Ordered Covers

Lubna Shaheen

Dept. of Mathematics, University of York

June 2010
Motivation

In $\mathbf{S}\text{-Act}$, and in $\mathbf{S}\text{-Pos}$ we have the following relations exists

$$Pr \Rightarrow SF = P + E$$

- Isbell (1971), projective cover;
Motivation

In \textbf{S-Act}, and in \textbf{S-Pos} we have the following relations exists

\[\mathcal{P}r \Rightarrow \mathcal{S} \mathcal{F} = \mathcal{P} + \mathcal{E} \]

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which \(\mathcal{P}r = \mathcal{S} \mathcal{F} \) in \textbf{S-Act};
Motivation

In S-Act, and in S-Pos we have the following relations exists

$$Pr \Rightarrow SF = P + E$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $Pr = SF$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
Motivation

In S-Act, and in S-Pos we have the following relations exists

$$\mathcal{P}r \Rightarrow SF = P + E$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\mathcal{P}r = SF$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
Motivation

In **S-Act**, and in **S-Pos** we have the following relations exists

\[\mathcal{P}r \Rightarrow \mathcal{S}\mathcal{F} = \mathcal{P} + \mathcal{E} \]

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which \(\mathcal{P}r = \mathcal{S}\mathcal{F} \) in **S-Act**;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left \(S \)-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left \(S \)-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), \(\mathcal{P} \)-covers and \(\mathcal{S}\mathcal{F} \)-covers are defined for cyclic \(S \)-acts;
Motivation

In S-Act, and in S-Pos we have the following relations exist:

$$\mathcal{P}r \Rightarrow \mathcal{S}\mathcal{F} = \mathcal{P} + \mathcal{E}$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\mathcal{P}r = \mathcal{S}\mathcal{F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), \mathcal{P}-covers and $\mathcal{S}\mathcal{F}$-covers are defined for cyclic S-acts;
- Roghaieh, Majid and Mojtaba (2009), \mathcal{P}-covers and $\mathcal{S}\mathcal{F}$-covers, are defined for S-acts;
Motivation

In $\mathbf{S}\text{-}\text{Act}$, and in $\mathbf{S}\text{-}\text{Pos}$ we have the following relations exists

$$Pr \Rightarrow SF = P + E$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $Pr = SF$ in $\mathbf{S}\text{-}\text{Act}$;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), P-covers and SF-covers are defined for cyclic S-acts;
- Roghaieh, Majid and Mojtaba (2009), P-covers and SF-covers, are defined for S-acts;
- Gould and Shaheen (2009), investigate pomonoids for which $Pr = SF$ in $\mathbf{S}\text{-}\text{Pos}$.
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;

(i) S left is po-perfect;
(ii) S satisfies Condition (A^0) and (M_R);
(iii) $SF = Pr$;
(iv) S satisfies Condition (A^0) and (K);
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;

(i) S left is po-perfect;

(ii) S satisfies Condition (A^0) and (M_R);

(iii) $S \mathcal{F} = \mathcal{P}r$;

(iv) S satisfies Condition (A^0) and (K);

(A): Ascending chain condition on cyclic S-subacts;
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;

(i) S left is po-perfect;

(ii) S satisfies Condition (A^o) and (M_R);

(iii) $SF = Pr$;

(iv) S satisfies Condition (A^o) and (K);

(A): Ascending chain condition on cyclic S-subacts;

(M_R): Descending chain condition on principal right ideals;
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;

(i) S left is po-perfect;

(ii) S satisfies Condition (A^0) and (M_R);

(iii) $S\mathcal{F} = \mathcal{P}r$;

(iv) S satisfies Condition (A^0) and (K);

(A): Ascending chain condition on cyclic S-subacts;

(M$_R$): Descending chain condition on principal right ideals;

(K): Every right collapsible subpomonoid contains a right zero;
Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;

(i) S left is po-perfect;

(ii) S satisfies Condition (A^0) and (M_R);

(iii) $S\mathcal{F} = \mathcal{P}r$;

(iv) S satisfies Condition (A^0) and (K);

(A): Ascending chain condition on cyclic S-subacts;

(M$_R$): Descending chain condition on principal right ideals;

(K): Every right collapsible subpomonoid contains a right zero;

(A0): Ascending chain condition on cyclic S-subposets.
Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is ordered left reversible if $sS \cap (tS) \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $su \leq tv$.

- We say S is right collapsible if for any $s, t \in S$ there exists $u \in S$ such that $su = tu$.

We note that notion of ordered right collapsible pomonoid and right collapsible pomonoid coincides.

- (FP_0): if every subpomonoid generated by idempotents have a right zero; i.e. $M = \langle e : e \in E(S) \rangle$ have a right zero element in M.
Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is ordered left reversible if $sS \cap (tS] \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $su \leq tv$;

- We say S is right collapsible if for any $s, t \in S$ there exists $u \in S$ such that $su = tu$.

We note that notion of ordered right collapsible pomonoid and right collapsible pomonoid coincides.
Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is *ordered left reversible* if $sS \cap (tS) \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $su \leq tv$;

- We say S is *right collapsible* if for any $s, t \in S$ there exists $u \in S$ such that $su = tu$.

 We note that notion of ordered right collapsible pomonoid and right collapsible pomonoid coincides.

- (FP_0): if every subpomonoid generated by idempotents have a right zero; i.e

 $$M = \langle e : e \in E(S) \rangle$$

 have a right zero element in M.

Let S be a monoid and let A be a non-empty set. We say that A is a *left S-act* if with the following function $S \times A \rightarrow A$, it satisfies the following conditions:

(i) $1.a = a$ for all $a \in A$;

(ii) $(st)a = s(ta)$ for all $s, t \in S$ and $a \in A$.

S-Acts
Let S be a monoid and let A be a non-empty set. We say that A is a \textit{left S-act} if with the following function $S \times A \to A$, it satisfies the following conditions:

(i) $1.a = a$ for all $a \in A$;

(ii) $(st)a = s(ta)$ for all $s, t \in S$ and $a \in A$.

A map $\alpha : A \to B$ from a left S-act A to a left S-act B called an \textit{S-morphism} if it preserves the action of S, that is $(sa)\psi = s(a\psi)$ for all $a \in A$ and $s \in S$.

\textbf{S-Acts}
Let S be a monoid and let A be a non-empty set. We say that A is a *left S-act* if with the following function $S \times A \rightarrow A$, it satisfies the following conditions:

(i) $1.a = a$ for all $a \in A$;

(ii) $(st)a = s(ta)$ for all $s, t \in S$ and $a \in A$.

A map $\alpha : A \rightarrow B$ from a left S-act A to a left S-act B called an *S-morphism* if it preserves the action of S, that is $(sa)\psi = s(a\psi)$ for all $a \in A$ and $s \in S$.

We will denote the category of left S-acts and S-morphism by S-Act.
Let S be a pomonoid and let A be a partially order set. We say that A is *left S-poset* if it is an S-act and in addition if $s \leq t$ then $sa \leq ta$ and if $a \leq b$ then $sa \leq sb$ for all $s, t \in S$ and $a, b \in A$.
\textbf{S-Posets}

- Let S be a pomonoid and let A be a partially order set. We say that A is \textit{left S-poset} if it is an S-act and in addition if $s \leq t$ then $sa \leq ta$ and if $a \leq b$ then $sa \leq sb$ for all $s, t \in S$ and $a, b \in A$.

- An order preserving map $\psi : A \rightarrow B$ from a left S-poset A to a left S-poset B called an \textit{S-pomorphism} if it preserves the action of S, that is $(sa)\psi = s(a\psi)$ for all $a \in A$ and $s \in S$. We will denote the category of left S-posets and S-pomorphisms by \textbf{S-Pos}.
S-Posets

Let S be a pomonoid and let A be a partially order set. We say that A is left S-poset if it is an S-act and in addition if $s \leq t$ then $sa \leq ta$ and if $a \leq b$ then $sa \leq sb$ for all $s, t \in S$ and $a, b \in A$.

An order preserving map $\psi : A \to B$ from a left S-poset A to a left S-poset B called an S-pomorphism if it preserves the action of S, that is $(sa)\psi = s(a\psi)$ for all $a \in A$ and $s \in S$. We will denote the category of left S-posets and S-pomorphisms by $\mathbf{S-Pos}$.

An S-act congruence ρ on A is called an S-poset congruence on A if A/ρ can be partially ordered such that it becomes an S-poset and the natural map $\nu : A \to A/\rho$ is a S-pomorphism.
Definitions

- **Projective S-Posets**: have the standard categorical definition and will be denoted by \mathcal{Pr};
Definitions

- **Projective S-Posets**: have the standard categorical definition and will be denoted by \(P_r \);

- **Condition (P)**: A left \(S \)-poset satisfies Condition (P) if, for some \(s, t \in S \) and \(a, b \in A \), if \(sa \leq tb \) then there exists \(c \in A, u, v \in S \) such that \(a = uc, b = vc \) with \(su \leq tv \). We will denote the class of left \(S \)-posets satisfy Condition (P) by \(\mathcal{P} \).
Definitions

- **Projective S-Posets**: have the standard categorical definition and will be denoted by Pr;

- **Condition (P)**: A left S-poset satisfies Condition (P) if, for some $s, t \in S$ and $a, b \in A$, if $sa \leq tb$ then there exists $c \in A, u, v \in S$ such that $a = uc, b = vc$ with $su \leq tv$. We will denote the class of left S-posets satisfy Condition (P) by \mathcal{P}.

- **Condition (E)**: A left S-poset satisfies Condition (E) if, for some $s, t \in S$ and $a \in A$, if $sa \leq ta$ then there exists $c \in A, u \in S$ such that $a = uc$ with $su \leq tu$. We will denote the class of left S-posets satisfy Condition (E) by \mathcal{E}.

- **Strongly flat S-posets**: are those S-posets which satisfy Conditions (P) and (E), and will be denoted by SF.

Definitions

- **Projective S-Posets**: have the standard categorical definition and will be denoted by $\mathcal{P}r$;

- **Condition (P)**: A left S-poset satisfies Condition (P) if, for some $s, t \in S$ and $a, b \in A$, if $sa \leq tb$ then there exists $c \in A, u, v \in S$ such that $a = uc, b = vc$ with $su \leq tv$. We will denote the class of left S-posets satisfy Condition (P) by \mathcal{P}.

- **Condition (E)**: A left S-poset satisfies Condition (E) if, for some $s, t \in S$ and $a \in A$, if $sa \leq ta$ then there exists $c \in A, u \in S$ such that $a = uc$ with $su \leq tu$. We will denote the class of left S-posets satisfy Condition (E) by \mathcal{E}.

- **Strongly flat S-posets**: are those S-posets which satisfy Conditions (P) and (E), and will be denoted by $S\mathcal{F}$.
Cyclic S-posets satisfying Condition (P)

Let S be a pomonoid and let B be a ordered left reversible subpomonoid of S and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$ where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_1, q_1, \cdots p_n, q_n \in B$ and $u_1, \cdots u_n \in S$ such that

$$s \leq u_1 p_1, \quad u_1 q_1 \leq u_2 p_2, \cdots, \quad u_n q_n \leq t$$

then

(i) ρ is a left congruence ;
(ii) $B \subseteq [1]_{\rho}$;
(iii) S/ρ satisfies Condition (P).

We note that left congruence relation ρ defined above is the congruence generated by the relation $B \times B$.
Cyclic S-posets satisfying Condition (P)

Let S be a pomonoid and let B be a ordered left reversible subpomonoid of S and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$ where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_1, q_1, \cdots p_n, q_n \in B$ and $u_1, \cdots u_n \in S$ such that

$$s \leq u_1 p_1, \quad u_1 q_1 \leq u_2 p_2, \cdots, \quad u_n q_n \leq t$$

then

(i) ρ is a left congruence;
(ii) $B \subseteq [1]_\rho$;
(iii) S/ρ satisfies Condition (P).

We note that left congruence relation ρ defined above is the congruence generated by the relation $B \times B$.

Let ρ be a congruence on S such that S/ρ satisfies Condition (P) and $R = [1]$. Then R is a ordered left reversible subpomonoid of S.
Cyclic S-posets which are Strongly Flat

Let $P \subseteq S$ be a right collapsible subpomonoid and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$, where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_1, q_1, \ldots, p_n, q_n \in P$ and $u_1, \ldots, u_n \in S$ such that

\[s \leq u_1 p_1, \; u_1 q_1 \leq u_2 p_2, \ldots, u_n q_n \leq t. \]

Then

(i) ρ is a left congruence;
(ii) $P \subseteq \mathbb{1}$
(iii) S/ρ is strongly flat.
Cyclic S-posets which are Strongly Flat

Let $P \subseteq S$ be a right collapsible subpomonoid and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$, where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_1, q_1, \ldots, p_n, q_n \in P$ and $u_1, \ldots, u_n \in S$ such that

$$s \leq u_1 p_1, u_1 q_1 \leq u_2 p_2, \ldots, u_n q_n \leq t.$$

Then

(i) ρ is a left congruence;
(ii) $P \subseteq [1]$
(iii) S/ρ is strongly flat.

Let ρ be a left congruence on S such that S/ρ is strongly flat and let $P = [1]$. Then P is a right collapsible subpomonoid.
Covers of cyclic S-posets

A left S-poset A over a pomonoid S is called a cover for a left S-poset B, if there exists an S-poset epimorphism $\beta : A \rightarrow B$, such that any restriction of β to a proper S-subposet of A is not an S-poepimorphism. Such a map β is called coessential (minimal) S-poepimorphism.

▶ **Theorem**: Let S be a pomonoid and σ, σ' are left congruences on S. Then S/σ' is isomorphic to a cyclic S-subposet of S/σ if and only if there exists $u \in S$ such that $\sigma' = \{(s, t) \in S \times S : (su, tu) \in \sigma\}$.
Covers of cyclic S-posets

A left S-poset A over a pomonoid S is called a cover for a left S-poset B, if there exists an S-poset epimorphism $\beta : A \to B$, such that any restriction of β to a proper S-subposet of A is not an S-poepimorphism. Such a map β is called coessential (minimal) S-poepimorphism.

▶ **Theorem:** Let S be a pomonoid and σ, σ' are left congruences on S. Then S/σ' is isomorphic to a cyclic S-subposet of S/σ if and only if there exists $u \in S$ such that $\sigma' = \{ (s, t) \in S \times S : (su, tu) \in \sigma \}$.

▶ **Theorem:** Consider the S-pomonomorphism $h : S/\sigma' \to S/\sigma$ for some $u \in S$ as defined above, then h is onto if and only if $Su \cap [1]_\sigma \neq \emptyset$.
Covers of cyclic S-posets

Theorem: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f : S/\sigma \to S/\rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S/\sigma_u \cong S/\sigma$ and $f' : S/\sigma_u \to S/\rho$ given by $(s \sigma_u)f' = [s]_\rho$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_u} \subseteq [1]_{\rho}$.
Covers of cyclic S-posets

- **Theorem**: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f : S/\sigma \to S/\rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S/\sigma_u \cong S/\sigma$ and $f' : S/\sigma_u \to S/\rho$ given by $(s \sigma_u)f' = [s]_\rho$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_u} \subseteq [1]_\rho$.

- **Theorem**: Let S be a pomonoid, then the S-pomorphism $f : S/\sigma \to S/\rho$ given by $[s]_\sigma \mapsto [s]_\rho$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in [1]_\rho$, $Su \cap [1]_\sigma \neq \emptyset$.
Covers of cyclic S-posets

- **Theorem:** Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f : S/\sigma \to S/\rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S/\sigma_u \cong S/\sigma$ and $f' : S/\sigma_u \to S/\rho$ given by $(s \sigma_u)f' = [s]_{\rho}$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_u} \subseteq [1]_{\rho}$.

- **Theorem:** Let S be a pomonoid, then the S-pomorphism $f : S/\sigma \to S/\rho$ given by $[s]_{\sigma} \mapsto [s]_{\rho}$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in [1]_{\rho}$, $Su \cap [1]_{\sigma} \neq \emptyset$.

- **Theorem:** Let S be a pomonoid, and S/ρ a cyclic S-sposet. If R is a subpomonoid of $[1]_{\rho}$ such that $Su \cap R \neq \emptyset$ then there exists a left pocongruence σ such that $R \subseteq [1]_{\sigma}$ and S/σ is a cover of S/ρ.
Covers of cyclic S-posets

- **Theorem:** Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f : S/\sigma \twoheadrightarrow S/\rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S/\sigma_u \cong S/\sigma$ and $f' : S/\sigma_u \twoheadrightarrow S/\rho$ given by $(s \sigma_u)f' = [s]_\rho$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_u} \subseteq [1]_\rho$.

- **Theorem:** Let S be a pomonoid, then the S-pomorphism $f : S/\sigma \twoheadrightarrow S/\rho$ given by $[s]_\sigma \mapsto [s]_\rho$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in [1]_\rho$, $Su \cap [1]_\sigma \neq \emptyset$.

- **Theorem:** Let S be a pomonoid, and S/ρ a cyclic S-sposet. If R is a subpomonoid of $[1]_\rho$ such that $Su \cap R \neq \emptyset$ then there exists a left pocongruence σ such that $R \subseteq [1]_\sigma$ and S/σ is a cover of S/ρ.

- **Theorem:** Let S be a pomonoid, and S/ρ a cyclic S-sposet, then the natural map $S \twoheadrightarrow S/\rho$ is coessential if and only if $[1]_\rho$ is a subgroup of S.

Strongly flat Covers

Let S be a pomonoid and A be an S-poset, we say that A has a *strongly flat cover* if there exists an coessential S-poepimorphism $\beta : C \to A$ where C is a strongly flat S-poset.

Condition (L₀): every left pounitary subpomonoid B of S contains a right collapsible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

▶ **Theorem:** Let S be a pomonoid then the cyclic S-poset S/ρ has a strongly flat cover if and only if every left pounitary subpomonoid B contains a right collapsible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.
Let S be a pomonoid and A be an S-poset, we say that A has a **strongly flat cover** if there exists an coessential S-poepimorphism $\beta : C \to A$ where C is a strongly flat S-poset.

Condition (L₀): every left pounitary subpomonoid B of S contains a right collapsible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

- **Theorem:** Let S be a pomonoid then the cyclic S-poset S/ρ has a strongly flat cover if and only if every left pounitary subpomonoid B contains a right collapsible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

- **Corollary:** A pomonoid S satisfies Condition (L₀) if and only if every cyclic S-poset has a strongly flat cover.
Condition (P) Covers

Let S be a pomonoid and A be an S-poset, we say that A has a \((P)\) cover if there exists an coessential poepimorphism $\beta : C \rightarrow A$ where C is an S-poset satisfying Condition (P).

Condition (K\(O\)): every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

- **Theorem:** Let S be a pomonoid, then every cyclic S-poset has a (P)-cover if and only if every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

Condition (P) Covers

Let S be a pomonoid and A be an S-poset, we say that A has a (P) cover if there exists an coessential poepimorphism $\beta : C \rightarrow A$ where C is an S-poset satisfying Condition (P).

Condition (K⁰): every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

- **Theorem:** Let S be a pomonoid, then every cyclic S-poset has a (P)-cover if and only if every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, $Su \cap R \neq \emptyset$.

- **Corollary:** A pomonoid S satisfies Condition (K⁰) if and only if every cyclic S-poset has a (P)-cover.
Theorem: Let A be a left S-poset that satisfies condition (P) and which also satisfies the ascending chain condition for cyclic subposets. If A is indecomposable then A is cyclic.
Theorem: Let A be a left S-poset that satisfies condition (P) and which also satisfies the ascending chain condition for cyclic subposets. If A is indecomposable then A is cyclic.

Theorem: If S satisfies condition (A^0), then every left S-poset satisfies condition (P) is a disjoint union of cyclic left S-posets satisfies condition (P).
\mathcal{SF}-perfect, \mathcal{P}-perfect

Definition: A pomonoid S is \mathcal{SF}-perfect (\mathcal{P}-perfect) if every S-poset has a strongly flat cover (\mathcal{P}-cover).

Theorem: Let S be a pomonoid. The following conditions are equivalent;

- (i) S is \mathcal{SF}-perfect (\mathcal{P}-perfect);
\textbf{Definition}: A pomonoid S is SF-perfect (P-perfect) if every S-poset has a strongly flat cover (P-cover).

\textbf{Theorem}: Let S be a pomonoid. The following conditions are equivalent;

- \hspace{1cm} (i) S is SF-perfect (P-perfect);

- \hspace{1cm} (ii) S satisfies condition (A0), and every cyclic left S-poset has a strongly flat cover (P-cover);
SF-perfect, P-perfect

Definition: A pomonoid S is SF-perfect (P-perfect) if every S-poset has a strongly flat cover (P-cover).

Theorem: Let S be a pomonoid. The following conditions are equivalent;

- (i) S is SF-perfect (P-perfect);
- (ii) S satisfies condition (A^0), and every cyclic left S-poset has a strongly flat cover (P-cover);
- (iii) S satisfies condition (A^0), and $(L^0)((K^0))$
Pomonoids for which condition \((P)\) implies projective

- **Theorem**: Let \(S\) be a pomonoid. All cyclic left \(S\)-posets that satisfy condition \((P)\) are projective if and only if \(S\) satisfies the condition \((K^0)\): if \(P \subseteq S\) is a ordered left reversible and right po-unitary subpomonoid then \(P\) contains a right zero.
Pomonoids for which condition \((P)\) implies projective

- **Theorem**: Let \(S\) be a pomonoid. All cyclic left \(S\)-posets that satisfy condition \((P)\) are projective if and only if \(S\) satisfies the condition \((K'\,^0)\): if \(P \subseteq S\) is an ordered left reversible and right po-unitary subpomonoid then \(P\) contains a right zero.

- **Theorem**: Let \(S\) be a pomonoid, \(S\) satisfies condition \((A^0)\) and \((K'\,^0)\) if and only if all \(S\)-posets that satisfy condition \((P)\) are projective.
Pomonoids for which condition \((P)\) implies projective

- **Theorem**: Let \(S\) be a pomonoid. All cyclic left \(S\)-posets that satisfy condition \((P)\) are projective if and only if \(S\) satisfies the condition \((K'\circ)\): if \(P \subseteq S\) is a ordered left reversible and right po-unitary subpomonoid then \(P\) contains a right zero.

- **Theorem**: Let \(S\) be a pomonoid, \(S\) satisfies condition \((A\circ)\) and \((K'\circ)\) if and only if all \(S\)-posets that satisfy condition \((P)\) are projective.

- **Theorem**: Let \(S\) be a pomonoid such that every left \(S\)-poset satisfies Condition \((P)\) is projective. Then \(S\) satisfies \(M_R\).
Pomonoids for which condition \((P)\) implies projective

- **Theorem**: Let \(S\) be a pomonoid. All cyclic left \(S\)-posets that satisfy condition \((P)\) are projective if and only if \(S\) satisfies the condition \((K'0)\): if \(P \subseteq S\) is an ordered left reversible and right po-unitary subpomonoid then \(P\) contains a right zero.

- **Theorem**: Let \(S\) be a pomonoid, \(S\) satisfies condition \((A0)\) and \((K'0)\) if and only if all \(S\)-posets that satisfy condition \((P)\) are projective.

- **Theorem**: Let \(S\) be a pomonoid such that every left \(S\)-poset satisfies Condition \((P)\) is projective. Then \(S\) satisfies \(M_R\).

- **Corollary**: Let \(S\) be a pomonoid such that every left \(S\)-poset satisfies Condition \((P)\) is projective then \(S\) is left po-perfect.
Pomonoids for which condition \((P) \) implies \(SF \)

A pomonoid \(S \) is called *aperiodic* if for every element \(x \in S \) there exists \(n \in \mathbb{N} \) such that \(x^n = x^{n+1} \).

▶ **Theorem**: \(S \) be a aperiodic pomonoid if and only if every non-trivial left reversible (ordered left reversible) monogenic subpomonoid of \(S \) contains a right zero.
A pomonoid S is called *aperiodic* if for every element $x \in S$ there exists $n \in \mathbb{N}$ such that $x^n = x^{n+1}$.

- **Theorem**: S be a aperiodic pomonoid if and only if every non-trivial left reversible (ordered left reversible) monogenic subpomonoid of S contains a right zero.

- **Theorem**: Let S be an idempotent pomonoid then every left S-poset which satisfies condition (P) is strongly flat.
Pomonoids for which condition \((P)\) implies \(SF\)

A pomonoid \(S\) is called \textit{aperiodic} if for every element \(x \in S\) there exists \(n \in \mathbb{N}\) such that \(x^n = x^{n+1}\).

\begin{itemize}
 \item \textbf{Theorem}: \(S\) be a aperiodic pomonoid if and only if every non-trivial left reversible(ordered left reversible) monogenic subpomonoid of \(S\) contains a right zero.

 \item \textbf{Theorem}: Let \(S\) be an idempotent pomonoid then every left \(S\)-poset which satisfies condition \((P)\) is strongly flat.

 \item \textbf{Theorem}: For any pomonoid \(S\) if all cyclic left \(S\)-posets that satisfy condition \((P)\) are strongly flat then \(S\) is aperiodic pomonoid.
\end{itemize}
Theorem: Let S be aperiodic pomonoid which satisfies Condition (FP_0) then every cyclic left S-poset which satisfies condition (P) is strongly flat.
- **Theorem**: Let S be aperiodic pomonoid which satisfies Condition (FP_0) then every cyclic left S-poset which satisfies condition (P) is strongly flat.

- **Theorem**: Let S be aperiodic pomonoid such that S satisfies condition (FP_0) then every left reversible subpomonoid of S is right collapsible.
Theorem: Let S be aperiodic pomonoid which satisfies Condition (FP_0) then every cyclic left S-poset which satisfies condition (P) is strongly flat.

Theorem: Let S be aperiodic pomonoid such that S satisfies condition (FP_0) then every left reversible subpomonoid of S is right collapsible.

Theorem: Let S be a pomonoid such that every left reversible subpomonoid S is right collapsible then S is aperiodic.
Theorem: Let S be aperiodic pomonoid which satisfies Condition (FP_0) then every cyclic left S-poset which satisfies condition (P) is strongly flat.

Theorem: Let S be aperiodic pomonoid such that S satisfies condition (FP_0) then every left reversible subpomonoid of S is right collapsible.

Theorem: Let S be a pomonoid such that every left reversible subpomonoid S is right collapsible then S is aperiodic.

Theorem: Let S be a pomonoid such that every cyclic left S-poset which satisfies condition (P) is projective then S is aperiodic and satisfies (FP_0).
Theorem: Let S be a pomonoid which satisfies condition (FP_0), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.
Theorem: Let S be a pomonoid which satisfies condition (FP_0), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.

Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.
Theorem: Let S be a pomonoid which satisfies condition (FP_0), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.

Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.

Theorem: Any strongly flat left S-poset which has projective cover is projective.
Theorem: Let S be a pomonoid which satisfies condition (FP_0), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.

Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.

Theorem: Any strongly flat left S-poset which has projective cover is projective.

Theorem: Let A be a strongly flat left S-poset then A is a strongly flat as a left S-act.
Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

▶ **Theorem**: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.
Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- **Theorem**: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.

- **Theorem**: Every locally cyclic left S-poset is indecomposable.
Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

▶ **Theorem:** Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.

▶ **Theorem:** Every locally cyclic left S-poset is indecomposable.

▶ **Theorem:** A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.
Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- **Theorem**: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.

- **Theorem**: Every locally cyclic left S-poset is indecomposable.

- **Theorem**: A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.

- **Theorem**: Any cover of a locally cyclic left S-poset is indecomposable.
Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- **Theorem**: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.

- **Theorem**: Every locally cyclic left S-poset is indecomposable.

- **Theorem**: A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.

- **Theorem**: Any cover of a locally cyclic left S-poset is indecomposable.

- **Corollaries**: For a pomonoid S, the following are true;
 (i) every projective cover of a locally cyclic left S-poset is cyclic;
 (ii) every \mathcal{P}-cover of a locally cyclic left S-act is locally cyclic.
Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;
- (iv) every locally cyclic strongly flat left S-poset has a projective cover.
Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;
- (iv) every locally cyclic strongly flat left S-poset has a projective cover.
Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;
Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;
- (iv) every locally cyclic strongly flat left S-poset has a projective cover.
SF-perfect, \(\mathcal{P}\)-perfect

Theorem: Let \(S\) be a pomonoid, then the following are equivalent;

1. \(S\) is left \(SF\)-perfect (\(\mathcal{P}\)-perfect);
SF-perfect, P-perfect

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left SF-perfect (P-perfect);
- (ii) S satisfies condition (A^0) and every locally cyclic left S-poset has a strongly flat cover (condition (P) cover);
Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).
Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).

Theorem: Let S be a pomonoid. Then every left S-poset satisfy condition (E) is strongly flat if and only if indecomposable left S-poset satisfy condition (E) is locally cyclic.
Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).

Theorem: Let S be a pomonoid. Then every left S-poset satisfy condition (E) is strongly flat if and only if indecomposable left S-poset satisfy condition (E) is locally cyclic.

Corollary: every SF-cover of a locally cyclic left S-poset is locally cyclic.
Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S/ρ has a strongly flat cover if and only if $[1]_\rho$ is a subgroup of S.

- Let S be a pomonoid, and S/ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in [1]_\rho$ then S/ρ has a strongly flat cover.

- Not all cyclic S-poset need have a strongly flat cover. For example $(\mathbb{N},.)$ under usual ordering having only subgroup $\{1\}$.

- Then all cyclic S-poset having $[1]_\rho \neq \{1\}$ do not have a strongly flat cover.

- If S is a group then every cyclic S-poset has S as a cover. Also each cyclic S-poset have a strongly flat cover.

- Let S be a simple pomonoid, then S satisfies condition (A) and each cyclic S-poset have a cover which satisfies condition (P). Thus S is P-perfect.
Examples

- Let S be an ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S/ρ has a strongly flat cover if and only if $[1]_\rho$ is a subgroup of S.

- Let S be a pomonoid, and S/ρ a cyclic S-poset. If S contains an ordered right zero (right zero) say z such that $z \in [1]_\rho$ then S/ρ has a strongly flat cover.
Examples

- Let S be an ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S/ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.

- Let S be a pomonoid, and S/ρ a cyclic S-poset. If S contains an ordered right zero (right zero) say z such that $z \in [1]_{\rho}$ then S/ρ has a strongly flat cover.

- Not all cyclic left S-poset need have a strongly flat cover. For example $(\mathbb{N},.)$ under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq \{1\}$ do not have a strongly flat cover.
Examples

▶ Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S/ρ has a strongly flat cover if and only if $[1]_\rho$ is a subgroup of S.

▶ Let S be a pomonoid, and S/ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in [1]_\rho$ then S/ρ has a strongly flat cover.

▶ Not all cyclic left S-poset need have a strongly flat cover. For example $(\mathbb{N}, .)$ under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq \{1\}$ do not have a strongly flat cover.

▶ If S is a group then every cyclic S-poset has S as a cover. Also each cyclic S-poset have a strongly flat cover.
Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S/ρ has a strongly flat cover if and only if $[1]_\rho$ is a subgroup of S.

- Let S be a pomonoid, and S/ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in [1]_\rho$ then S/ρ has a strongly flat cover.

- Not all cyclic left S-poset need have a strongly flat cover. For example $(\mathbb{N},.)$ under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq \{1\}$ do not have a strongly flat cover.

- If S is a group then every cyclic S-poset has S as a cover. Also each cyclic S-poset have a strongly flat cover.

- Let S be a simple pomonoid, then S satisfies condition (A) and each cyclic S-poset have a cover which satisfies condition (P). Thus S is \mathcal{P}-perfect.
Summary

We have following facts relating to covers

- Projective Cover \Rightarrow Strongly flat Cover \Rightarrow (P)- Cover;
Summary

We have following facts relating to covers

- Projective Cover \Rightarrow Strongly flat Cover \Rightarrow (P)- Cover;
- Covers of cyclic S-poset need not be unique;
Open Problems

- We would like to know either \((K^0)\) implies \((K'^0)\) or not.
Open Problems

- We would like to know either \((K^0)\) implies \((K'^0)\) or not.
- To characterise those pomonoids for which each \(S\)-poset has flat cover, po-flat cover, weakly flat cover and principally weakly flat cover.
Open Problems

▶ We would like to know either \((K^0) \) implies \((K'{}^0) \) or not.

▶ To characterised those pomonoids for which each \(S \)-poset has flat cover, po-flat cover, weakly flat cover and principally weakly flat cover.

▶ To characterise those conditions on \(S \) such that \(SF \)-cover and \(P \)-cover are unique;