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Abstract. We study the general structure of the free idempotent generated semigroup IG(B)
over an arbitrary band B. We show that IG(B) is always a weakly abundant semigroup with
the congruence condition, but not necessarily abundant. We then prove that if B is a normal
band or a quasi-zero band for which IG(B) satisfies Condition (P ), then IG(B) is an abundant
semigroup. In consequence, if Y is a semilattice, then IG(Y ) is adequate, that is, it belongs to
the quasivariety of unary semigroups introduced by Fountain over 30 years ago. Further, the
word problem of IG(B) is solvable if B is quasi-zero. We also construct a 10-element normal
band B for which IG(B) is not abundant.

1. Introduction

Let S be a semigroup with a set of idempotents E = E(S). The structure of the set
E, equipped with the restriction of the quasi-orders ≤R or ≤L defined on S, can naturally
be described as a biordered set, a notion arising as a generalisation of the semilattice of
idempotents in an inverse semigroup. Moreover, Easdown [6] shows every biordered set E
occurs as E(S) for some semigroup S. Given a biordered set E, i.e. the set E of idempotents
of some semigroup S, there is a free object in the category of semigroups that are generated by
E, called the free idempotent generated semigroup over E, given by the following presentation:

IG(E) = 〈E : ēf̄ = ef, e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅〉,

where E = {ē : e ∈ E}.1 Note that {e, f} ∩ {ef, fe} 6= ∅ implies both ef and fe are
idempotents of E. Clearly, there is a natural morphism ϕ from IG(E) to 〈E〉, the subsemigroup
of S generated by E. In fact, E(IG(E)) = E, and the restriction ϕ|E : E −→ E is an
isomorphism of biordered sets [6]. We refer our readers to [14] for other properties of IG(E).
Given the universal nature of free idempotent generated semigroups, it is natural to enquire

into their structure. A popular theme is to investigate their maximal subgroups. It has been
proved that every group is a maximal subgroup of IG(E) for some biordered set E [13,14] and
E may be taken to be a band [5].
Whereas much of the former work in the literature of IG(E) has focused on the maximal

subgroups, the aim of the current paper is to investigate the general structure of IG(B) for
a band B. Our main result is that for an arbitrary band B, IG(B) is a weakly abundant
semigroup with the congruence condition.
We proceed as follows. In Section 2 we recall some basics of Green’s relations and regular

semigroups, and of generalised Green’s relations and (weakly) abundant semigroups. We
briefly describe how IG(B) naturally induces a reduction system. In Section 3, we begin our
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investigation of IG(B) by looking at a semilattice Y.We prove that every element of IG(Y ) has
a unique normal form. Consequently, we show that IG(Y ) is abundant, and hence adequate.
We remark here that this result can be obtained as a corollary of Proposition 7.2, however,
the straightforward proof makes clear the strategies we subsequently use in other contexts.
In Section 4, we show that for any rectangular band B, IG(B) is regular. We then proceed
to look at a general band B in Section 5. Unlike the case of semilattices and rectangular
bands, here we may lose uniqueness of normal forms. To overcome this problem, the concept
of almost normal forms is introduced. It is proved that for any band B, IG(B) is a weakly
abundant semigroup with the congruence condition, but need not be abundant.
We then consider some sufficient condition for IG(B) to be abundant. In Section 6, we

introduce a class of bands B, which are in general not normal, for which the word problem of
IG(B) is solvable. Then in Section 7, we show that if B is a quasi-zero band or a normal band
for which IG(B) satisfies a condition we label (P ), then IG(B) is an abundant semigroup. We
then find two classes of normal bands satisfying Condition (P ). One would naturally ask here
that whether IG(B) is abundant for an arbitrary normal band B. In Section 8, we construct
a 10-element normal band with 4 D-classes for which IG(B) is not abundant.

2. Preliminaries: (weakly) abundant semigroups and Reduction systems

Throughout this paper, for n ∈ N we write [1, n] to denote {1, · · · , n} ⊆ N. The free
semigroup on a set A is denoted by A+.

We start by introducing an important tool for analysing ideals of a semigroup S and related
notions of structure, called Green’s relations. There are five equivalence relations that char-
acterize the elements of S in terms of the principal ideals they generate. The two most basic
of Green’s relations are L and R, are defined by

a L b⇐⇒ S1a = S1b, a R b⇐⇒ aS1 = bS1,

where S1 denotes S with an identity element adjoined (unless S already has one.) Furthermore,
we denote the intersection L ∩ R by H, while, the join L ∨ R is denoted by D. It is known
that L ◦ R = R ◦ L, and hence D = L ◦ R = R ◦ L.
An element a ∈ S is called regular if there exists x ∈ S such that a = axa. A semigroup S

is called a regular semigroup if contains entirely of regular elements. We say that S is inverse
if it is regular and the set of all idempotents of S forms a semilattice. It is well known that
S is regular (inverse) if and only if each L-class (R-class) contains a (unique) idempotent.
The definition of regular semigroups is copied from von Neumann’s definition of regular rings;
regular semigroups are particularly amenable to analysis using Green’s relations.
As a generalisation of Green’s relations, the relations L∗ and R∗ are defined on a semigroup

S by the rule that

a L∗ b ⇐⇒ (∀x, y ∈ S1) (ax = ay ⇔ bx = by)

and

a R∗ b ⇐⇒ (∀x, y ∈ S1) (xa = ya⇔ xb = yb).

It is easy to see that L ⊆ L∗, R ⊆ R∗, and if S is regular, then L = L∗ and R = R∗. We
denote by H∗ the intersection L∗ ∩ R∗, and by D∗ the join of L∗ ∨ R∗. Note that unlike
Green’s relations, generally L∗ ◦ R∗ 6= R∗ ◦ L∗. A binary relation J ∗ may also be defined on
S, which is not required here.
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A semigroup S is abundant if each L∗-class and each R∗-class contains an idempotent. An
abundant semigroup is adequate if its idempotents form a semilattice. In view of the comment
above, regular semigroups are abundant while inverse semigroups are adequate. In the theory
of abundant semigroups the relations L∗, R∗, H∗, D∗ and J ∗ play a role which is analogous
to that of Green’s relations in the theory of regular semigroups.

As an easy but useful consequence of the definition of L∗, we have the following lemma (a
dual result holds for R∗).

Lemma 2.1. [9] Let S be a semigroup with a ∈ S and e2 = e ∈ E(S). Then the following
statements are equivalent:
(i) a L∗ e;
(ii) ae = a and for any x, y ∈ S1, ax = ay implies ex = ey.

A third set of relations, extending the stared versions of Green’s relations, and useful for
semigroups that are not abundant, were introduced in [20].

Let E(S) be the set of idempotents of a semigroup S. The relations L̃ and R̃ on a semigroup
S are defined by the rule

a L̃ b ⇐⇒ (∀e ∈ E(S)) (ae = a⇔ be = b)

and

a R̃ b ⇐⇒ (∀e ∈ E(S)) (ea = a⇔ eb = b)

for any a, b ∈ S.
We remark here that L ⊆ L∗ ⊆ L̃ and R ⊆ R∗ ⊆ R̃. Moreover, if S is regular, then

L = L∗ = L̃ and R = R∗ = R̃
A semigroup S is weakly abundant if each L̃-class and each R̃-class contains an idempotent.

Whereas L∗ and R∗ are always right and left congruences on S, respectively, the same is

not necessarily true for L̃ and R̃. We say that a weakly abundant semigroup S satisfies the

congruence condition if L̃ is a right congruence and R̃ is a left congruence.

The following lemma is an analogue of Lemma 2.1. Of course, a dual result holds for R̃.

Lemma 2.2. [20] Let S be a semigroup with a ∈ S and e2 = e ∈ E(S). Then the following
statements are equivalent:

(i) a L̃ e;
(ii) ae = a and for any f ∈ E(S), af = a implies ef = e.

From easy observation, we have the following lemma.

Lemma 2.3. Let S be a semigroup with e, f ∈ E(S). Then e L f if and only if e L̃ f and

e R f if and only if e R̃ f.

Lemma 2.4. Let S be a semigroup, and let a ∈ S, f 2 = f ∈ E(S) be such that a R̃ f .
Then a is not R∗-related to f implies that a is not R∗-related to any idempotent of S.

Proof. Suppose that a R∗ e for some idempotent e ∈ E(S). Then a R̃ e, as R∗ ⊆ R̃, so

that e R̃ f by assumption, and so e R f by Lemma 2.3. Hence a R∗ f as R ⊆ R∗, a
contradiction. �
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Lemma 2.5. Let S be a weakly abundant semigroup with a ∈ S and e2 = e ∈ E(S) such

that a R̃ e. Then a R∗ e if and only if for any x, y ∈ S, xa = ya implies that xe = ye.

Proof. Suppose that for all x, y ∈ S, if xa = ya then xe = ye. By Lemma 2.1, we need only
show that if x ∈ S and xa = a, then xe = e. Suppose therefore that x ∈ S and xa = a. As

a R̃ e, we have xa = a = ea, so that by assumption, xe = ee = e. �

In the rest of this section we recall the definition of reduction systems and their properties.
As far as possible we follow standard notation and terminology, as may be found in [1].

Let A be a set of objects and −→ a binary relation on A. We call the structure (A,−→) a
reduction system and the relation −→ a reduction relation. The reflexive, transitive closure of

−→ is denoted by
∗
−→, while

∗
←→ denotes the smallest equivalence relation on A that contains

−→ . We denote the equivalence class of an element x ∈ A by [x]. An element x ∈ A is said
to be irreducible if there is no y ∈ A such that x −→ y; otherwise, x is reducible. For any

x, y ∈ A, if x
∗
−→ y and y is irreducible, then y is a normal form of x. A reduction system

(A,−→) is noetherian if there is no infinite sequence x0, x1, · · · ∈ A such that for all i ≥ 0,
xi −→ xi+1.
We say that a reduction system (A,−→) is confluent if whenever w, x, y ∈ A, are such that

w
∗
−→ x and w

∗
−→ y, then there is a z ∈ A such that x

∗
−→ z and y

∗
−→ z, as described by

the figure below on the left, and (A,−→) is locally confluent if whenever w, x, y ∈ A, are such

that w −→ x and w −→ y, then there is a z ∈ A such that x
∗
−→ z and y

∗
−→ z, as described

by the figure below on the right.

w

x y

z

w

x y

z

*
*

*
*

*
*

Lemma 2.6. [1] Let (A,−→) be a reduction system. Then the following statements hold:
(i) If (A,−→) is noetherian and confluent, then for each x ∈ A, [x] contains a unique

normal form.
(ii) If (A,−→) is noetherian, then it is confluent if and only if it is locally confluent.

Let E be a biordered set. We use E
+
to denote the free semigroup on E = {e : e ∈ E}.

Lemma 2.7. Let IG(E) be the free idempotent generated semigroup over a biordered set E,

and let R be the relation on E
+
defined by

R = {(ēf̄ , ef) : (e, f) is a basic pair}.

Then (E
+
,−→) forms a noetherian reduction system, where −→ is defined by

u −→ v ⇐⇒ (∃ (l, r) ∈ R) (∃ x, y ∈ E
+
) u = xly and v = xry.

Proof. The proof follows directly from the definitions of the reduction system and the binary
relation −→ . �

We remark here that in the reduction system (E
+
,−→) induced by IG(E), the smallest

equivalence relation
∗
←→ on E

+
is exactly the congruence generated by R.
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3. Free idempotent generated semigroups over semilattices

We start our investigation of free idempotent generated semigroups IG(B) over bands B,
by looking at the special case of semilattices. Throughout this section we will use the letter
Y to denote a semilattice. It is proved that IG(Y ) is an adequate semigroup; however, it need
not be regular.
It follows from Lemma 2.7 that IG(Y ) induces naturally a noetherian reduction system

(Y
+
,−→).

Lemma 3.1. Let Y be a semilattice. Then every element in IG(Y ) has a unique normal
form.

Proof. By Lemma 2.6, to show the required result we only need to argue that (Y
+
,−→) is

locally confluent. For this purpose, it is sufficient to consider an arbitrary word of length 3,

say e f g ∈ Y
+
, where e, f and f, g are comparable. There are four cases, namely, e ≤ f ≤ g,

e ≥ f ≥ g, e ≤ f, f ≥ g and e ≥ f, f ≤ g, for which we have the following 4 diagrams:

e f g

e g e f

e

e f g

f g e g

g

e f g

e g e g

e g

e f g

f g e f

f

*
*

Thus (Y
+
,−→) is locally confluent, so that every element in IG(Y ) has a unique normal

form. �

Note that an element x1 · · · xn ∈ IG(Y ) is in normal form if and only if xi and xi+1 are
incomparable, for all i ∈ [1, n − 1]. By uniqueness of normal forms in IG(Y ), we can easily
deduce that two words of IG(B) are equal if and only the corresponding normal forms of them

are identical word in E
+
, and hence the word problem of IG(Y ) is solvable.

Proposition 3.2. The free idempotent generated semigroup IG(Y ) over a semilattice Y is
an abundant semigroup.

Proof. Let x1 · · · xn, y1 · · · ym ∈ IG(B) be in normal form. We begin with considering the
product (x1 · · · xn)(y1 · · · ym). Either xn, y1 are incomparable, xn ≥ y1 or xn ≤ y1. In
the first case it is clear that x1 · · · xn y1 · · · ym is a normal form. If xn ≥ y1, then ei-
ther x1 · · · xn−1 y1 · · · ym is in normal form, or y1 and xn−1 are comparable. If y1 and
xn−1 are comparable, then y1 < xn−1, for we cannot have xn−1 ≤ y1 else xn−1 ≤ xn, a
contradiction. Continuing in this manner we obtain (x1 · · · xn)(y1 · · · ym) has normal form
x1 · · · xt−1 y1 · · · ym, where 1 ≤ t ≤ n, xn, · · · , xt ≥ y1, and either t = 1 (in which case
x1 · · · xt−1 is the empty product) or xt−1, y1 are incomparable. Similarly, if xn ≤ y1, then
(x1 · · · xn)(y1 · · · ym) has normal form x1 · · · xn yt+1 · · · ym, where 1 ≤ t ≤ m, xn ≤ y1, · · · yt,
and t = m or xn, yt+1 are incomparable.

Suppose now that x1 · · · xn, z1 · · · zk and y1 · · · ym ∈ IG(Y ) are in normal form such that

x1 · · · xn y1 · · · ym = z1 · · · zk y1 · · · ym

in IG(Y ). Here we assume n, k ≥ 0 and m ≥ 1. We proceed to prove that

x1 · · · xn y1 = z1 · · · zk y1
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in IG(Y ). If n = k = 0 there is nothing to show. Note that the result is clearly true if m = 1,
so in what follows we assume m ≥ 2.

First we assume that n ≥ 1 and k = 0 (i.e. z1 · · · zk is empty), so that

x1 · · · xn y1 · · · ym = y1 · · · ym.

In view of Lemma 3.1, xn and y1 must be comparable. If xn ≥ y1, then it follows from the
above observation that y1 ≤ x1, · · · , xn, so that x1 · · · xn y1 = y1. On the other hand, if
xn ≤ y1, then

x1 · · · xn yt+1 · · · ym = y1 · · · ym

for 1 ≤ t ≤ m such that xn ≤ y1, · · · , yt and t = m or xn, yt+1 are incomparable. Then
xn = yt, so that to avoid the contradiction yt ≤ yt−1 we must have t = 1. Clearly then n = 1
and x1 = xn = y1 so that x1 y1 = y1. Hence certainly holds for n+ k +m ≤ 3.

Suppose that n+ k +m ≥ 4 and the result is true for all n′ + k′ +m′ < n+ k +m. Recall
we are assuming that m ≥ 2 and in view of the above we may take n, k ≥ 1.

If xn, y1 and zk, y1 are incomparable pairs, then it follows from uniqueness of normal form
that k = n and x1 · · · xn y1 = z1 · · · zk y1.

Suppose now that y1 ≤ xn. Then

x1 · · · xn−1 y1 · · · ym = z1 · · · zk y1 · · · ym

so that our induction gives us

x1 · · · xn−1 y1 = z1 · · · zk y1

and hence x1 · · · xn y1 = z1 · · · zk y1. A similar result holds for the case y1 ≤ zk.

Suppose now that y1 6≤ xn and y1 6≤ zk and at least one of xn, y1 or zk, y1 are comparable.
Without loss of generality assume that xn < y1. As above xn ≤ y1, · · · , yt for some 1 ≤ t ≤ m

with t = m or xn, yt+1 incomparable. Further, there is an r with 0 ≤ r ≤ m such that
zk ≤ y1, · · · , yr and r = m or zk, yr+1 incomparable. Thus both sides of

x1 · · · xn yt+1 · · · ym = z1 · · · zk yr+1 · · · ym

are in normal form and so n − t = k − r. If n > k, then r < t, so xn = yt. To avoid the
contradiction yt ≤ yt−1, we must have t = 1, but then xn = y1 a contradiction. Similarly,
we can not have k > n. Hence n = k, and hence x1 · · · xn = z1 · · · zk, so that certainly
x1 · · · xn y1 = z1 · · · zk y1 as required. �

We remark here that Proposition 3.2 can also be obtained as a corollary of Proposition 7.2,
but for the sake of our readers, we have proved this special case to outline our strategy in a
simple case.

Corollary 3.3. The free idempotent generated semigroup IG(Y ) over a semilattice Y is an
adequate semigroup.

Proof. We have already remarked in the beginning of Introduction that the biordered set of
idempotents of IG(Y ) is isomorphic to Y , which is a semilattice, so that IG(Y ) is an adequate
semigroup. �
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Example 3.4. Consider a semilattice Y = {e, f, g} with e, f ≥ g and e, f incomparable.

First, we observe that

IG(Y ) = {e, f , g, (e f)n, (f e)n, (e f)n e, (f e)n f : n ∈ N}.

It is easy to check that for any n ∈ N, (e f)n ∈ IG(Y ) is not regular, as for any w ∈ IG(Y ),
(e f)nw(e f)n = g if w contains g as a letter; otherwise (e f)nw(e f)n = (e f)m for some
m ≥ 2n ∈ N. Therefore, IG(Y ) is not a regular semigroup.
On the other hand, by Proposition 3.2 we have that IG(Y ) is an abundant semigroup.

Furthermore,

R∗ = {{e, (e f)n, (e f)n e : n ∈ N}, {f, (f e)n, (f e)n f : n ∈ N}, {g}}

and

L∗ = {{e, (f e)n, (e f)n e : n ∈ N}, {f, (e f)n, (f e)n f : n ∈ N}, {g}}

Note that we have

D∗ = L∗ ◦ R∗ = R∗ ◦ L∗

in IG(Y ), and there are two D∗-classes of IG(Y ), namely,

{g} and {e, (e f)n, (e f)n e, f , (f e)n, (f e)n f : n ∈ N},

the latter of which can be depicted by the following so called egg-box picture:

e, (e f)ne (e f)n

(f e)n f, (f e)nf

4. Free idempotent generated semigroups over rectangular bands

In this section we are concerned with the free idempotent generated semigroup IG(B) over
a rectangular band B. Recall from [16] that a band B is a semilattice Y of rectangular bands
Bα, α ∈ Y , and the Bα’s are the D = J -classes of B. Thus B =

⋃
α∈Y

Bα where each Bα is

a rectangular band and BαBβ ⊆ Bαβ, ∀α, β ∈ Y. At times we will use this notation without
specific comments. We show that IG(B) is a regular semigroup. It follows that if B is a

semilattice Y of rectangular bands Bα, α ∈ Y, then any word in Bα
+
is regular in IG(B).

Lemma 4.1. Let B be a rectangular band. Then every element in IG(B) has a unique
normal form.

Proof. We have already remarked that the reduction system (B
+
,−→) induced by IG(B) is

noetherian, so that according to Lemma 2.6, to show the uniqueness of normal form of elements

in IG(B), we only need to prove that (B
+
,−→) is locally confluent.

For this purpose, it is sufficient to consider an arbitrary word of length 3, say e f g ∈ Y
+
,

where e, f and f, g are comparable. Clearly, there are four cases, namely, e L f L g, eR f R g,

e L f R g and e R f L g. Then we have the following 4 diagrams:
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e f g

e g e f

e

e f g

f g e g

g

e f g

e g e g

e g

e f g

f g e f

f

*
*

Hence (B∗, R) is locally confluent. �

Lemma 4.2. Suppose that B is a rectangular band and u1 · · · un ∈ IG(B). Then we have
un L u1 · · · un R u1, and hence IG(B) is a regular semigroup.

Proof. Let w = u1 · · · un ∈ IG(B). First we claim that

u1 · · · un R u1 · · · un−1.

Observe that (un, unun−1) and (un−1, unun−1) are both basic pairs. Hence we have

u1 · · · un−1 un unun−1 = u1 · · · un−1 ununun−1

= u1 · · · un−1 unun−1

= u1 · · · un−1unun−1

= u1 · · · un−1,

so that u1 · · · un R u1 · · · un−1. By finite induction we obtain that u1 · · · un R u1.

Similarly, we can show that u1 u2 · · · un L un. Certainly then IG(B) is regular. �

Corollary 4.3. Let B be a semilattice Y of rectangular bands Bα, α ∈ Y. Then for any
x1, · · · , xn ∈ Bα, x1 · · · xn is a regular element of IG(B).

Proof. It is clear from the presentations of IG(Bα) and IG(B) that there is a well defined
morphism

ψ : IG(Bα) −→ IG(B), such that e ψ = e

for each e ∈ Bα. It follows from Lemma 4.2 that for any x1, · · · , xn ∈ Bα, x1 · · · xn is regular
in IG(Bα). Since ψ preserves the regularity, we have that (x1 · · · xn) ψ = x1 · · · xn is regular
in IG(B). �

5. Free idempotent generated semigroups over bands

Our aim here is to investigate the general structure of IG(B) for an arbitrary band B.
We prove that for any band B, IG(B) is a weakly abundant semigroup with the congruence
condition. However, we demonstrate a band B for which IG(B) is not abundant.

Lemma 5.1. Let S and T be semigroups with biordered sets of idempotents U = E(S) and
V = E(T ), respectively, and let θ : S −→ T be a morphism. Then the map from U to V

defined by e 7→ eθ, for all e ∈ U , lifts to a well defined morphism θ : IG(U) −→ IG(V ).

Proof. Since θ is a morphism by assumption, we have that (e, f) is a basic pair in U implies
(eθ, fθ) is a basic pair in V , so that there exists a morphism θ : IG(U) −→ IG(V ) defined by
e θ = eθ, for all e ∈ U . �



FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS 9

Let B be a band. Write B as a semilattice Y of rectangular bands Bα, α ∈ Y . The mapping
θ defined by

θ : B −→ Y, x 7→ α

where x ∈ Bα, is a morphism with kernel D. Hence, by applying Lemma 5.1 to our band B
and the associated semilattice Y , we have the following corollary.

Corollary 5.2. Let B =
⋃
α∈Y

Bα be a semilattice Y of rectangular bands Bα, α ∈ Y . Then

a map θ : IG(B) −→ IG(Y ) defined by

(x1 · · · xn) θ = α1 · · · αn

is a morphism, where xi ∈ Bαi
, for all i ∈ [1, n].

To proceed further we need the following definition of left to right significant indices of
elements in IG(B), where B is a semilattice Y of rectangular bands Bα, α ∈ Y.

Let x1 · · · xn ∈ B
+
with xi ∈ Bαi

, for all 1 ≤ i ≤ n. Then a set of numbers

{i1, · · · , ir} ⊆ [1, n] with i1 < · · · < ir

is called the left to right significant indices of x1 · · · xn, if these numbers are picked out in the
following manner:
i1 : the largest number such that α1, · · · , αi1 ≥ αi1 ;
k1 : the largest number such that αi1 ≤ αi1 , αi1+1, · · · , αk1 .

We pause here to remark that αi1 , αk1+1 are incomparable. Because, if αi1 ≤ αk1+1, we add
1 to k1, contradicting the choice of k1; and if αi1 > αk1+1, then α1, · · · , αi1 , · · · , αk1 ≥ αk1+1,
contradicting the choice of i1. Now we continue our process:

i2 : the largest number such that αk1+1, · · · , αi2 ≥ αi2 ;
k2 : the largest number such that αi2 ≤ αi2 , αi2+1, · · · , αk2 .
...
ir : the largest number such that αkr−1+1, · · · , αir ≥ αir ;
kr = n: here we have αir ≤ αir , αir+1, · · · , αn. Of course, we may have ir = kr = n.

Corresponding to the so called left to right significant indices i1, · · · , ir, we have

αi1 , · · · , αir ∈ Y.

We claim that for all 1 ≤ s ≤ r − 1, αis and αis+1
are incomparable. If not, suppose that

there exists some 1 ≤ s ≤ r − 1 such that αis ≤ αis+1
. Then αis ≤ αks+1 as αis+1

≤ αks+1, a
contradiction; if αis ≥ αis+1

, then αis+1
≤ αis+1

, αis+1−1, · · · , αks−1+1 with k0 = 0, contradicting
our choice of is. Therefore, we deduce that αi1 · · · αir is the unique normal form of α1 · · · αn

in IG(Y ).
We can use the following Hasse diagram to depict the relationship among α1, · · · , αir :

α1 · · · αi1−1

αi1

αi1+1· · · αk1 αk1+1· · · αi2−1

αi2 · · · αir

· · · αir+1· · · αn

×

×
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Dually, we can define the right to left significant indices {l1, · · · , ls} ⊆ [1, n] of the element

x1 · · · xn ∈ B
+
, where l1 < · · · < ls. Note that as αi1 · · · αir must equal to αl1 · · · αls in B

+
,

we have r = s.

Lemma 5.3. Let x1 · · · xn ∈ B
+
with xi ∈ αi, for all i ∈ [1, n], and left to right significant

indices i1, · · · , ir. Suppose also that y1 · · · ym ∈ B
+
with yi ∈ βi, for all i ∈ [1,m], and left to

right significant indices l1, · · · , ls. Then

x1 · · · xn = y1 · · · ym

in IG(B) implies s = r and αi1 = βl1 , · · · , αir = βlr .

Proof. It follows from Lemma 5.2 and the discussion above that

αi1 · · · αir = α1 · · · αn = β1 · · · βm = βl1 · · · βls

in IG(Y ). By uniqueness of normal form, we have that s = r and αi1 = βl1 , · · · , αir = βlr . �

In view of the above observations, we introduce the following notions.

Let B =
⋃
α∈Y

Bα be a semilattice Y of rectangular bands Bα, α ∈ Y , and let w = x1 · · · xn

be a word in B
+
with xi ∈ Bαi

, for all i ∈ [1, n]. Suppose that w has left to right significant
indices i1, · · · , ir. Then we call the natural number r the Y -length, and αi1 , · · · , αir the ordered
Y -components of the equivalence class of w in IG(B).

In all what follows whenever we write w ∼ w′ for w,w′ ∈ B
+
, we mean that the word w′

can be obtained from the word w from a single splitting step or a single squashing step.

Lemma 5.4. Let x1 · · · xn ∈ B
+

with left to right significant indices i1, · · · , ir, where

xi ∈ Bαi
, for all i ∈ [1, n]. Let y1 · · · ym ∈ B

+
be an element obtained from x1 · · · xn from

a single step, and suppose that the left to right significant indices of y1 · · · ym are j1, · · · , jr.
Then for all l ∈ [1, r], we have

y1 · · · yjl = x1 · · · xil u

and yjl = u′xilu, where u
′ = ε or u′ ∈ Bσ with σ ≥ αil , and either u = ε, or u ∈ Bδ for some

δ > αil, or u ∈ Bαil
and there exists v ∈ Bθ with θ > αil, vu = u and uv = xil.

Proof. Suppose that we split xk = uv for some k ∈ [1, n], where uv is a basic product with
u ∈ Bµ and v ∈ Bτ , so that αk = µτ. Then

x1 · · · xn ∼ x1 · · · xk−1 u v xk+1 · · · xn = y1 · · · ym.

If k < il, then clearly yjl = xil and

y1 · · · yjl = x1 · · · xk−1 u v xk+1 · · · xil = x1 · · · xil ,

so we may take u = u′ = ε.

If k = il, then µτ = αil . If µ ≥ τ , then yjl = v and again

y1 · · · yjl = x1 · · · xil−1 u v = x1 · · · xil .

As xil = uv L v, we have yjl = v = vxil . Also, xil = uv = uyjl .

On the other hand, if µ < τ , then yjl = u. As uv is a basic product, uv = u = xil or vu = u.
If uv = u = xil , then

y1 · · · yj1 = x1 · · · xil−1 u = x1 · · · xil ,
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and yjl = u = uv = xil . If vu = u, then as xk = uv R u and u = uvu,

y1 · · · yj1 = x1 · · · xil−1 u = x1 · · · xk−1 uv u = x1 · · · xil u

and yjl = xilu where vu = u. Also,

x1 · · · xil = x1 · · · xk−1 uv = x1 · · · xil u v = y1 · · · yjl v

and xil = yjlv.

Finally, suppose that k > il. Then it is obviously that jl = il, xil = yjl and

y1 · · · yjl = x1 · · · xil .

�

It follows immediately from Lemma 5.4 that

Corollary 5.5. Suppose that y1 · · · ym = x1 · · · xn ∈ IG(B) with left to right significant
indices j1, · · · , jr and i1, · · · , ir, respectively, and suppose xi ∈ Bαi

for all i ∈ [1, n]. Then for
all l ∈ [1, r], we have

y1 · · · yil = x1 · · · xil u1 u2 · · · us
and yjl = u′s · · · u

′
1xilu1 · · · us, where for all t ∈ [1, s], u′t = ε or u′t ∈ Bσt

for some σt ≥ αil, and
either ut = ε or ut ∈ Bδt for some δt > αil, or ut ∈ Bαil

and there exists vt ∈ Bθt with θt > αil

and vtut = ut. Consequently, y1 · · · yjl R x1 · · · xil , and hence y1 · · · yjl R x1 · · · xil .

Proof. The proof follows from Lemma 5.4 by finite induction. �

Note that the duals of Lemma 5.4 and Corollary 5.5 hold for right to left significant indices.

From Lemmas 3.1 and 4.1, we know that every element in IG(B) has a unique normal form,
if B is a semilattice or a rectangular band. However, it may not true for an arbitrary band
B, even if B is normal. Recall that a normal band

B = B(Y ;Bα, φα,β)

is a semilattice Y of rectangular bands Bα, α ∈ Y, such that for all α ≥ β in Y there exists a
morphism φα,β : Bα −→ Bβ such that

(B1) for all α ∈ Y , φα,α = 1Bα
;

(B2) for all α, β, γ ∈ Y such that α ≥ β ≥ γ, φα,βφβ,γ = φα,γ,

and for all α, β ∈ Y and x ∈ Bα, y ∈ Bβ,

xy = (xφα,αβ)(yφβ,αβ).

Example 5.6. Let B = B(Y ;Bα, φα,β) be a strong semilattice Y = {α, β, γ, δ} of rectan-
gular bands Bα, α ∈ Y (see the figure below), such that φα,β is defined by aφα,β = b, the
remaining morphisms being defined in the obvious unique manners.

Bα a

Bβ b c d Bγ

e

Bδ
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By an easy calculation, we have

c d = c ad = c a d = ca d = b d

in IG(B), so that not every element in IG(B) has a unique normal form.

Lemma 5.7. Let B =
⋃
α∈Y

Bα be a semilattice Y of rectangular bands Bα, α ∈ Y . Let

x1 · · · xn ∈ IG(B) with xi ∈ Bαi
, for all i ∈ [1, n], and let y ∈ Bβ with β ≤ αi, for all

i ∈ [1, n]. Then in IG(B) we have

x1 · · · xn y = x1 · · · xnyxn · · · x1 · · · xn−1xnyxnxn−1 xnyxn y

and
y x1 · · · xn = y x1yx1 x2x1yx1x2 · · · xn · · · x1yx1 · · · xn.

Proof. First, we notice that for any x ∈ Bα, y ∈ Bβ such that α ≥ β, we have yx R y, so that
(y, yx) is a basic pair and (yx)y = y. On the other hand, as (yx)x = yx, we have that (x, yx)
is a basic pair, so that

x y = x (yx)y = x yx y = xyx y.

Thus, the first required equality follows from the above observation by finite induction. Dually,
we can show the second one. �

Corollary 5.8. Let B = B(Y ;Bα, φα,β) be a normal band and let x1 · · · xn ∈ IG(B) be
such that xi ∈ Bαi

, for all i ∈ [1, n]. Let y ∈ Bβ with β ≤ αi, for all i ∈ [1, n]. Then

x1 · · · xn y = x1φα1,β · · · xnφαn,β y

and
y x1 · · · xn = y x1φα1,β · · · xnφαn,β.

Corollary 5.9. Let B =
⋃
α∈Y

Bα be a chain Y of rectangular bands Bα, α ∈ Y . Then IG(B)

is a regular semigroup.

Proof. Let u1 · · · un be an element in IG(B). From Lemma 5.7 it follows that u1 · · · un can
be written as an element of IG(B) in which all letters come from Bγ, where γ is the minimum
of {α1, · · · , αn}, so that u1 · · · un is regular by Lemma 4.3. �

Given the above observations, we now introduce the idea of almost normal form for elements
in IG(B).

Definition 5.10. An element x1 · · · xn ∈ B
+
is said to be in almost normal form if there

exists a sequence
1 ≤ i1 < i2 < · · · < ir−1 ≤ n

with
{x1, · · · , xi1} ⊆ Bα1

, {xi1+1, · · · , xi2} ∈ Bα2
, · · · , {xir−1+1, · · · xn} ⊆ Bαr

where αi, αi+1 are incomparable for all i ∈ [1, r − 1].

It is obvious that the element x1 · · · xn ∈ B
+
defined as above has left to right significant

indices i1, i2, · · · , ir−1, ir = n (right to left significant indices 1, i1 + 1, · · · , ir−2 + 1, ir−1 + 1),
Y -length r and ordered Y -components α1, · · · , αr. Note that, in general, the almost normal
forms of elements of IG(B) are not unique. Further, if x1 · · · xn = y1 · · · ym are in almost
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normal form, then they have the same Y -length and ordered Y -components, but the left to
right significant indices of them can be quite different.

The next result is immediate from the definition of significant indices and Lemma 5.7.

Lemma 5.11. Every element of IG(B) can be written in almost normal form.

We have the following lemma regarding the almost normal form of the product of two almost
normal forms.

Lemma 5.12. Let x1 · · · xn ∈ IG(B) be in almost normal form with Y -length r, left to right
significant indices i1, · · · , ir = n and ordered Y -components α1, · · · , αr, let y1 · · · ym ∈ IG(B)
be in almost normal form with Y -length s, left to right significant indices l1, · · · , ls = m and
ordered Y -components β1, · · · , βs. Then (with i0 = 0)

(i) αr and β1 incomparable implies that x1 · · · xir y1 · · · yls is in almost normal form;
(ii) αr ≥ β1 implies

x1 · · · xit xit+1 · · · xiry1xir · · · xit+1 · · · xiry1xir y1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls , for some t ∈ [0, r− 1] such that
αr, · · · , αt+1 ≥ β1 and t = 0 or αt, β1 are incomparable;

(iii) αr ≤ β1 implies

x1 · · · xir y1xiry1 · · · ylv · · · y1xiry1 · · · ylv ylv+1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls for some v ∈ [1, s] such that
αr ≤ β1, · · · , βv and v = s or βv+1, αr are incomparable;

Proof. Clearly, the statement (i) is true. We now aim to show (ii). Since αr ≥ β1, we have

xir−1+1 · · · xir y1 = xir−1+1 · · · xiry1xir · · · xir−1+1 · · · xiry1xir y1

by Corollary 5.7. Consider αr−1 and β1, then we either have αr−1 ≥ β1 or they are incom-
parable, as αr−1 < β1 would imply αr > αr−1, which contradicts the almost normal form of
x1 · · · xir . By finite induction we have that

x1 · · · xit xit+1 · · · xiry1xir · · · xit+1 · · · xiry1xir y1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls , for some t ∈ [0, r − 1], such
that αr, · · · , αt+1 ≥ β1 and t = 0 or αt, β1 are incomparable. Similarly, we can show (iii). �

Theorem 5.13. Let B =
⋃
α∈Y

Bα be a semilattice Y of rectangular bands Bα, α ∈ Y. Then

IG(B) is a weakly abundant semigroup with the congruence condition.

Proof. Let x1 · · · xn ∈ IG(B) be in almost normal form with Y -length r, left to right significant
indices i1, · · · , ir = n, and Y -components α1, · · · , αr. Clearly x1 x1 · · · xn = x1 · · · xn. Let
e ∈ Bδ be such that e x1 · · · xn = x1 · · · xn. Then by Corollary 5.2, that applying θ we have
δ α1 · · · αr = α1 · · · αr. It follows from Lemma 3.1 that δ ≥ α1, so that by Corollary 5.5 we
have

ex1 · · · xi1 R x1 · · · xi1 .

On the other hand, x1 · · · xi1 R x1 so that ex1 R x1, thus we have x1 ≤R e. Thus e x1 = ex1 =

x1. Therefore x1 · · · xn R̃ x1. Dually, x1 · · · xn L̃ xn, so that IG(B) is a weakly abundant
semigroup as required.
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Next we show that IG(B) satisfies the congruence condition.

Let x1 · · · xn ∈ IG(B) be defined as above and let y1 · · · ym ∈ IG(B) be in almost normal
form with Y -length u, left to right significant indices l1, · · · , lu = m and ordered Y -components

β1, · · · , βu. From the above and a comment in Section 1, we have x1 · · · xn R̃ y1 · · · ym if and
only if x1 R y1. Suppose now that x1 R y1, so that α1 = β1. Let z1 · · · zs ∈ IG(B), where,
without loss of generality, we can assume it is in almost normal form with Y -length t, left to
right significant indices j1, · · · , jt = s, and Y -components γ1, · · · , γt. We aim to show that

z1 · · · zs x1 · · · xn R̃ z1 · · · zs y1 · · · ym.

We consider the following three cases.

(i) If α1 = β1, γt are incomparable, then it is clear that

z1 · · · zs x1 · · · xn and z1 · · · zs y1 · · · ym

are in almost normal form, so clearly we have

z1 · · · zs x1 · · · xn R̃ z1 R z1 · · · zs y1 · · · ym.

(ii) If β1 = α1 ≤ γ1, then by Lemma 5.12

z1 · · · zs x1 · · · xn = z1 · · · zjv zjv+1 · · · zsx1zs · · · zjv+1 · · · zsx1zs x1 · · · xn

and

z1 · · · zs y1 · · · ym = z1 · · · zjv zjv+1 · · · zsy1zs · · · zjv+1 · · · zsy1zs y1 · · · ym

where v ∈ [0, t− 1], γv+1, · · · , γt ≥ α1 = β1 and γv, β1 are incomparable or v = 0. Clearly, the
right hand sides are in almost normal form.
If v ≥ 1, then clearly the required result is true, as the above two almost normal forms

begin with the same idempotent. If v = 0, then we need to show that

z1 · · · zsx1zs · · · z1 R z1 · · · zsy1zs · · · z1

Since x1 R y1, it follows from the structure of B that

z1 · · · zsx1zs · · · z1 R z1 · · · zsx1 R z1 · · · zsy1 R z1 · · · zsy1zs · · · z1

as required.
(iii) If β = α1 ≥ γ1, then by Lemma 5.12

z1 · · · zs x1 · · · xn = z1 · · · zs x1zsx1 · · · xik · · · x1zsx1 · · · xik xik+1 · · · xn

and
z1 · · · zs y1 · · · ym = z1 · · · zs y1zsy1 · · · ylp · · · y1zsy1 · · · ylp ylp+1 · · · ym,

where k ∈ [1, r], α1, · · · , αk ≥ γ1, and αk+1, γ1 are incomparable or k = r, and p ∈ [1, u],
β1, · · · , βp ≥ γ1, and βp+1, γ1 are incomparable or p = u. Clearly, the right hand sides are in
almost normal form, so that

z1 · · · zs x1 · · · xn R̃ z1 R̃ z1 · · · zs y1 · · · ym.

Similarly, we can show that L̃ is a right congruence, so that IG(B) is a weakly abundant
semigroup satisfying the congruence condition. This completes the proof. �

We finish this section by constructing a band B for which IG(B) is not an abundant semi-
group.
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Example 5.14. Let B = Bα∪Bβ ∪Bγ be a band with semilattice decomposition structure
and multiplication table defined by

a b x y

a a y x y

b y b x y

x x y x y

y y y x y

Bα a b Bβ

x y
Bγ

First, it is easy to check that B is indeed a semigroup. We now show that IG(B) is not
abundant by arguing that the element a b ∈ IG(B) is not R∗-related to any idempotent of B.

It follows from Theorem 5.13 that a b R̃ a. However, a b is not R∗-related to a, because

x a b = y = y a b but x a = x 6= y = y a,

so that from Lemma 2.4, a b is not R∗-related to any idempotent of B, and hence IG(B) is
not an abundant semigroup.

6. Free idempotent generated generated semigroups over quasi-zero bands

In this section we will introduce a class of bands B for which the word problem of IG(B) is
solvable. Further, in Section 7, we will show that for any quasi-zero band B, the semigroup
IG(B) is abundant.

Definition 6.1. Let B be a semilattice Y of rectangular bands Bα, α ∈ Y . We say that B
is a quasi zero band if for all α, β ∈ Y with β > α, u ∈ Bα and v ∈ Bβ, we have uv = vu = u.

It is easy to deduce that if B is quasi-zero, then for any α, β ∈ Y with α < β, u ∈ Bα and
v ∈ Bβ, the products uv and vu are basic.

Lemma 6.2. Let B be a quasi-zero band, and let x1 · · · xn, y1 · · · ym ∈ IG(B) have left
to right significant indices i1, · · · , ir; j1, · · · , jr, respectively. If x1 · · · xn = y1 · · · ym, then
for any l ∈ [1, r], x1 · · · xil = y1 · · · yjl .

Proof. Suppose that xi ∈ Bαi
for all i ∈ [1, r]. It is enough to consider a single step, say,

x1 · · · xn ∼ w1 · · · ws.

Suppose that the significant indices of w1 · · · ws are k1, · · · , kr. By Lemma 5.4, for any
l ∈ [1, r], we have

w1 · · · wkl = x1 · · · xil u

and wkl = u′xilu, where u
′ = ε or u′ ∈ Bσ with σ ≥ αil , and either u = ε, or u ∈ Bδ for

some δ > αil , or u ∈ Bαil
and there exists v ∈ Bθ with θ > αil , vu = u and uv = xil . By

the comment proceeding Lemma 6.2 we see that in each case, xil u = xil , so that clearly,
w1 · · · wkl = x1 · · · xil . �

Lemma 6.3. Let B be a quasi-zero band, let x1 · · · xn ∈ IG(B) be in almost normal form
with Y -length r, left to right significant i1, · · · , ir = n and ordered Y -components α1, · · · , αr,

and let y1 · · · ym ∈ IG(B) be in almost normal form with Y -length s, left to right significant
indices j1, · · · , js = m and ordered Y -components β1, · · · , βs. Then x1 · · · xn = y1 · · · ym in
IG(B) if and only if r = s, αl = βl and xil−1+1 · · · xil = yjl−1+1 · · · xjl in IG(B), for each
l ∈ [1, r], where i0 = j0 = 0.
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Proof. The sufficiency is obvious. Suppose now that x1 · · · xn = y1 · · · ym in IG(B). Then
it follows from Lemma 5.3 that r = s and αi = βi for all i ∈ [1, r]. From Lemma 6.2, we
have that x1 · · · xil = y1 · · · yjl in IG(B), for all l ∈ [1, r]. Then by the dual of Lemma 6.2,
xil−1+1 · · · xil = yjl−1+1 · · · xjl in IG(B). �

Lemma 6.4. Let B be a quasi-zero band and w = x1 · · · xn ∈ B
+
with xi ∈ Bαi

for each
i ∈ [1, n]. Suppose that there exists an α ∈ Y such that for all i ∈ [1, n], αi ≥ α and there

is at least one j ∈ [1, n] such that α = αj . Suppose also that p is a word in B
+
obtained by

single step on w. Then we have that w′ = p′ in IG(Bα), where w
′ and p′ are words obtained

by deleting all letters in w and p which do not lie in Bα.

Proof. Suppose that we split xk = uv for some k ∈ [1, n], where u ∈ Bν and v ∈ Bτ . Then we
have

w = x1 · · · xk−1 xk xk+1 · · · xn ∼ x1 · · · xk−1 u v xk+1 · · · xn = p.

If αk > α, then ν, τ > α. Hence w′ = p′ in Bα
+
; of course, they are also equal in IG(Bα).

If αk = α and µ = τ = α, then u L v or u R v, so that uv is basic in Bα. In this case,
xk = uv = u v in IG(Bα), so that certainly,

p′ = (x1 · · · xk−1)
′ u v (xk+1 · · · xn)

′ = (x1 · · · xk−1)
′ xk (xk+1 · · · xn)

′ = w′

in IG(Bα).
If αk = α and ν > τ = α, then we have xk = uv = v as B is a quasi-zero band, so that

p′ = (x1 · · · xk−1)
′ (u v)′ (xk+1 · · · xn)

′

= (x1 · · · xk−1)
′ v (xk+1 · · · xn)

′

= (x1 · · · xk−1)
′ xk (xk+1 · · · xn)

′

= w′

in Bα
+
, so that certainly p′ = w′ in IG(Bα).

A similar argument holds if αk = α and α = ν < τ. �

Lemma 6.5. Let B be a quasi-zero band and let x1, · · · , xn, y1, · · · , ym ∈ Bα for some
α ∈ Y. Then with w = x1 · · · xn and p = y1 · · · ym we have w = p in IG(Bα) if and only if
w = p in IG(B).

Proof. The sufficiency is clear, as any basic pair in Bα is basic in B. Conversely, if w = p in
IG(B), there exists a finite sequence

w = w0 ∼ w1 ∼ w2 · · · ∼ ws−1 ∼ ws = p.

Let w′
0, w

′
1, w

′
2, · · · , w

′
s−1, w

′
s be the words obtained by deleting letters x within the word such

that x ∈ Bβ with β 6= α. From Lemma 6.4, we have that w′
0 = w′

1 = w′
2 = · · · = w′

s−1 = w′
s in

IG(Bα). Note that w
′
0 = w0 = w ∈ Bα

+
and w′

s = ws = p ∈ Bα
+
, so that w = p in IG(Bα). �

Lemma 6.6. Let B be a quasi-zero band. Then the word problem of IG(B) is solvable.

Proof. The result is immediate from Lemmas 4.1, 6.3 and 6.5. �
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7. Free idempotent generated semigroups with condition (P)

From the above discussion, we know that for any band B, the semigroup IG(B) is always
weakly abundant with the congruence condition, but not necessarily abundant. The aim of
this section is devoted to finding some special kinds of bands B for which IG(B) is abundant.

Definition 7.1. We say that the semigroup IG(B) satisfies Condition (P ) if for any two
almost normal forms u1 · · · un = v1 · · · vm ∈ IG(B) with Y -length r, left to right significant
indices i1, · · · , ir = n and l1, · · · , lr = m, respectively, and ordered Y -components α1, · · · , αr,

the following statements (with i0 = l0 = 0) hold:
(i) uis L vls implies u1 · · · uis = v1 · · · vls, for all s ∈ [1, r].
(ii) uit+1 R vlt+1 implies uit+1 · · · un = vlt+1 · · · vm, for all t ∈ [0, r − 1].

Proposition 7.2. Let B be a band for which IG(B) satisfies Condition (P ). In addition,
suppose that B is normal (so that B = B(Y ;Bα, φα,β)) or quasi-zero. Then IG(B) is an
abundant semigroup.

Proof. Let x1 · · · xn ∈ IG(B) be in almost normal form with Y -length r, left to right sig-
nificant indices i1, · · · , ir = n, and ordered Y -components α1, · · · , αr. By Theorem 5.13,

x1 · · · xir R̃ x1. We aim to show that x1 · · · xir R
∗ x1. From Lemma 2.5, we only need to show

that for any two almost normal forms y1 · · · ym ∈ IG(B) with Y -length m, left to right sig-
nificant indices l1, · · · , ls = m, and ordered Y -components β1, · · · , βs, and z1 · · · zh ∈ IG(B)
with Y -length t, left to right significant indices j1, · · · , jt = h, and ordered Y -components
γ1, · · · , γt, we have that

z1 · · · zjt x1 · · · xir = y1 · · · yls x1 · · · xir

implies that z1 · · · zjt x1 = y1 · · · yls x1.
Suppose now that

z1 · · · zjt x1 · · · xir = y1 · · · yls x1 · · · xir .

We consider the following cases:

(i) If γt, α1 and βs, α1 are incomparable, then both sides of the above equality are in almost
normal form, so that by Condition (P )

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1 .

Since x1 · · · xi1 R xi1 by Lemma 4.2, we have z1 · · · zjt x1 = y1 · · · yls x1.

(ii) If γt ≤ α1 and βs, α1 are incomparable, then by Lemma 5.12, z1 · · · zjt x1 · · · xir has
an almost normal form

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir ,

for some v ∈ [1, r], where γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable. Hence we
have

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir = y1 · · · yls x1 · · · xir .

Note that both sides of the above equality are in almost normal form. It follows from Corollary
5.2 that

(z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir) θ = (y1 · · · yls x1 · · · xir) θ
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and so
γ1 · · · γt αv+1 · · · αr = β1 · · · βs α1 · · · αr.

Since v ≥ 1, we have γt = αv. To avoid contradiction, v = 1, so xi1 · · · x1zjtx1 · · · xi1 = xi1 ,
and hence by Condition (P )

z1 · · · zjt x1zjtx1 · · · xi1 · · · x1zjtx1 · · · xi1 = y1 · · · yls x1 · · · xi1 .

and so
z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

so that z1 · · · zjt x1 = y1 · · · yl1 · · · yls x1.

(iii) If γt ≤ α1 and βs ≤ α1, then by Lemma 5.12 we have the following two almost normal
forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir

where v ∈ [1, r] such that γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable, and

y1 · · · yls x1ylsx1 · · · xiu · · · x1ylsx1 · · · xiu xiu+1 · · · xir

where u ∈ [1, r] with βs ≤ α1, · · · , αu and u = r or βs, αu+1 are incomparable. Hence by
Corollary 5.2,

γ1 · · · γt αv+1 · · · αr = β1 · · · βs αu+1 · · · αr

If v > u, then γt = αv, to avoid contradiction v = 1, so u = 0, contradiction. Similarly, v < u

is impossible. If v = u, then t = s and βs = γt. If B is a normal band satisfying Condition
(P ),

x1zjtx1 = x1φα1,γt = x1φα1,βs
= x1ylsx1

...

xiv · · · x1zjtx1 · · · xiv = xivφαv ,γt = xiuφαu,βs
= xiu · · · x1ylsx1 · · · xiu

so that by Condition (P ), we have

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv = y1 · · · yls x1ylsx1 · · · xiu · · · x1ylsx1 · · · xiu .

On the other hand, we have

x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv = x1ylsx1 · · · xiu · · · x1ylsx1 · · · xiu

which is R-related to x1zjtx1, and so

z1 · · · zjt x1zjtx1 = y1 · · · yls x1ylsx1,

and hence
z1 · · · zjt x1 = y1 · · · yls x1.

Suppose now that B is a quasi-zero band. First suppose that v = u = 1. Then by Lemma
6.2 we have

z1 · · · zjt x1zjtx1 · · · xi1 · · · x1zjtx1 · · · xi1 = y1 · · · yls x1ylsx1 · · · xi1 · · · x1ylsx1 · · · xi1

and so
z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

so that
z1 · · · zjt x1 = y1 · · · yls x1.
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Suppose now that v = u > 1. By assumption βs = γt ≤ α1, · · · , αv. We claim that there exists
no j ∈ [1, v] such that γt = αj; otherwise we will have αj , αj+1 are comparable if v > j or
αv, αv−1 are comparable if v = j. Hence γt = βs < α1, · · · , αv. Since B is a quasi-zero band,
we have

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir = z1 · · · zjt xiv+1 · · · xir

and

y1 · · · yls x1ylsx1 · · · xiu · · · x1ylsx1 · · · xiu xiu+1 · · · xir = y1 · · · yls xiv+1 · · · xir

so that it follows from Lemma 6.2 that

z1 · · · zjt = y1 · · · yls

and so certainly
z1 · · · zjt x1 = y1 · · · yls x1.

(iv) If γt ≤ α1 and βs ≥ α1, then by Lemma 5.12 we have the following two almost normal
forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjt x1zjtx1 · · · xiv · · · x1zjtx1 · · · xiv xiv+1 · · · xir

for some v ∈ [1, r] with γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable, and

y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xir

for some u ∈ [0, s− 1] with βu+1, · · · , βs ≥ α1 and βu, α1 are incomparable or u = 0. It follows
from Corollary 5.2 that

γ1 · · · γt αv+1 · · · αr = β1 · · · βu α1 · · · αr.

Note that both sides of the above equality are normal forms of IG(Y ). As v ≥ 1, we have
γt = αv, so that to avoid contradiction we have v = 1 and so xi1 · · · x1zjtx1 · · · xi1 = xi1 , and
hence by Condition (P )

z1 · · · zjt x1zjtx1 · · · xi1 · · · x1zjtx1 · · · xi1

= y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1
and so

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1 ,

which implies z1 · · · zjt x1 = y1 · · · yls x1.

(v) If γt ≥ α1 and βs ≥ α1, then by Lemma 5.12 we have the following two almost normal
forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 · · · xir

for some v ∈ [0, t− 1] such that γv+1, · · · , γt ≥ α1 and γv, α1 are incomparable or v = 0, and

y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1 · · · xir

for some u ∈ [0, s − 1] such that βu+1, · · · , βs ≥ α1 and βu, α1 are incomparable or u = 0.
Hence by Condition (P ),

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1

= y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1 ,
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so that
z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

and hence z1 · · · zjt x1 = y1 · · · yls x1.

(vi) If γt ≥ α1 and βs, α1 are incomparable, then by Lemma 5.12

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 · · · xir = y1 · · · yls x1 · · · xi1 · · · xir

for some v ∈ [0, t− 1] with γv+1, · · · , γt ≥ α1 and γv, α1 are incomparable or v = 0. Note that
both sides of the above equality are in almost normal form. Again by Condition (P )

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

so that
z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

and hence z1 · · · zjt x1 = y1 · · · yls x1.
From the above discussion, we can deduce that x1 · · · xir R

∗ x1, and similarly we can show
that x1 · · · xir L

∗ xir , so that IG(B) is an abundant semigroup. �

We now aim to find examples of normal bands B for which IG(B) satisfies Condition (P ),
so that by Proposition 7.2, IG(B) is abundant.

A band B =
⋃
α∈Y

Bα is called a simple band if it is a semilattice Y of rectangular bands Bα,

α ∈ Y , where Bα is either a left zero band or a right zero band.

Lemma 7.3. Let B =
⋃
α∈Y

Bα be a simple band and let e ∈ Bα and f ∈ Bβ. Then (e, f)

is a basic pair in B if and only (α, β) is a basic pair in Y , i.e. if and only if α and β are
comparable in Y .

Proof. Since the necessity is clear, we are left with showing the sufficiency. Without loss of
generality, suppose that α ≤ β. Then ef, fe ∈ Bα. As B is a simple band, we have Bα is
either a left zero band or a right zero band. If Bα is a left zero band, then e(ef) = e, i.e.
ef = e, so (e, f) is a basic pair. If Bα is a right zero band, then (fe)e = e, i.e. fe = e, which
again implies that (e, f) is a basic pair. �

It follows from Lemma 7.3 that for a simple band B, every element x1 · · · xn of IG(B) has
a special normal form (of course, which may not unique), say, y1 · · · ym ∈ IG(B) with yi and
yi+1 incomparable, for all i ∈ [1,m− 1].

Lemma 7.4. Let B be a simple band. Then IG(B) satisfies Condition (P ).

Proof. Let x1 · · · xn = y1 · · · ym ∈ IG(B) be in almost normal form with Y -length r, left to
right significant indices i1, · · · , ir = n, j1, · · · , jr = m, respectively, and ordered Y -components
α1, · · · , αr. It then follows from Corollary 5.5 that for all s ∈ [1, r],

y1 · · · yjs = x1 · · · xis e1 · · · em (in which we remove the empty word)

where for all k ∈ [1,m], ek ∈ Bδk with δk ≥ αis . By Lemma 7.3, we have

xis e1 · · · em = xise1 · · · em,

so that if we assume xis L yjs , then

y1 · · · yjs = y1 · · · yjs xis = x1 · · · xise1 · · · em xis = x1 · · · xise1 · · · emxis = x1 · · · xis .

Together with the dual, we have shown that IG(B) satisfies Condition (P ). �
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Corollary 7.5. Let B be a simple normal band. Then IG(B) is abundant.

Let B = B(Y ;Bα, φα,β) be a normal band. We say that B is a trivial normal band if for
every α ∈ Y , there exists a aα ∈ Bα such that for all β > α, xφβ,α = aα.

Lemma 7.6. Let B = B(Y ;Bα, φα,β) be a trivial normal band. Then IG(B) satisfies Con-
dition (P ).

Proof. First note that since B is a trivial normal band, there exists aα ∈ Bα be such that for
any β > α and u ∈ Bβ, uφβ,α = aα.

Let x1 · · · xn = y1 · · · ym ∈ IG(B) be in almost normal form with Y -length r, left to right
significant indices i1, · · · , ir = n, j1, · · · , jr = m, respectively, and ordered Y -components
α1, · · · , αr. It follows from Corollary 5.5 that

y1 · · · yjl = x1 · · · xil u1 · · · us (in which we remove the empty word)

such that for all k ∈ [1, s] we have uk ∈ Bδk with δk > αil , so that ukφδk,αil
= aαil

; or uk ∈ Bαil

with vkuk = uk for some vk ∈ Bηk such that ηk > αil , and in this case we have aαil
uk = uk, so

that aαil
R uk. Thus the idempotents u1φδ1,αil

, · · · , usφδs,αil
are all R-related, and so

xil u1 · · · us = xil u1φδ1,αil
· · · usφδs,αil

= xil u1φδ1,αil
· · · usφδs,αil

.

On the other hand, we have yjl = u′s · · · u
′
1xilu1 · · · us, where u

′
k ∈ Bσk

with σk ≥ αil . Hence
if we assume that xil L yjl , then xil = xilu1 · · · us, and so xil = xil(u1φδ1,αil

) · · · (usφδs,αil
), so

that
xil u1φδ1,αil

· · · usφδs,αil
= xil(u1φδ1,αil

) · · · (usφδs,αil
) = xil .

Hence y1 · · · yjl = x1 · · · xil as required. �

Corollary 7.7. Let B = B(Y ;Bα, φα,β) be a trivial normal band. Then IG(B) is an abun-
dant semigroup.

8. A normal band B for which IG(B) is not abundant

From Section 7, we know that the free idempotent idempotent generated semigroup IG(B)
over a normal band B satisfying Condition (P ) is an abundant semigroup. Therefore, one
would like to ask whether for any normal band B, IG(B) is abundant. In this section we will
construct a 10-element normal band B for which IG(B) is not abundant.
Throughout this section, B denotes a normal band B(Y ;Bα, yφα,β).

Lemma 8.1. Let B be a normal band, and let x ∈ Bβ, y ∈ Bγ with β, γ ≥ α. Then (x, y)
is a basic pair implies (xφβ,α, yφγ,α) is a basic pair and

(xφβ,α)(yφγ,α) = (xy)φδ,α,

where δ is minimum of β and γ.

Proof. Let (x, y) be a basic pair with x ∈ Bβ, y ∈ Bγ. Then β, γ are comparable. If β ≥ γ,
then we either have xy = y or yx = y. If xy = y, then (xφβ,γ)y = y, so

yφγ,α = ((xφβ,γ)y)φγ,α = (xφβ,α)(yφγ,α),

so (xφβ,α, yφγ,α) is a basic pair. If yx = y, then y(xφβ,γ), so

yφγ,α = (y(xφβ,γ))φγ,α = (yφγ,α)(xφβ,α),

so that (xφβ,α, yφγ,α) is a basic pair.
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A similar argument holds if γ ≥ β. The final part of the lemma is clear. �

Lemma 8.2. Let u1 · · · un ∈ IG(B) with ui ∈ Bαi
and αi ≥ α for all i ∈ [1, n]. Suppose

that v1 · · · vm ∈ IG(B) with vi ∈ Bβi
for all i ∈ [1,m] is an element obtained by single step

on u1 · · · un (note that βi ≥ α, for all i ∈ [1,m]). Then in IG(Bα) we have

u1φα1,α · · · unφαn,α = v1φβ1,α · · · vmφβm,α.

Proof. Suppose that ui = xy is a basic product with x ∈ Bδ, y ∈ Bη, for some i ∈ [1, n]. Note
that the minimum of δ and η is αi. Then

u1 · · · un ∼ u1 · · · ui−1 x y ui+1 · · · un.

If follows from Lemma 8.1 that in IG(Bα)

u1φα1,α · · · unφαn,α = u1φα1,α · · · ui−1φαi−1,α uiφαi,α ui+1φαi+1,α · · · unφαn,α

= u1φα1,α · · · ui−1φαi−1,α xφδ,αyφη,α ui+1φαi+1,α · · · unφαn,α

= u1φα1,α · · · ui−1φαi−1,α xφδ,α yφη,α ui+1φαi+1,α · · · unφαn,α

as required. �

Corollary 8.3. Let x1, · · · , xn, y1, · · · , ym ∈ Bα. Then x1 · · · xn = y1 · · · ym in IG(Bα)
if and only if the equality holds in IG(B).

Proof. The necessity is obvious, as any basic pair in Bα must also be basic in B. Suppose now
that we have

x1 · · · xn = y1 · · · ym

in IG(B). Then there exists a sequence of transitions

x1 · · · xn ∼ u1 · · · us ∼ v1 · · · vt ∼ · · · ∼ w1 · · · wl ∼ y1 · · · ym,

using basic pairs in B. Note that all idempotents involved in the above sequence lie in Bβ

for some β ≥ α, so that successive applications of Lemma 8.2 give x1 · · · xn = y1 · · · ym in
IG(Bα). �

We remark here that for an arbitrary band B, Corollary 8.3 need not be true.

Example 8.4. Let B = Bα ∪ Bβ be a band with semilattice structure and multiplication
table defined by

l u w u′ w′

l l u′ w′ u′ w′

u u u w u w

w w u w u w

u′ u′ u′ w′ u′ w′

w′ w′ u′ w′ u′ w′

Bα l

Bβ
u′ w′

u w
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It is easy to check that B forms a band. By the uniqueness of normal forms in IG(Bβ), we
have u′ w 6= w′ in IG(Bβ). However in IG(B) we have

u′ w = u′l w

= u′ l w (as (u′, l) is a basic pair)

= u′ lw (as (l, w) is a basic pair)

= u′ w′

= w′

With the above preparations, we now construct a 10-element normal band B for which
IG(B) is not abundant.

Example 8.5. Let B = B(Y ;Bα, φα,β) be a strong semilattice Y = {α, β, γ, δ} of rectan-
gular bands (see the figure below), where φα,β : Bα −→ Bβ is defined by

aφα,β = e, bφα,β = f, cφα,β = g, dφα,β = h

the remaining morphisms being defined in the obvious unique manner.

Bα

a b

c d

Bβ
e f

g h
v Bγ

u

Bδ

Now we consider an element e v ∈ IG(B), then we have

e v = e dv

= e d v (as (d, v) is a basic pair)

= e h v (as e d = e dφα,β = e h by Corollary 5.8)

= e h av

= e h a v (as (a, v) is a basic pair)

= e h e v (as h a = h aφα,β = h e by Corollary 5.8)

However, e h e 6= e in IG(Bβ) by the uniqueness of normal forms, so by Corollary 8.3, we have

e h e 6= e in IG(B), which implies e v is not R∗-related to e. On the other hand, we have

known from Theorem 5.13 that e v R̃ e, so that by Lemma 2.4 that e v is not R∗-related any
idempotent of B, so that IG(B) is not an abundant semigroup.
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