if and
only if 1 R y;. Suppose now that x; R yi, so that a; = f;. Let z1 .-+ Z; € IG(B), where,
without loss of generality, we can assume it is in almost normal form with Y-length ¢, left to
right significant indices ji,--- ,j: = s, and Y-components 7, --- ,v. We aim to show that

We consider the following three cases.
(i) If oy = (1, are incomparable, then it is clear that
Z o Z Ty - Tpand Z oo Z UL Um
are in almost normal form, so clearly we have

(i) If 81 = ay < 71, then by Lemma 5.12

Zl stl xn: 1 - Zjv zjv+1...zsx1zs...zjv+1 stlzsx_l e ITL
and

Z_l Z_Sm y_m:_l e %Zjv—&-l"'zsylzs"'zjv—i-l Zsylzsm e y_m
where v € [0,t — 1], Y41, , 7 = aq = B1 and 7, /1 are incomparable or v = 0. Clearly, the

right hand sides are in almost normal form.
If v > 1, then clearly the required result is true, as the above two almost normal forms
begin with the same idempotent. If v = 0, then we need to show that

Zlucczsxlzs...zl’Rzl...zsylzsuauzl
Since x1 R 1, it follows from the structure of B that
21 zZeliZsc s Rz 201 Rz 20 R 21 2sip2s - 21

as required.
(iii) If B = a1 > 7, then by Lemma 5.12

Z{ v T Ty ccc Ty =21 v Zs T1ZTL c Tip o T1ZsT1 Tip Tipal 0 T
and

Ut Zs YLt Ym = F0  Zs YiEsY Y YiEsYL Yy, Yttt Y
where k € [1,7], a1, -+ ,ar > 71, and agi1,71 are incomparable or k = r, and p € [1,u],
Bi,+, Bp > 71, and Bpy1, 7 are incomparable or p = u. Clearly, the right hand sides are in

almost normal form, so that

2 2Tl Tan RZARZ - Ze Ul -+ Y.

Similarly, we can show that Lisa right congruence, so that IG(B) is a weakly abundant
semigroup satisfying the congruence condition. This completes the proof. O

We finish this section by constructing a band B for which IG(B) is not an abundant semi-
group.
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Example 5.14. Let B = B, U BgU B, be a band with semilattice decomposition structure
and multiplication table defined by

B, [a] @Bﬁ

o b oy B
ala y =y By
bly b = vy K
Tl y Ty
yl\vy gy xy

First, it is easy to check that B is indeed a semigroup. We now show that IG(B) is not
abundant by arguing that the element @ b € IG(B) is not R*-related to any idempotent of B.
It follows from Theorem 5.13 that @ b R @. However, @ b is not R*-related to @, because

Tab=y=gyabbutTa=T#y=7a,

(sl

so that from Lemma 2.4, @ b is not R*-related to any idempotent of B, and hence IG(B) is
not an abundant semigroup.

6. FREE IDEMPOTENT GENERATED GENERATED SEMIGROUPS OVER QUASI-ZERO BANDS

In this section we will introduce a class of bands B for which the word problem of IG(B) is

solvable. Further, in Section 7, we will show that for any quasi-zero band B, the semigroup
IG(B) is abundant.

Definition 6.1. Let B be a semilattice Y of rectangular bands B,,« € Y. We say that B
s a quasi zero band if for all o, 8 € Y with B > «a, uw € B, and v € Bg, we have uv = vu = u.

It is easy to deduce that if B is quasi-zero, then for any o, 5 € Y with a < 8, v € B, and
v € Bg, the products uv and vu are basic.

Lemma 6.2. Let B be a quasi-zero band, and let Ty -+ Tp, Y1 -+ Ym € 1G(B) have left
to right significant indices i1, ,i.; j1,+ ,Jr, vESpectively. If T1 -+ Tp =1 -+ Um, then
foranyle[l,r], Ty - Ty =71 -+ U

Proof. Suppose that z; € B, for all ¢ € [1,r]. It is enough to consider a single step, say,

Suppose that the significant indices of wy; --- w, are ky,--- , k.. By Lemma 5.4, for any
[ € [1,r], we have

and wy, = u'z;u, where v’ = ¢ or ' € B, with ¢ > «;,, and either u = ¢, or u € By for
some 0 > v, Or U € Bail and there exists v € By with 0 > «;,, vu = v and wv = z;,. By
the comment proceeding Lemma 6.2 we see that in each case, 7;, u = T;,, so that clearly,
Wi o Wy =Ty -+ Ty ]

-

Lemma 6.3. Let B be a quasi-zero band, let T1 --- T, € IG(B) be in almost normal form
with Y -length r, left to right significant i1,--- ,i, = n and ordered Y -components o, - -+ , Q;,
and let g7 -+ Um € 1G(B) be in almost normal form with Y -length s, left to right significant
indices ji,- -+ ,js = m and ordered Y -components By, ,Bs. Then Ty -+ Tp =41 - Ym N
IG(B) if and only if r = s, oy = [ and Tj, 11 - Ty, = Yj,+1 -~ Tz in 1G(B), for each
[ €[1,7], where iy = jo = 0.
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Proof. The sufficiency is obvious. Suppose now that 7 -+ T, =71 -+ Up, in IG(B). Then
it follows from Lemma 5.3 that » = s and a; = f; for all ¢ € [1,r]. From Lemma 6.2, we
have that 77 --- T;, =71 --- ¥ in IG(B), for all [ € [1,7]. Then by the dual of Lemma 6.2,
Tiogi o Th =Yg o T, in IG(B). 0

Lemma 6.4. Let B be a quasi-zero band and w =Ty --- T, € BT with x; € B,, for each
€ [1,n]. Suppose that there exists an o € Y such that for all i € [1,n], oy > « and there
is at least one j € [1,n] such that o = «;. Suppose also that p is a word in B obtained by

single step on w. Then we have that w' = p' in 1G(B,), where w' and p' are words obtained
by deleting all letters in w and p which do not lie in B,.

Proof. Suppose that we split x; = uv for some k € [1,n], where v € B, and v € B,. Then we
have

W=TT o Tp 1 TE Thil - Ty ~TT - Tp 1 WO Tyl -+ Ty = P

If o, > v, then v, 7 > . Hence w’ = p’ in B_a+; of course, they are also equal in IG(B,).
If ap =aand p =7 = a, then u £ v or u R v, so that uv is basic in B,. In this case,
Tr = uv = 1w v in IG(B,), so that certainly,

pr=@1 - Tm) U0 (T o T) = (@1 Ten) Tk (Tagn o Tn) =0
in IG(B,).
If o, = a and v > 7 = «, then we have x;, = uv = v as B is a quasi-zero band, so that
p = (71 -+~ —xk_l)’ (u 5)’ (Tog1 - x—n)’
— (Tl P Ik}—l)/g (xk‘-i-l e l‘_n)/
= (@1 - Tr1) Tk (Thgr - Tn)
= w/

in B, ', so that certainly p/ = w’ in IG(B,).
A similar argument holds if oy = o and o =v < 7. O

Lemma 6.5. Let B be a quasi-zero band and let x1, -+ ,Zp, Y1, ,Ym € By for some
a €Y. Then withw =71 -+ T, and p =71 +-* Ym we have w = p in IG(B,) if and only if
w=p inIG(B).

Proof. The sufficiency is clear, as any basic pair in B,, is basic in B. Conversely, if w = p in
IG(B), there exists a finite sequence

W=Wy~ W ~We-+~Ws_1 ~ Wsg=DP.
Let w(, w},w), - -+ ,w._;,w’ be the words obtained by deleting letters x within the word such
that © € Bz with 8 # a. From Lemma 6.4, we have that wy = w] =w) =--- =w,_; = w, in
IG(B,). Note that wj = wy = w € B, " and W, =ws=p € B, ", sothat w = pin IG(B,). O

Lemma 6.6. Let B be a quasi-zero band. Then the word problem of IG(B) is solvable.

Proof. The result is immediate from Lemmas 4.1, 6.3 and 6.5. O
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7. FREE IDEMPOTENT GENERATED SEMIGROUPS WITH CONDITION (P)

From the above discussion, we know that for any band B, the semigroup IG(B) is always
weakly abundant with the congruence condition, but not necessarily abundant. The aim of
this section is devoted to finding some special kinds of bands B for which IG(B) is abundant.

Definition 7.1. We say that the semigroup 1G(B) satisfies Condition (P) if for any two
almost normal forms uy -+ U, =01 -+ Uy, € IG(B) with Y-length r, left to right significant

indices i1, -+ i, =n and ly, - ,l, = m, respectively, and ordered Y -components ay,--- , .,
the following statements (with igc =l = 0) hold:

(i) u;, L v, implies uy ---w;, =vy -+ U, for all s € [1,7].

(1) wi,41 R vi41 implies W41 -+ Up = Vi1 -+ Um, for allt € [0, — 1].

Proposition 7.2. Let B be a band for which 1G(B) satisfies Condition (P). In addition,
suppose that B is normal (so that B = B(Y; Ba, ¢a3)) or quasi-zero. Then 1G(B) is an
abundant semigroup.

Proof. Let T1 --- T, € IG(B) be in almost normal form with Y-length r, left to right sig-
nificant indices 41,--- ,4, = n, and ordered Y-components ay,---,a,. By Theorem 5.13,
Ty - x;,. Rxy. We aim to show that 77 --- Z;  R* 77. From Lemma 2.5, we only need to show
that for any two almost normal forms 77 .-+ 7y, € IG(B) with Y-length m, left to right sig-
nificant indices [y, - - ,ls = m, and ordered Y-components Sy, , s, and z1 --- Z;, € IG(B)
with Y-length t, left to right significant indices ji,---,j; = h, and ordered Y-components
Y1, Y, we have that

Z1 v Z_thl x_“:m ylsx_l xir
implies that z; --- Z;, Ty =y1 -+ Ui, T1.
Suppose now that
Z1oc Z, XL o T, =YL o UL T1 ot T

We consider the following cases:

(i) If v, a7 and S, o are incomparable, then both sides of the above equality are in almost
normal form, so that by Condition (P)

Z1 v z_jtx_l x_uzm yls Ty - :U_Zl

Since 77 - -+ T;;, R @;; by Lemma 4.2, we have z; --- Z;, T1 = V1 -+ Ui, 21

ii) If v < aq and S, a; are incomparable, then by Lemma 5.12, Z7 --- Z;, Z7 --- T;. has
(ii) If p y i ;
an almost normal form

21 DR Z]t xlzjt‘rl .o .. xiv...xlzjtxl.--xi/u wlv—‘rl DR xir7

for some v € [1,r|, where 34 < ay,--- ,a, and v = r or vy, a1 are incomparable. Hence we
have

Z_l Z_jtxlzjtxl xiv...xlzjtxl...wiv xiv+1 x‘_%:m yls Ty «-- 'T_ZT

Note that both sides of the above equality are in almost normal form. It follows from Corollary
5.2 that

(Z_l e Z_jtfflzjtxl xiv...l'lzjtxl...xiv x’iv-i—l e J;_ZT)&:(E e y_lsaj_l e xlr)e
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and so

Mo Ve Qg1 o G = s Bear e Q.
Since v > 1, we have v, = «,. To avoid contradiction, v = 1, so z;, - - 12,21 - - T3, = Ty,
and hence by Condition (P)

Z1 vt Zg, T1ZT1 cc Tiy T2 T1 T, = Y1t Y Ty Tiy
and so
(iii) If 74 < ay and S < aq, then by Lemma 5.12 we have the following two almost normal
forms for zy --- Z;; @y --- @, and Yy --- Y, T1 -+ T;,, namely,
Z1 ccc Zj, TiZ5 L1 0 Tiy o T1Z5,@1 Tiy Tigi1  Ti
where v € [1,r] such that 7 < ay,--+ ,a, and v = r or vy, o, 41 are incomparable, and
Ul Ui TIYLEL - Tp o TIULEL T, Tigl - Ti,
where u € [1,r] with s < aq, -+ ,a, and u = r or S, a1 are incomparable. Hence by

Corollary 5.2,

If v > u, then 4 = a,, to avoid contradiction v = 1, so u = 0, contradiction. Similarly, v < u
is impossible. If v = u, then t = s and s = ;. If B is a normal band satisfying Condition
(P),

T125,T1 = 100y 7 = T1Pay,p. = T1Y1,T1

Ti, - L1251 " Tiy = Ty Qo = TiyPay,fs = Tiy " T1YL L1~ T,
so that by Condition (P), we have

Zl PEREY Z‘]t xlz‘]txl ... xiv-..xlz‘jtl’l.--$iv :E .o .. yls xlyls‘rl LY xiu.--$1ylsxlc..xiu'

On the other hand, we have

xlz]txl .. x’iu."l.lzjtml..‘xiy :xlylsxl DR xiu-..xlylsxl...xiu

which is R-related to x12;,2:, and so

Z1 ot Zj, Tz, T =Yoot Y T T,
and hence
Z_l Z_th_lzm yls T1.
Suppose now that B is a quasi-zero band. First suppose that v = v = 1. Then by Lemma
6.2 we have

Z1occ Zj, T1Z5,T1 c Tiy o TZ T Ty =Y o0 Ui TIULTL ot Tay o TiYLTL - T
and so
so that
21 Z T =Y Y, T
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Suppose now that v = v > 1. By assumption s = v < ag, -+, a,. We claim that there exists
no j € [1,v] such that v, = «;; otherwise we will have «;, a1 are comparable if v > j or
Q,, (1 are comparable if v = j. Hence v, = B, < a1, , a,. Since B is a quasi-zero band,
we have

Z_l e Z_jt$1zjtx1 ajiv...xlzjtxl...xiv :Biv—‘rl e J;—Zr:_l Z_ﬁm :I"ir
and

Vi Y, TUYLTL Ty, DY T Ty, Tigk1 0 Tip = Y1 Yl Tigl 0 Ty,
so that it follows from Lemma 6.2 that

Z1 Zi, =Y o Y,
and so certainly
21t 2 Ty =Yoo Yl T

(iv) If 4 < a3 and fs > ay, then by Lemma 5.12 we have the following two almost normal

forms for zy --- Z;; @y --- T, and Yy --- Y, T1 -+ T, namely,
Z_l Z_jt'rlzjtxl xiv...xlzjtxl...xiv xiv+1 x_lr

for some v € [1,7] with v, <y, , @, and v =r or 74, 41 are incomparable, and
Yio Ul Ykt LTI, Yk Y Tl Tyt T,

for some u € [0, s — 1] with 8,41, -+, 8s > aq and f,, a1 are incomparable or v = 0. It follows
from Corollary 5.2 that

Mo M Ot - G =01 - Buar - O

Note that both sides of the above equality are normal forms of IG(Y'). As v > 1, we have
V¢ = Q, so that to avoid contradiction we have v = 1 and so x;, - - - 125,21 - - - @3, = x;,, and
hence by Condition (P)

Zl ... 'th xlz‘]t‘xl DR le ".xlzjtml...x’il
=Y Ut Yrutr - YLTIYl Y1 0 LT, Ty Ty
and so
which implies 7 -+ %, T1 = 71 - - - i, T1.

(v) If %% > oy and S5 > ay, then by Lemma 5.12 we have the following two almost normal

forms for z; --- Z;; 71 --- T,  and Yy --- Y, Ty -+ T, namely,
21t Zgy B4l 2 U1Zg Byl 25, L1Z5, T1occt Tyt T,

for some v € [0,¢ — 1] such that 7,11, -+, 7% > a3 and 7, a1 are incomparable or v = 0, and
Y U Yt T Yt U T Tt Ty ot T

for some u € [0,s — 1] such that B,41,---,08s > a1 and (,,«; are incomparable or u = 0.

Hence by Condition (P),

Zjo Fjutl T Zjel1%G Bkl T

=U1 Uty Ylut1 YT1Yl, Y+l - Y1l T1 - Ty,
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so that

and hence z1--- Z;, Ty = Y1 -+ - Ui, T1.

(vi) If v > «a; and (s, oy are incomparable, then by Lemma 5.12

Zlnnczjv Zjv‘i’l...zjt‘rlzjt'.'zjerl DY thxlz‘]z I‘l DY xll ... ‘TZT :yln--yls a;‘l ... '1:7,1 DY "'U’[/T

for some v € [0,t — 1] with 7,11, ,7 > a1 and 7,, o are incomparable or v = 0. Note that
both sides of the above equality are in almost normal form. Again by Condition (P)

Z1 T Zjotd ZpiZg, gl ZE1Z5 Tl v Ty = Yicc YL T1 o Ta
so that
and hence z1 -+ Z;, Ty = Y1+ Y, T1.
From the above discussion, we can deduce that 77 --- Z;. R* 77, and similarly we can show
that 77 --- @;. L* Ty, so that IG(B) is an abundant semigroup. O

We now aim to find examples of normal bands B for which IG(B) satisfies Condition (P),
so that by Proposition 7.2, IG(B) is abundant.

A band B = |J B, is called a simple band if it is a semilattice Y of rectangular bands B,,
acY
a €Y, where B, is either a left zero band or a right zero band.

Lemma 7.3. Let B = |J B, be a simple band and let e € B, and f € Bg. Then (e, f)
acY
is a basic pair in B if and only («, ) is a basic pair in Y, i.e. if and only if a and B are
comparable in'Y .

Proof. Since the necessity is clear, we are left with showing the sufficiency. Without loss of
generality, suppose that « < . Then ef, fe € B,. As B is a simple band, we have B, is
either a left zero band or a right zero band. If B, is a left zero band, then e(ef) = e, i.e.
ef =e, so (e, f) is a basic pair. If B, is a right zero band, then (fe)e = e, i.e. fe = e, which

again implies that (e, f) is a basic pair. O
It follows from Lemma 7.3 that for a simple band B, every element 77 --- T, of IG(B) has
a special normal form (of course, which may not unique), say, 71 - - U, € IG(B) with y; and

Yi+1 incomparable, for all i € [1,m — 1].
Lemma 7.4. Let B be a simple band. Then IG(B) satisfies Condition (P).
Proof. Let 71 -+ Ty =41 -+ YUm € IG(B) be in almost normal form with Y-length r, left to

right significant indices i1, -+ , 4, = n, ji,- -+, J, = m, respectively, and ordered Y-components
aq, -+, a,. It then follows from Corollary 5.5 that for all s € [1,7],
Ui - Yj, =T1 -+ Ty, €1 -+ €y (in which we remove the empty word)

where for all k € [1,m], e, € Bs, with 6, > «;,. By Lemma 7.3, we have

Ti, €1 *° €y = Ti €1 Em,

S

so that if we assume z;, £ y;,, then

m “'y_js:m ...yjs xiszx_l e xisel...emx_fis:x_l P xisel...emxisz 1 xis'

Together with the dual, we have shown that IG(B) satisfies Condition (P). O
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Corollary 7.5. Let B be a simple normal band. Then 1G(B) is abundant.

Let B = B(Y; B,, ¢a,3) be a normal band. We say that B is a trivial normal band if for
every o € Y, there exists a a, € B, such that for all 8 > «a, v¢g 4 = aq.

Lemma 7.6. Let B = B(Y; Ba, ¢ ) be a trivial normal band. Then 1G(B) satisfies Con-
dition (P).

Proof. First note that since B is a trivial normal band, there exists a, € B, be such that for
any >« and u € Bg, ugg o = aq.
Let 77 -+ T, = U1 + -+ Um € IG(B) be in almost normal form with Y-length r, left to right

significant indices iy,--- ,4, = n, ji, -+ ,J. = m, respectively, and ordered Y-components
ay, -+, . It follows from Corollary 5.5 that
Ui - Y, =T1 -+ Ty U -+ U (in which we remove the empty word)

such that for all k € [1, s] we have uy € Bs, with 0, > ay,, so that U D5y 01, = Qa3 OF U € By,
with viu, = uy for some v, € B,, such that 7, > «;,, and in this case we have Aoy, Uk = U, SO
that oy, R uy. Thus the idempotents U1¢51,ail7 e 7us¢5sﬁail are all R-related, and so

xil ul o u_s = x_ll u1¢(5170¢1‘l e u8¢5s,ail = 'CC_Z[ u1¢61704il e usgbés,ail .
— / / / .
On the other hand, we have y;, = u - --ujx;u; - - - us, where u), € B,, with o, > «;,. Hence

if we assume that z;, £ y;,, then z;, = x;uy - - - us, and so x;, = (U1¢61,ail) e (uségaail), SO
that

‘T_il u1¢51,az‘l o 'us(btss,ail =Ty <u1¢51,ail) T (us(bt;s,&il) = m_ll

Hence y1 --- y; = @1 --- T;, as required. O

Corollary 7.7. Let B = B(Y; Ba, ¢u) be a trivial normal band. Then IG(B) is an abun-
dant semigroup.

8. A NORMAL BAND B FOR WHICH IG(B) IS NOT ABUNDANT

From Section 7, we know that the free idempotent idempotent generated semigroup 1G(B)
over a normal band B satisfying Condition (P) is an abundant semigroup. Therefore, one
would like to ask whether for any normal band B, IG(B) is abundant. In this section we will
construct a 10-element normal band B for which IG(B) is not abundant.

Throughout this section, B denotes a normal band B(Y'; By, y¢a3)-

Lemma 8.1. Let B be a normal band, and let x € Bg,y € B, with 8,7 > a. Then (z,y)
is a basic pair implies (Tp ., YPry,a) is a basic pair and

(xqb@a)(ygbma) = (xy)ﬁbé,m

where 0 is minimum of 5 and 7.

Proof. Let (x,y) be a basic pair with « € Bg,y € B,. Then (3,7 are comparable. If 5 > ~,
then we either have zy =y or yz = y. If zy = y, then (z¢p,)y =y, so

y¢'y,a - (($¢3,7)y)¢%a = <m¢ﬁ,a>(y¢'y,a>a
S0 (0B, YPry,a) is a basic pair. If yx =y, then y(xdg,), so

YOy = (y<x¢6,7))¢%a = <y¢%a)(x¢5,a>7
so that (2¢g,q,yP+,a) is a basic pair.
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A similar argument holds if v > . The final part of the lemma is clear. U

Lemma 8.2. Let uy --- W, € IG(B) with u; € B,, and a; > « for all i € [1,n]. Suppose
that vy --- U, € IG(B) with v; € Bg, for all i € [1,m] is an element obtained by single step
onuy --- U, (note that 5; > «, for all i € [1,m]). Then in IG(B,) we have

ul¢0¢1,0¢ e u’nQSOéruOé - Ul¢6170¢ T Um¢67rua'

Proof. Suppose that u; = xy is a basic product with € B;,y € B,, for some ¢ € [1,n]. Note
that the minimum of § and 7 is «;. Then

W e Uy U e T T Ui e T

If follows from Lemma 8.1 that in IG(B,,)

U1¢a1,a Unﬁban,a = U1¢a1,a ui—1¢ai_1,a ui¢ai,a ui+1¢ai+1,a Un¢an,a
= U1¢a1,a U171¢a¢,1,a $¢6,ay¢n,a ui+1¢a¢+1,a un¢an,a
= U1¢a1,a Ui—l(bai,ha $¢6,a ?/%,a ui+1¢ai+1,o¢ Uncban,a
as required. O

Corollary 8.3. Let x1, - ,Zn, Y1, sYm € Bo. Then Ty -+ Tp =71 -+ Um in IG(B,)
if and only if the equality holds in IG(B).

Proof. The necessity is obvious, as any basic pair in B, must also be basic in B. Suppose now
that we have
in IG(B). Then there exists a sequence of transitions

Tl o Ty~ UL o Ug~ UL o T~ wve ~WL o W ~TYL - Yy

using basic pairs in B. Note that all idempotents involved in the above sequence lie in Bpg

for some [ > «, so that successive applications of Lemma 8.2 give 77 --- T, =71 - Um In
IG(B,). O

We remark here that for an arbitrary band B, Corollary 8.3 need not be true.

Example 8.4. Let B = B, U B be a band with semilattice structure and multiplication
table defined by

B, |l

I v w u v
Ll v W W W B u' | w
ulu u w ou w FoluTw
wlw u w u w
u | uod W o W
w | w v ow v w
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It is easy to check that B forms a band. By the uniqueness of normal forms in IG(Bg), we
have ' w # w’ in IG(Bg). However in IG(B) we have

vu=ulw
=u lw (as (v/,1) is a basic pair)
=u lw (as (I,w) is a basic pair)
=u w
=w

With the above preparations, we now construct a 10-element normal band B for which
IG(B) is not abundant.

Example 8.5. Let B = B(Y; B,, ¢a,3) be a strong semilattice Y = {a, 5,7,0} of rectan-
gular bands (see the figure below), where ¢, g : B, — Bj is defined by

a¢o¢,,3 =6 bgboz,ﬁ =/ C¢O¢,B =9, d¢a,ﬁ =h
the remaining morphisms being defined in the obvious unique manner.

alb
cld

Ba

Bs

Now we consider an element € v € IG(B), then we have

ol
]|
Il
ol
S
N

(as (d,v) is a basic pair)

(as € d =€ dpap =€ h by Corollary 5.8)

I
|

I
ol
| = <

(as (a,v) is a basic pair)

(as h @ = h aga s = h € by Corollary 5.8)

Il

ol
S]]
S]]

I
ol
SIS S S o B I =W
=
<

Il

]
ol
]|

However, € h € # € in IG(Bj) by the uniqueness of normal forms, so by Corollary 8.3, we have
€ h € # e in IG(B), which implies € ¥ is not R*-related to €. On the other hand, we have
known from Theorem 5.13 that e v R €, so that by Lemma 2.4 that € v is not R*-related any
idempotent of B, so that IG(B) is not an abundant semigroup.
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