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Abstract. The distributivity condition arose out of the study of the connection between
independence algebras and stable basis algebras. Stable basis algebras were introduced by
Fountain and Gould and developed in a series of articles. They form a class of universal
algebras, extending that of independence algebras. Gould showed that if a stable basis
algebra satisfies the distributivity condition, then it is a reduct of an independence algebra.
The distributivity condition is satisfied by independence algebras in the most familiar classes,
such as vector spaces, and by all the known additional examples of stable basis algebras. In
this note we give the first example of an independence algebra (and hence, of a stable basis
algebra) not satisfying the distributivity condition.

1. Introduction and Preliminaries

The second author introduced the study of the endomorphism monoids of a class of uni-
versal algebras called v∗-algebras, which she named independence algebras. These appear
first in an article of Narkiewicz [15] and were inspired by Marczewski’s study of notions of
independence, initiated in [14] (see [10] and the survey article [17]). Such algebras may be
defined via properties of the closure operator 〈−〉 which takes a subset of an algebra to the
subalgebra it generates. In an independence algebra, 〈−〉 must satisfy the exchange property,
which guarantees that we have a well behaved notion of rank for subalgebras and hence for
endomorphisms, generalising that of the dimension of a vector space. Further, independence
algebras are relatively free. Precise definitions and further details may be found in [8]. We
remark that sets, vector spaces and free acts over any group are examples of independence
algebras. A full classification, which we will draw upon for this article, is given by Urbanik
in [17].

The study of endomorphism monoids of independence algebras has flourished over the last
twenty years (see, for example, [1, 2, 6, 7, 12]), since they provide the framework for un-
derstanding the common behaviours of several fundamental examples of monoids, including
full transformation monoids and matrix rings over division rings. We denote the monoid of
endomorphisms of an algebra A by End(A). If A is an independence algebra of finite rank
n, then the set Sing(A) of endomorphisms of rank strictly less than n forms an idempotent
generated ideal [6]. We remark that idempotent generated semigroups are ubiquitous, since
every (finite) semigroup embeds into a (finite) idempotent generated semigroup [11].

The endomorphism monoid of an independence algebra A is regular. Surprisingly, regu-
larity of End(A) is not necessary for the above results concerning idempotent generation.
For example, the results of Laffey [13] show that if A is a free module of finite rank n over
a Euclidean domain, then the set of non-identity idempotents of End(A) generates the sub-
semigroup of endomorphisms of rank strictly less than n. Fountain and the second author
introduced in [4] a class of algebras called stable basis algebras that generalise free modules
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over Euclidean domains, in an attempt to put the results of Laffey, and later work of Foun-
tain [3] and Ruitenberg [16], into a more general setting, an aim achieved in [5]. Stable basis
algebras are in particular relatively free algebras in which the closure operator PC (pure
closure) satisfies the exchange property. Certainly independence algebras are stable basis
algebras. Finitely generated free left modules over left Ore Bezout domains and finitely gen-
erated free left T-acts over any cancellative monoid T such that finitely generated left ideals
of T are principal, are examples of stable basis algebras. We recall that a Bezout domain
is an integral domain (not necessarily commutative) in which all finitely generated left and
right ideals are principal. As for independence algebras, rank is well defined for subalgebras
and endomorphisms of basis algebras, where now the rank is defined via the operator PC1.

If A and B are algebras such that the universe (that is, the underlying set) B of B is
contained in the universe of A of A, then B is a reduct of A if every basic operation of B is
the restriction to B of a basic operation of A. Theorem 4.14 of [9] shows that if B is a stable
basis algebra satisfying the distributivity condition, then B is a reduct of an independence
algebra A, having the same rank as B. The distributivity condition is stated precisely in
Section 2: essentially it says that unary operations distribute over basic n-ary operations,
for n ≥ 2, and is satisfied for all previously known examples of basis algebras.

The aim of this note is to prove the following:

Theorem. Not all independence algebras and hence, not all stable basis algebras, satisfy the
distributivity condition.

2. The distributivity condition for independence algebras

If B is a stable basis algebra, then the monoid of non-constant unary term operations will
be denoted by T.

Definition 2.1. A stable basis algebra B satisfies the distributivity condition if the clone of
B contains a generating set of basic operations such that for all a ∈ T and n-ary basic term
operations t, where n ≥ 2, we have

a(t(x1, . . . , xn)) = t(a(x1), . . . , a(xn)).

Note that Definition 2.1 is stated here more precisely than in [9], since to show B does not
satisfy the distributivity condition, we wish to show it is impossible to choose any generating
set for the clone that witnesses this.

Certainly vector spaces, and (free) acts over any group satisfy the distributivity condition.
As explained at the beginning of Section 4 of [9], all additional examples of independence
algebras can also be shown to do so, with the possible exceptions of the S-homogeneous
algebras or Q-homogeneous algebras, where S is a monoid and Q a quasifield. We now
address these cases.

2.1. All Q-homogeneous independence algebras have the distributivity property.

A quasifield Q is a set Q with at least two elements, together with two binary operations
denoted by juxtaposition, and −, such that the multiplicative operation has a zero 0, the
non-zero elements form a group under multiplication, and four further axioms hold (see 4.3

1In earlier articles, rank in a basis algebra was referred to as PC-rank but, as there is no ambiguity, we
simply use the term rank here.
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of [17]). In a Q-homogeneous independence algebra A over a quasifield Q, all fundamental
k-ary operations f satisfy

f(a− ba1, . . . , a− bak) = a− bf(a1, . . . , ak),

for all a, b1, . . . , bk ∈ Q, where subtraction and multiplication are the operations from Q.
Setting b = 0 and ai = a for 1 ≤ i ≤ k, we obtain that f(a, . . . , a) = a. An inductive
argument gives that the identity is the only non-constant unary term operation of A. The
distributivity property now follows trivially.

2.2. Not all S-homogeneous independence algebras have the distributivity con-

dition. Let S be a monoid such that all the non-invertible elements are left zeros. A good
example is a group, which is exactly what we will take below. An n-ary operation on S is
said to be S-homogeneous if for all s, s1, . . . , sn ∈ S we have

f(s1, . . . , sn)s = f(s1s, . . . , sns).

Since S is a monoid, the operations f(x) = sx (s ∈ S) are the only unary S-homogeneous
operations. A S-homogeneous independence algebra has underlying set S and the basic
operations form a set O of S-homogeneous operations on S containing all the unary S-
homogeneous operations. The aim of this subsection is to show that with a careful choice of
S and O, the resulting independence algebra A does not satisfy the distributivity condition.

Let Z = {z1, z2, . . . } be a countably infinite set and let E = {z2, z4, . . . }. Let FG = FG(Z)
be the free group over Z with identity 1 and underlying set which we denote for brevity by
F = FG(Z). In the following, concatenation will always refer to the group operation of FG.

Let F+ ⊆ F be the set of all non-identity elements of F whose normal form does not
include any negative exponents, so that F+ is the underlying set of the copy of the free
semigroup FS on Z sitting inside FG.

Since F and E are both countably infinite we may choose a function h : F → E, where
w 7→ hw, satisfying the following conditions:

(h1) hz1z
−1
2

= z6 (h2) hz3z
−1
2

= z8
(h3) hz1z

−1
4

= z10 (h4) h is injective.

Now let A = 〈F ; {νA
c }c∈F , g

A〉 where:

(1) for each c ∈ F , νA
c is the unary operation given by νA

c (w) = cw (i.e. νA
c acts as left

translation by the element c in the group FG);
(2) gA is the binary operation given by gA(w1, w2) = hw1w

−1
2
w2.

Lemma 2.2. The algebra A is a monoid independence algebra with underlying monoid FG.

Proof. We first remark that as FG is a group, it has no non-invertible elements, and so is
a suitable monoid from which to build a monoid independence algebra. We have remarked
that FG-homogeneous unary operations are left translations and by construction, all left
translations νA

c , c ∈ F are fundamental in A.
Finally, for all w1, w2, w

′ ∈ F , we have

gA(w1w
′, w2w

′) = hw1w′(w2w′)−1w2w
′ = hw1w

−1
2
w2w

′ = gA(w1, w2)w
′,

so that gA is FG-homogeneous and hence A is a monoid independence algebra. �
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In order to show that A does not have the distributivity property, we need to examine the
clone of A. We let L = {{νc}c∈F , g}, be the language of A, X = {x1, x2, . . . , } a countably
infinite set of variables (which we may think of as being linearly ordered according to their
subscripts), and T the set of terms in the language L over X . The elements of the clone are
obtained from the interpretation in A of elements in T .

For i, j ∈ N with i ≤ j let πj
i : F j → F i be given by (w1, . . . , wj) 7→ (w1, . . . , wi), i.e. πj

i

is the projection to the first i coordinates.
For each term t ∈ T , let a(t) be the largest n such that the variable xn occurs in t and we

define a function t̄ : F a(t) → F by structural induction, as we now describe. We remark that
t̄ will essentially be the term function associated with t and usually denoted by tA. However,
our definition of t̄ is needed due to some minor technicalities involving the arities of term
functions.

For each i ∈ N set x̄i(w1, . . . , wi) = wi. If t = νc(s) for some s, then noting that a(t) = a(s),
let t̄ = νA

c ◦ s̄. Finally, for t = g(t1, t2), we set

t̄ = gA ◦
(

t̄1 ◦ π
a(t)
a(t1)

, t̄2 ◦ π
a(t)
a(t2)

)

,

which is well-defined, as a(t) ≥ a(t1), a(t2). With some abuse of terminology, we will refer
to all functions of the form t̄ as term functions.

Given a term t ∈ T , let ν(t) to be the set of c ∈ F such that νc appears in t. We define
the content of t, denoted Ct, by

Ct =
⋃

c∈ν(t)

{zi ∈ Z : zi appears in the normal form of c}.

Note that Ct ⊆ Z and is finite.
For each t ∈ T , we define t∗ ∈ N by structural induction as follows: if t = xi for some i,

then t∗ = i, if t = νc(t1) for some t1 ∈ T , then t∗ = t∗1, and if t = g(t1, t2) for some t1, t2 ∈ T ,
we set t∗ = t∗2. It is easy to see that t∗ is the index of the variable that appears syntactically
in the “right-most” position of t and clearly, t∗ ≤ a(t).

The following lemma characterizes behaviour of the functions of the form t̄, by connecting
them to the group structure on the underlying set F of A. This will be essential to our later
arguments.

Lemma 2.3. Let t ∈ T such that a(t) = n. Then one of the following holds:

(1) there exist a w ∈ FG(E ∪ Ct) such that for all ~y ∈ F n,

t̄(~y) = wyt∗ ;

(2) there exists a function f : F n → FG(E ∪ Ct) such that for all ~y ∈ F n,

t̄(~y) = f(~y)yt∗ .

In addition, there are sequences zj1 , zj2, . . . on Z, and ~µ1, ~µ2, . . . on (F+)
n such that

(a) ji 6= ji′ for i 6= i′, and
(b) zji appears in the normal form of f(~µi) with a positive exponent.

Proof. We remark that if f is as in Condition (2), then, in particular, the image of f is
infinite, indeed, the image of f restricted to (F+)

n is infinite.
We prove the lemma by induction over the structure of t. If t = xi for some i, then

n = a(t) = t∗ = i and t̄(~y) = x̄i(y1, . . . , yi) = yi = 1yt∗ and the result holds with w = 1 in
Condition (1).
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Assume for induction that the result holds for any proper subterm of t.
Case (i) Suppose first that t = νσ(t1) for some term t1, so that t

∗ = t∗1. Then n = a(t) = a(t1)
and by induction, t1 satisfies the conditions of the lemma.
Case (i)(a) If t̄1(~y) = wyt∗1 for some w ∈ FG(E ∪Ct1), then t̄(~y) = σt̄1(~y) = σwyt∗1 = σwyt∗ .
Moreover, σw ⊆ FG(E∪Ct), as Ct = Ct1 ∪Cσ, where Cσ is the set of generators that appear
in the normal form of σ. Hence t̄(~y) satisfies Condition (1).
Case (i)(b) Now suppose that Condition (2) holds for t1, so there exists f1 : F

n → FG(E ∪
Ct1) and sequences (zji)i∈N and (~µi)i∈N as in (2), such that t̄1(~y) = f1(~y)yt∗1 . Then

t̄(~y) = σt̄1(~y) = σf1(~y)yt∗1 = σf1(~y)yt∗ .

For each i ∈ N let wi = f1(~µi) and put σwi =: τi. The normal form of wi contains zji with
a positive exponent, so the normal form of τi will do so as well, unless zji cancels against a
z−1
ji
. But, considering σ, there are only finitely many indices i for which z−1

ji
appears in the

normal form of σ. It follows that for infinitely many values i, the element τi ∈ F contains
zji in its normal form with a positive exponent.

Define f : F n → F by f = νA
σ ◦ f1. By the assumption on f1, and as Ct = Ct1 ∪ Cσ, we

have f : F n → FG(E ∪ Ct).
We obtain that t̄(~y) = f(~y)yt∗ . It is easy to see that t̄ satisfies Condition (2), with the

sequences (zji)i∈N and (~µi)i∈N obtained from the corresponding sequences for t̄1 by removing
finitely many elements.
Case (ii) We now consider the case that t = g(t1, t2) for some terms t1, t2. By induction the
lemma holds for t1 and t2. Let n1 = a(t1), n2 = a(t2), so that n is the maximum of n1 and
n2, and t∗ = t∗2. Notice that Ct = Ct1 ∪ Ct2 .
Case (ii)(a) Assume first that Condition (2) holds for t2, so that

t̄2
(

πn
n2
(~y)

)

= f2
(

πn
n2
(~y)

)

yt∗2

for some f2 : F n2 → FG(E ∪ Ct2), such that there are sequences (zji)i∈N and (~µi)i∈N as in
(2).

Since t∗ = t∗2 we have

t̄(~y) = h
t̄1(πn

n1
(~y))(t̄2(πn

n2
(~y)))

−1 t̄2
(

πn
n2
(~y)

)

= h
t̄1(πn

n1
(~y))(t̄2(πn

n2
(~y)))

−1f2
(

πn
n2
(~y)

)

yt∗ .

Define f : F n → F by

f(~y) = h
t̄1(πn

n1
(~y))(t̄2(πn

n2
(~y)))

−1f2
(

πn
n2
(~y)

)

.

We have that t̄(~y) = f(~y)yt∗ , as required. Moreover, f : F n → FG(E∪Ct), by the conditions
on f2 and since the image of h lies in E. Let ~µ′

i ∈ F n
+ be obtained by extending ~µi to arity n

with n − n2 arbitrary elements from F+. By Condition (2) for t2, we have that zji appears
in the normal form of f2(~µi) = wi with a positive exponent. Now

f(~µ′

i) = h
t̄1(πn

n1
(~µ′

i
))(t̄2(~µi))

−1wi.

By definition of h, the first factor is just an element of E, so in particular an element of F+.
It follows that the generator zji in wi cannot cancel, and hence appears in the normal form
of f(~µ′

i).
Thus t̄ satisfies Condition (2) with f and the sequences (~µ′

i)i∈N and (zji)i∈N.
Case (ii)(b) For our final case we assume that t̄2

(

πn
n2
(~y)

)

= w2yt∗2 , for some w2 ∈ FG(E∪Ct2).
We make four further case distinctions.
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(1) t̄1 satisfies Condition (1) and t∗1 = t∗2. We have for ~u ∈ F n1 that t1(~u) = w1ut∗1
for

some w1, and then for ~y ∈ F n we see that t̄1
(

πn
n1
(~y)

)

= w1yt∗1 , and

t̄(~y) = h
t̄1(πn

n1
(~y))(t̄2(πn

n2
(~y))

−1 t̄2
(

πn
n2
(~y)

)

= hw1yt∗1
(w2y

∗

t2
)−1w2yt∗2 = hw1w

−1
2
w2yt∗

as t∗1 = t∗2. Thus t̄ also satisfies Condition (1), as hw1w
−1
2
w2 ∈ FG(E ∪ Ct).

(2) t̄1 satisfies Condition (2) with respect to f1 : F
n1 → FG(E ∪ Ct1) and t∗1 = t∗2.

In this case

t̄(~y) = h
f1(πn

n1
(~y))w−1

2
w2yt∗ .

We claim that t̄ satisfies Condition (2). Let f be given by

f(~y) = h
f1(πn

n1
(~y))w−1

2
w2.

Then f : F n → FG(E∪Ct) by the same argument as above, so it remains to construct
appropriate sequences (~µi)i∈N and (zji)i∈N.
By the remark at the beginning of this proof, f1

(

πn
n1

(

F n
+

))

is infinite and hence so

is f1
(

πn
n1

(

F n
+

))

w−1
2 . The function h is injective and maps into E, so it follows that

hf1(πn
n1

(~x))w−1
2

takes on infinitely many values zji in E as ~x runs over F n
+. Only finitely

many of these values can cancel against a generator in the normal form of w2. The
existence of (~µi)i∈N and (zji)i∈N follows.

(3) t̄1 satisfies Condition (1) and t∗1 6= t∗2. In this case we have that t̄1(~y) = w1yt∗1 for
some w1 ∈ FG(E ∪ Ct1), for all ~y ∈ F n1, and thus

t̄(~y) = hw1yt∗1
(y

t
∗

2
)−1w−1

2
w2yt∗ .

Consider the set P ⊂ Z2 of pairs (u1, u2) for which u1 6= u2, and neither u1, u2 nor
their inverses appear in the normal forms of w1 or w2; clearly P is infinite. For
any (u1, u2) ∈ P , the normal form of w1u1u

−1
2 w−1

2 contains the subexpression u1u
−1
2 ,

and these are the only occurrences of u1 and u2 in the normal form. It follows that
w1u1u

−1
2 w−1

2 takes on only distinct and hence infinitely many elements of F as (u1, u2)
runs through P . As h is injective, hw1u1u

−1
2 w−1

2
also takes on infinitely many values

from E as (u1, u2) runs through P . Only finitely many of those values can cancel
against generators from the normal form of w2. Removing the corresponding pairs
from P we see that t̄ satisfies Condition (2) with respect to f : F n → FG(E ∪ Ct),
where

f(~y) = hw1yt∗
1
y−1
t
∗

2
w−1

2
w2,

with the ~µi ∈ F n
+ being chosen so that ~µi(t

∗

1) = u
(i)
1 , ~µi(t

∗

2) = u
(i)
2 and with arbitrary

elements of F+ in all other coordinates, where (u
(i)
1 , u

(i)
2 ) runs over a cofinite subset

of P and (zji)i∈N = (h
w1u

(i)
1 (u

(i)
2 )−1w−1

2
)i∈N.

(4) t̄1 satisfies Condition (2) with respect to f1 : F
n1 → FG(E ∪ Ct1), and t∗1 6= t∗2.

This case is similar to the previous one. We have that

t̄(~y) = h
f1(πn

n1
(~y))yt∗1y

−1
t
∗

2
w−1

2
w2yt∗ .

Let P ⊂ Z2 be the set of pairs (u1, u2) for which u1, u2 /∈ E ∪Ct, u1 6= u2 and neither
u1, u2 nor their inverses appear in the normal form of w2; clearly P is infinite. If
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~z ∈ F n
+ and (u1, u2) ∈ P , then in the expression

f1
(

πn
n1
(~z)

)

u1u
−1
2 w−1

2 ,

u1 and u−1
2 cannot cancel against any generators from the normal forms of w−1

2 and
f1

(

πn
n1
(~z)

)

, in the latter case because f1 maps into F (E∪Ct). Arguing as previously
we see that t̄ satisfies Condition 2.

By structural induction, the lemma holds for all terms t ∈ T . �

We are ready show our main result.

Theorem 2.4. The independence algebra A does not satisfy the distributivity property.

Proof. By way of contradiction, assume thatW is set of functions that generate the clone of A
and witness the distributivity property. The clone of A contains the function gA. By the first
three conditions of our choice of h, calculation shows that g(z1, z2) = z6z2, g(z3, z2) = z8z2,
and g(z1, z4) = z10z4. Combined, these results show that g depends on both of its arguments.

It follows that W must contain an operation v that depends on more than one argument,
for otherwise the entire clone of A would consist of functions that are essentially unary. As
v is in the clone of A, it is a composition of A-operations and projections, and it is easy to
see that such v must have the form t̄ ◦ πn

m for some t ∈ T . Moreover, W \ {v} ∪ {t̄} also
generates the clone of A and witnesses the distributivity property. Thus, we may assume
that v = t̄ for a term t ∈ T ; since v depends on at least two variables, so does t̄.

Such a t̄ must satisfy one of the two conditions from Lemma 2.3. As the first condition
implies that t̄ only depends on one variable, we must have instead that t̄(~y) = f(~y)yt∗ , where
f is as in Condition (2) of Lemma 2.3. Let (~µi)i∈N and (zji)i∈N be the sequences associated
to f satisfying (a) and (b) of Lemma 2.3, and set w1 = f(~µ1).

We have that t̄(~µ1) = f(~µ1)µ
∗

1 - where µ
∗

1 is the t
∗-th entry of ~µ1. Choose a ∈ Z \ (E∪Ct).

As we assume that A satisfies the distributivity property, and W is a witness of it, we have
that νa(t̄(~µ1)) = t̄(νa(~µ1)), where, with abuse of notation, νa(~µ1) = a~µ1 is the element of F n

obtained by multiplying every coordinate of ~µ1 by a on the left. Hence af(~µ1)µ
∗

1 = f(a~µ1)aµ
∗

1

and so af(~µ1) = f(a~µ1)a. Now, f(a~µ1) is in the image of f which is contained in FG(E∪Ct)
by Lemma 2.3. As a /∈ FG(E ∪ Ct), the normal form of f(a~µ1)a, and hence the normal
form of af(~µ1), will end with a. However, f(~µ1) is also an element of FG(E ∪ Ct), and so
its normal form does not contain a. It follows that f(~µ1) = 1. However, by Lemma 2.3, the
normal form of f(~µ1) contains the generator zj1 , a contradiction. �
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[2] P.J. Cameron and C. Szabó, ‘Independence algebras’, J. London Math. Soc., 61 (2000), 321–334.
[3] J. Fountain, ‘Products of idempotent integer matrices’, Math. Proc. Cambridge Phil. Soc. 110 (1991),

431–441.
[4] J. Fountain and V. Gould, ‘Relatively free algebras with weak exchange properties’, J. Australian Math.

Soc. 75 (2003), 355–384; see also http://www-users.york.ac.uk/∼varg1.
[5] J. Fountain and V. Gould, ‘Products of idempotent endomorphisms of relatively free algebras with weak

exchange properties’, Proc. Edinburgh Math. Soc. 50 (2007), 343–362.
[6] J. Fountain and A. Lewin, ‘Products of idempotent endomorphisms of an independence algebra of finite

rank’, Proc. Edinburgh Math. Soc. 35 (1992), 493–500.
[7] J. Fountain and A. Lewin, ‘Products of idempotent endomorphisms of an independence algebra of

infinite rank’, Math. Proc. Cambridge Phil. Soc. 114, (1993), 303–309.



8 WOLFRAM BENTZ AND VICTORIA GOULD

[8] V. Gould, ‘Independence algebras’, Algebra Universalis 33 (1995), 294–318.
[9] Victoria Gould (2010). Independence algebras, basis algebras and semigroups of quotients. Proceedings

of the Edinburgh Mathematical Society (Series 2), 53, pp 697-729. doi:10.1017/S0013091508000473.
[10] G. Grätzer, Universal Algebra, Van Nostrand, Princeton, N.J., 1968.
[11] J.M. Howie, ‘The subsemigroup generated by the idempotents of a full transformation semigroup’. J.

London Math. Soc. 41 (1966), 707–716.
[12] R. Gray, ‘Idempotent rank in endomorphism monoids of finite independence algebras’, Proc. Royal Soc.

Edinburgh: Section A 137A (2007), 303–331.
[13] T. Laffey, ‘Products of idempotent matrices’, Linear and Multilinear Algebra 14 (1983), 309–314.
[14] E. Marczewski, ‘A general scheme of the notions of independence in mathematics’, Bull Acad. Polish

Sci. 6 (1958), 731–736.
[15] W. Narkiewicz, ‘Independence in a certain class of abstract algebras’, Fund. Math. 50 (1961/62), 333–

340.
[16] W. Ruitenberg, ‘Products of idempotent matrices over Hermite domains’ Semigroup Forum 46 (1993),

371–378.
[17] K. Urbanik, ‘Linear independence in abstract algebras’, Coll. Math. 14 (1966), 233–255.

School of Mathematics and Physical Sciences, University of Hull, Kingston-upon-Hull

HU6 7RX, UK

E-mail address : w.bentz@hull.ac.uk

Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

E-mail address : victoria.gould@york.ac.uk


