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Abstract. Inverse semigroups form a variety of unary semigroups, that is, semi-

groups equipped with an additional unary operation, in this case a 7→ a−1. The

theory of inverse semigroups is perhaps the best developed within semigroup the-

ory, and relies on two factors: an inverse semigroup S is regular, and has semilattice

of idempotents. Three major approaches to the structure of inverse semigroups

have emerged. Effectively, they each succeed in classifying inverse semigroups via

groups (or groupoids) and semilattices (or partially ordered sets). These are (a) the

Ehresmann-Schein-Nambooripad characterisation of inverse semigroups in terms of

inductive groupoids, (b) Munn’s use of fundamental inverse semigroups and his

construction of the semigroup TE from a semilattice E, and (c) McAlister’s results

showing on the one hand that every inverse semigroup has a proper (E-unitary)

cover, and on the other, determining the structure of proper inverse semigroups in

terms of groups, semilattices and partially ordered sets.

The aim of this article is to explain how the above techniques, which were developed

to study inverse semigroups, may be adapted for certain classes of bi-unary semi-

groups. The classes we consider are those of restriction and Ehresmann semigroups.

The common feature is that the semigroups in each class possess a semilattice of

idempotents; however, there is no assumption of regularity.

For Professor K.P. Shum on the occasion of his 70th birthday

1. Introduction

A semigroup S is (von Neumann) regular if for every a ∈ S there exists b ∈ S
such that a = aba. Much of the early push in semigroup theory was to study and
characterise regular semigroups (whether by means of a structure theory, or by
representations) and in particular inverse semigroups, that is, regular semigroups
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with commuting idempotents. This direction was entirely natural from the point
of view that every semigroup S embeds into a full transformation semigroup TS ,
which is regular. Moreover, the use of Green’s relations yields, in many cases, vital
information about the structure and properties of regular semigroups. But, just
as group theory cannot be reduced to the theory of symmetric groups, neither can
semigroup theory be boiled down to the study of full transformation (and hence
regular) semigroups.

This article will survey three techniques for studying each of two classes of
semigroups that may be regarded as non-regular analogues of inverse semigroups.
For the first class, that of restriction semigroups, the connections with the inverse
case may be clearly seen. For the second, that of Ehresmann semigroups, new
insights are required. In fact, we have four classes of semigroups, since, unlike the
case for inverse semigroups, which are defined in a left-right dual manner, restriction
and Ehresmann semigroups come in left (and, dually, right) and two-sided versions.
Left restriction and left Ehresmann semigroups are varieties of unary semigroups,
whereas restriction and Ehresmann semigroups are varieties of bi-unary semigroups.
Note that a semigroup in each of these classes contains a distinguished semilattice,
which is the image of the unary operation(s). As classes of semigroups, all of these
classes contain the class of inverse semigroups. The latter is itself a variety of unary
semigroups, where the unary operation is a 7→ a−1, but we remark that the unary
operations we employ are different.

The three approaches that we consider are inspired by those in the classical
theory of inverse semigroups, where they each succeed in classifying inverse semi-
groups via groups (or groupoids) and semilattices (or partially ordered sets). They
are (a) the Ehresmann-Schein-Nambooripad characterisation of inverse semigroups
in terms of inductive groupoids (hereafter referred to as the categorical approach),
(b) Munn’s use of fundamental inverse semigroups and his construction of the semi-
group TE from a semilattice E (hereafter referred to as the fundamental approach),
and (c) McAlister’s results showing on the one hand that every inverse semigroup
has a proper (E-unitary) cover, and on the other, determining the structure of
proper inverse semigroups in terms of groups, semilattices and partially ordered
sets (hereafter referred to as the covering approach).

In Section 2 we introduce the varieties of (bi)-unary semigroups under con-
sideration. We present them as both varieties, and as determined by relations that
may be thought of as analogues of Green’s relations. The three subsequent sections
take each of the above methods - categorical, fundamental and covering - and ex-
amine how they can be used to study restriction and Ehresmann semigroups. Our
aim is to give as complete a picture as possible in the two-sided case, but, in order
to do so, we must make some mention of the one-sided varieties.
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2. Preliminaries

The classes of semigroups we consider may be arrived at in two ways: by us-
ing relations R̃E and L̃E , which may be thought of as ‘generalisations’ of Green’s
relations R and L, or as varieties of (bi)-unary semigroups. We give both descrip-
tions, beginning with the former, since this was the original route taken by the
‘York school’, to which the author belongs. Further details may be found in the
notes [21].

Let S be a semigroup and let E ⊆ E(S), where E(S) will always denote the
set of idempotents of S. The relation R̃E is defined on S by the rule that for any
a, b ∈ S, we have a R̃E b if

ea = a⇔ eb = b, for all e ∈ E.

Where E = E(S) it is usual to drop the subscript and write R̃E(S) more simply
as R̃. It is easy to see that R ⊆ R̃E , moreover if S is regular, then R = R̃. For,
in this case, if a R̃ b, then choosing x, y ∈ S with a = axa and b = byb, we have
that ax, by ∈ E(S) and so a = bya and b = axb. In general, for any S and any
e, f ∈ E ⊆ E(S), we see that eR f if and only if e R̃E f .

We say that the semigroup S is weakly left E-abundant if every R̃E-class
contains an element of E (the reader should be aware that some authors also insist
that R̃E be a left congruence). Notice that if a R̃E e where e ∈ E, then ea = a.
If E is a semilattice in S (by which we mean, a commutative subsemigroup of
idempotents of S), then it is clear that any R̃E-class contains at most one element
of E. In this case we denote the unique idempotent of E in the R̃E-class of a, if it
exists, by a+.

Definition 2.1. A semigroup S is left Ehresmann, or left E-Ehresmann, if E is a
semilattice in S, every R̃E-class contains a (unique) element of E, and R̃E is a left
congruence.

Some remarks on Definition 2.1 are appropriate. El Qallali [9] introduced
the relation R̃ and later Lawson [29] defined R̃E . In addition they both used the
left/right duals L̃ and L̃E . El Qallali talks of a semigroup as being semi-abundant
if every R̃- and L̃-class contains an idempotent, and Lawson calls a semigroup E-
semiabundant if every R̃E- and L̃E-class contains an element of E. From now on we
drop the hyphen that follows the prefix ‘semi’ in various articles. We recall that a
semigroup S is abundant [12] if every R∗-class and L∗-class contains an idempotent,
where R∗ is defined by the rule that aR∗ b if and only if for all x, y ∈ S1,

xa = ya⇔ xb = yb

and L∗ is the dual. An abundant semigroup is adequate [10, 11] if E(S) is a
semilattice. It is clear that R ⊆ R∗ ⊆ R̃E , so that (E)-semiabundant semigroups
were being thought of as a generalisation of abundant semigroups, which, in turn,
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are a generalisation of regular semigroups. Hence if E is a semilattice, then an E-
semiabundant semigroup, which Lawson calls E-semiadequate, is a generalisation
of an adequate semigroup, and again, all inverse semigroups are adequate. Note
that in an inverse semigroup, a+ = aa−1. Whereas R and R∗ are always left
congruences, the same is not true of R̃E , which is why the extra condition in
Definition 2.1 appears.

Specialising to the case where E forms a semilattice, it was again Lawson [29]
who coined the term ‘Ehresmann semigroup’, making the connection with the work
of C. Ehresmann on small ordered categories [8], and that of Schein and Namboori-
pad on inductive groupoids, which we will come to later. Lawson only considered
the two-sided version of Definition 2.1 and to ‘keep track’ of the idempotents un-
der consideration, he talks of (S,E) as being Ehresmann; subsequent authors have
said that S is ‘E-Ehresmann’ or just ‘Ehresmann’, where E is understood. Similar
conventions apply in the one sided case.

From the comments above, it is clear that an inverse semigroup S is left
E(S)-Ehresmann. Inverse semigroups form a variety, not of semigroups, but of
unary semigroups, that is, of semigroups possessing a unary operation. In this case
the operation is a 7→ a−1, where a−1 is the unique element such that

a = aa−1a and a−1 = a−1aa−1.

A set of three identities defining inverse semigroups is given in [1].
Let S be left E-Ehresmann. By definition, every R̃E-class contains a (unique)

element of E, giving a unary operation a 7→ a+ on S. We may thus regard S as
a unary semigroup; the reader should bear in mind that we therefore have two
different unary operations defined on an inverse semigroup.

Lemma 2.2. [21] A semigroup S is left E-Ehresmann such that for any a ∈ S we
have that a R̃E a+ where a+ ∈ E, if and only if it satisfies the identities

x+x = x, (x+y+)+ = x+y+, x+y+ = y+x+, x+(xy)+ = (xy)+, (xy)+ = (xy+)+

and
E = {a+ : a ∈ S}.

Proof. The result follows from [21], with the exception of showing that the given
identities imply (x+)+ = x+.

Suppose the identities hold. Then for any a ∈ S,

a+ = (a+a)+ = (a+a+)+ = a+a+,

using the first, fifth and second identities. Then

a+ = a+a+ = (a+a+)+ = (a+)+,

again from the second identity. �

From the above, left Ehresmann semigroups form a variety of algebras. We
shall hereafter regard a left Ehresmann semigroup S as a unary semigroup and
always use E (or, occasionally, ES ,) for the image of the unary operation. We refer
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to E as the distinguished semilattice. If the reader finds such semigroups a little
esoteric, then we point out that the more familiar left adequate semigroups (where,
following the standard pattern of terminology, a semigroup S is left adequate if
E(S) is a semilattice and every R∗-class contains an idempotent) form a generating
sub-quasivariety of the variety of left Ehresmann semigroups [18].

Right Ehresmann semigroups are defined dually, where now we use a∗ to
denote the idempotent in the L̃E-class of a. A semigroup is Ehresmann if it is
both left and right Ehresmann with respect to the same distinguished semilattices.
Ehresmann semigroups form a variety of bi-unary semigroups (that is, of semigroups
possessing two unary operations). The defining identities (other than associativity)
are those of Lemma 2.2, their duals, together with

(x+)∗ = x+ and (x∗)+ = x∗.

An inverse semigroup is therefore Ehresmann with a+ = aa−1 and a∗ = a−1a.

Definition 2.3. A semigroup S is left restriction (or left E-restriction), if it is left
Ehresmann and satisfies the ample condition

ae = (ae)+a

for all a ∈ S, e ∈ E.

Lemma 2.4. [21] A semigroup S is left restriction such that for any a ∈ S we have
that a R̃E a+ where a+ ∈ E, if and only if it satisfies the identities

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x

and
E = {a+ : a ∈ S}.

The presence of the last identity is therefore very strong, and corresponds to
the ample condition. It tells us that in any product, we can replace an idempotent
of E on the right by one on the left. We remark that any inverse semigroup S is
left restriction, since for any a, b ∈ S,

(ab)+a = (ab)(ab)−1a = a(bb−1)(a−1a) = a(a−1a)(bb−1) = abb−1 = ab+.

A left restriction semigroup is left ample (formerly, left type A) if R̃E = R∗.
In this case, we are forced to have E = E(S), since for any e ∈ E(S),

ee+ = (ee)+e = e+e = e

so that as e = e+e = ee and eR∗ e+,

e+ = e+e+ = ee+ = e.

Left ample semigroups have been widely studied, beginning with [10]. They form
a generating sub-quasivariety of the variety of left restriction semigroups (see the
description of free objects in [16]).
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The following result is essentially folklore. The first time it appears in print
is in the work of Trokhimenko [45]. To set the scene, we recall that the symmet-
ric inverse semigroup IX on a set X is the inverse semigroup of partial one-one
maps of X, under left-to-right composition of partial maps. By the Vagner-Preston
Representation Theorem [23], every inverse semigroup embeds in some IX . Indeed
every left ample semigroup embeds into some IX as a unary semigroup [11]. Of
course, IX is contained in the larger semigroup PT X of partial maps of X.

Proposition 2.5. [45, 21] A unary semigroup S is left restriction if and only if it
is isomorphic to a subalgebra of PT X , where the unary operation on PT X is given
by α 7→ α+ = Idomα.

It is in essence the above result that determines the importance of left re-
striction semigroups. Owing to their intimate connections with functions, they
have arisen in a number of contexts, and under a number of names, in the last half
century. We cite here [5, 15, 24, 43, 31]. Further background and references are
given in [21].

The term ‘restriction semigroup’ is taken from the work of the category the-
orists, Cockett and Lack [5], where in fact they are using the term for what we call
right restriction semigroups, where such unary semigroups are defined in a dual
manner to left restriction semigroups. We say that a semigroup is restriction if
it is left and right restriction with respect to the same set of idempotents. Hence
restriction semigroups form a variety of bi-unary semigroups.

Clearly inverse semigroups are restriction. We will see that the key to de-
veloping analogues of results and techniques for inverse semigroups to the class
of (left) restriction semigroups is the existence of the ample condition(s). In the
more general case of (left) Ehresmann semigroups, new techniques, or at least new
insights, are often required. The next sections will provide ample evidence for this
claim.

As mentioned earlier, our thrust here is to consider restriction and Ehresmann
semigroups, that is, the two-sided versions. But, there are situations in which these
semigroups are harder to deal with than their left-handed cousins. For example, an
ample semigroup S (that is, S is both left, and dually, right, ample) must embed
into inverse semigroups I and J in a way that preserves + and ∗, respectively.
However, it is undecidable whether a finite ample semigroup embeds as a bi-unary
semigroup into an inverse semigroup [19]. In the final section we find it useful to
outline the approach in the one-sided case to inform our discussion in the two-sided.

3. The categorical approach

We begin by outlining the connection between inverse semigroups and induc-
tive groupoids. Of all the approaches to inverse semigroups, this one makes most
explicit use of the fact that every inverse semigroup possesses a natural partial
order ≤, that is, a partial order on S that is compatible with multiplication, and
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restricts to the usual ordering on the semilattice E(S). We recall that ≤ is defined
on an inverse semigroup S by the rule that

a ≤ b if and only if a = eb for some e ∈ E(S)

and it is easy to see that

a ≤ b if and only if a = aa−1b.

Further, this relation may also be defined by its dual, that is,

a ≤ b if and only if a = bf for some f ∈ E(S) if and only if a = ba−1a.

By Vagner-Preston, S embeds into some IX , and for α, β ∈ IX , we have α ≤ β if
and only if α is a restriction of β.

All of the categories that we consider will be small (that is, the collection of
morphisms is a set) unless otherwise stated. We will denote the domain and range
of a morphism p in a category C (that is, p ∈ Mor C) by d(p) and r(p), respectively.
Furthermore, we identify an object α of C (that is, α ∈ Ob C) with the identity
map Iα at that object. We think of a category C as a pair C = (C, ·), where
C corresponds to Mor C and · is the partial binary operation of ‘composition’ of
morphisms. The existence of domains and ranges tells us when the product p · q
exists - it exists if and only if r(p) = d(q). For a category C we denote by EC the
set of identity maps (or objects) of C.

Definition 3.1. A groupoid is a category G = (G, ·) in which for every p ∈ G we
have p−1 ∈ G with

p · p−1 = Id(p) and p−1 · p = Ir(p).

A one-object groupoid is precisely a group.
Let S be an inverse semigroup. It is easy to construct a groupoid G(S) = (G, ·)

from S as follows:

G = MorG(S) = S, Ob G(S) = E(S), d(a) = aa−1, r(a) = a−1a

and when r(a) = d(b),
a · b = ab.

On the other hand, let G = (G, ·) be a small groupoid. Let S be the semigroup
obtained from G by declaring all undefined products to be 0. Then S = G∪ {0} is
an inverse semigroup with 0 with E(S) = EG ∪ {0}. The problem is, semigroups
obtained in this manner are always primitive, that is, non-zero idempotents are
incomparable under the natural partial order. For this reason, we need to consider
inductive groupoids.

We begin with the more general notion of an ordered category, since it will
be this we will require subsequently.

Definition 3.2. Let C = (C, ·) be a category. Suppose that ≤ is a partial order
on C such that:

(OC1) x ≤ y implies that d(x) ≤ d(y) and r(x) ≤ r(y);
(OC2) x ≤ y, u ≤ v,∃x · u,∃y · v implies that x · u ≤ y · v;
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(OC3) if a ∈ C and e ∈ EC with e ≤ d(a), then there exists a unique restriction
(e|a) ∈ C with d(e|a) = e and (e|a) ≤ a;

(OC4) if a ∈ G and e ∈ EC with e ≤ r(a), then there exists a unique co-
restriction (a|e) ∈ C with r(a|e) = e and (a|e) ≤ a.

Then C = (C, · ,≤) is called an ordered category. If in addition
(I) EC is a semilattice

then C = (C, · ,≤) is called an inductive category.

Definition 3.3. Let G = (G, ·) be a groupoid. Suppose that ≤ is a partial order
on G such that G = (G, · ,≤) is an ordered (inductive) category. If in addition

(OG1) x ≤ y implies that x−1 ≤ y−1,
then G = (G, · ,≤) is called an ordered (inductive) groupoid.

We note that (OG1) and (OC2) together imply (OC1), so that, if we only
wished to define ordered groupoids, this could have been done without mention of
(OC1).

Let S be an inverse semigroup. Let G(S) = (S, ·) be defined as above. Then
G(S) = (S, · ,≤) (where ≤ is the partial order in S) is an inductive groupoid with

(e|a) = ea and (a|e) = ae.

Conversely, let G = (G, · ,≤) be an inductive groupoid. The pseudo-product
⊗ is defined on G by the rule that

a⊗ b = (a|r(a) ∧ d(b)) · (r(a) ∧ d(b)|b).

Then S(G) = (G,⊗) is an inverse semigroup (having the same partial order as G)
such that the inverse of a in S(G) coincides with the inverse of a in G. We remark
that establishing associativity is the tricky part in proving this assertion.

We have outlined the object correspondence in the theorem below, which
has become known as the Ehresmann-Schein-Nambooripad or ESN Theorem, due
to its varied authorship. Further details may be found in [30]. The categories in
the result below are, of course, general categories. An inductive functor between
two inductive groupoids is a functor preserving the partial ordering and meets of
identities.

Theorem 3.4. The category I of inverse of semigroups and morphisms is isomor-
phic to the category G of inductive groupoids and inductive functors.

As Lawson points out in his book [30], Theorem 3.4 is not the end of the
story. If we want to work with an inverse semigroup S, we can associate to it
an inductive groupoid G(S). We can then work in the larger category of ordered
groupoids, and, having obtained a result for G(S), translate it back to S. Indeed,
Theorem 5.3 can be proven in this manner.

A few words of background. In the 1950s Ehresmann developed what are
called here inductive groupoids as a way of providing an abstract framework for
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pseudogroups, where a pseudogroup is an inverse semigroup of partial homeomor-
phims between open sets of a topological space. Indeed he developed a much wider
categorical framework. Pseudogroups had been introduced as the suitable vehicle
for characterising differentiable manifolds, in the same way that Klein’s Erlanger
Programme attempted to characterise geometries by their groups of symmetries.
Ehresmann’s work and its relation to Semigroup Theory has been championed
by Lawson, as witnessed by [29, 30]. In the mid 1960s Schein [42] realised that,
dropping the differential geometry framework, Ehresmann’s ideas could be used to
show the connection between inverse semigroups and inductive groupoids. Western
semigroup theorists probably first became aware of this work when a translation ap-
peared in 1979 [44]. Nambooripad shortly thereafter [40] extended Schein’s results
to regular semigroups (using ordered categories with bi-ordered sets of idempo-
tents); he was the first to state the correspondence results at the category level.
Again, further details and references may be found in [30], from which this historical
sketch is taken.

We now show how this theory adapts to the wider classes of restriction and
Ehresmann semigroups.

3.1. Restriction semigroups. For restriction semigroups and the sub-quasivariety
of ample semigroups, there are smooth and natural analogues of the ESN Theorem.

We first observe that, as for inverse semigroups, a left restriction semigroup
S is naturally partially ordered by ≤ where here

a ≤ b if and only if a = eb for some e ∈ E if and only if a = a+b

and this partial order is ‘inherited’ from the embedding of S into PT X . Moreover,
if S is restriction, then we have the equivalent characterisation that

a ≤ b if and only if a = bf for some f ∈ E if and only if a = ba∗.

Let S be a restriction semigroup. We can construct a category C(S) = (C, ·)
from S as follows:

C = Mor C(S) = S, Ob C(S) = E(S), d(a) = a+, r(a) = a∗

and when r(a) = d(b),
a · b = ab

and then an inductive category C(S) = (C, · ,≤) where ≤ is the natural partial
order inherited from S, with

(e|a) = ea and (a|e) = ae.

Conversely, let C = (C, · ,≤) be an inductive category. The pseudo-product
⊗ is defined on C in exactly the same way as for inductive groupoids. Then
S(C) = (C,⊗) is a restriction semigroup having the same partial order as C, with
a+ = d(a) and a∗ = r(a).

Again, the ‘big’ categories in the result below are general categories; inductive
functors are defined as between inductive groupoids.
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Theorem 3.5. [29] The category of restriction semigroups and morphisms is iso-
morphic to the category of inductive categories and inductive functors.

The forerunner to Theorem 3.5 appears in the ample case in [2], albeit with
different terminology. We say that a category C = (C, ·) is cancellative if for all
a, b, c ∈ C,

∃a · b,∃a · c and a · b = a · c implies that b = c

and
∃b · a,∃c · a and b · a = c · a implies that b = c.

Corollary 3.6. [2] The category of ample semigroups and morphisms is isomorphic
to the category of inductive cancellative categories and inductive functors.

3.2. Ehresmann semigroups. Let S be an Ehresmann semigroup. Again, we
may define relations ≤r and ≤` on S by the rule that

a ≤r b if and only if a = eb for some e ∈ E if and only if a = a+b

and dually

a ≤` b if and only if a = bf for some f ∈ E if and only if a = ba∗.

It is easy to see that ≤r (≤`) are partial orders, that restrict to the usual partial
order on E and which are right (left) compatible with multiplication. However, as
explained in [29], unlike the case for restriction semigroups, we need not have ≤r =
≤` and hence we need not have that either relation is compatible with multiplication
on both sides. For this reason, we cannot describe an Ehresmann semigroup by
merely using an inductive category.

Instead, we consider what Lawson calls Ehresmann categories. Our account
below is entirely taken from [29], but we use different terminology in parts, since
an ‘ordered category’ in [29] has a weaker definition than that we have used so far
in this survey, and we are composing morphisms from left to right.

Definition 3.7. A category with order C = (C, · ,≤) is a category C = (C, ·)
partially ordered by ≤ such that (OC1), (OC2) and (R) hold:

(R) if x ≤ y, d(x) = d(y) and r(x) = r(y), then x = y.

Let S be an Ehresmann semigroup. As in the restriction case, we may define
a category C(S) = (C, ·) as follows:

C = Mor C(S) = S, Ob C(S) = E(S), d(a) = a+, r(a) = a∗

and when r(a) = d(b),
a · b = ab.

This category is partially ordered by both ≤r and ≤`. Moreover, we obtain cate-
gories with order C(S)r = (C, · ,≤r) and C(S)` = (C, · ,≤`). This is in spite of the
fact that ≤r and ≤` may not be compatible with multiplication everywhere on S.
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But by restricting the products under consideration in this way we find that (OC2)
holds. For example, in C(S)r, if

x ≤r y, u ≤r v, ∃x · u and ∃y · v
then

x = x+y, u = u+v, x∗ = u+ and y∗ = v+.

Calculating,
xu = x(u+v) = x(x∗v) = (xx∗)v = xv = x+yv

so that
x · u = xu ≤r yv = y · v,

as required.
However, C(S)r and C(S)` may not have both restrictions and co-restrictions.

This leads to the following definition.

Definition 3.8. An Ehresmann category C = (C, · ,≤r,≤`) is a category C = (C, ·)
equipped with two relations ≤r and ≤` satisfying the following axioms:

(EC1) (C,≤r) is a category with order satisfying (OC3);
(EC21) (C,≤`) is a category with order satisfying (OC4);
(EC3) if e, f ∈ EC, then e ≤r f if and only if e ≤` f ;

(I) EC is a semilattice under ≤r (equivalently, ≤`);
(EC4) ≤r ◦ ≤` =≤` ◦ ≤r;
(EC5) if x ≤r y and f ∈ EC, then (x|r(x) ∧ f) ≤r (y|r(y) ∧ f);
(EC6) if x ≤` y and f ∈ EC, then (d(x) ∧ f |x) ≤` (d(y) ∧ f |y).

Let S be an Ehresmann semigroup and let C(S) be defined as above. Then
C(S) = (S, · ,≤r,≤`) is an Ehresmann category.

Conversely, if C = (C, · ,≤r,≤`) is an Ehresmann category, we may define
the pseudo-product in the usual way. As proven in [29], S(C) = (C,⊗) is an
Ehresmann semigroup having the same partial orders as C, such that a+ = d(a)
and a∗ = r(a) for any a ∈ C.

We say that a functor between two Ehresmann categories is inductive if it
preserves both partial orders, and meets of identities.

Theorem 3.9. [29] The category of Ehresmann semigroups and morphisms is iso-
morphic to the category of Ehresmann categories and inductive functors.

Theorem 3.9 is specialised in [29] to the case of adequate semigroups and to
restriction semigroups, obtaining Theorem 3.5.

3.3. Left restriction semigroups. If S is a left restriction semigroup, then S
possesses a natural partial order, but we cannot make a category from S in the
above manner, since, although we can define a domain a+ for a ∈ S, we cannot
define a range. With this in mind, the author and her former student Hollings
introduced the notion of a left constellation.
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Definition 3.10. Let P be a set, let · be a partial binary operation and let + be a
unary operation on P with image E, such that E consists of idempotents. We call
(P, · ,+ ) a left constellation if the following axioms hold:

(C1) ∃x · (y · z)⇒ ∃(x · y) · z, in which case, x · (y · z) = (x · y) · z;
(C2) ∃x · (y · z)⇔ ∃x · y and ∃y · z;
(C3) for each x ∈ P , x+ is the unique left identity of x in E;
(C4) a ∈ P , g ∈ E, ∃a · g ⇒ a · g = a.

It has been suggested by Cockett that left constellations should be called left
categories, and we are inclined to agree. Hollings and the author defined the notion
of an inductive left constellation, and proved an analogue of Theorem 3.4 for left
restriction semigroups and inductive left constellations [20].

To the author’s knowledge, thus far there has been no association of a left
Ehresmann semigroup to a left constellation.

4. The fundamental approach

As in Section 3, we begin by outlining the techniques used originally to study
inverse semigroups.

Let S be an inverse semigroup and let us denote the largest congruence con-
tained in H by µ; equivalently, µ is the greatest idempotent separating congruence
on S [35]. By [22], µ is given by the formula

aµ b if and only if a−1ea = b−1eb for all e ∈ E(S).

We will say that a regular semigroup is fundamental if µ is trivial.
The seminal paper of Munn [36] shows how to construct a fundamental inverse

semigroup having a given semilattice of idempotents, as follows.
Let E be a semilattice and let TE be the subset of IE consisting of all iso-

morphisms between principal ideals of E. It is not hard to check that TE is a
subsemigroup of IE , that is clearly inverse. Moreover, TE is fundamental and has
semilattice of idempotents isomorphic to E. Unsurprisingly, semigroups of the form
TE have come to be called Munn semigroups.

Conversely, any fundamental inverse semigroup with semilattice of idempo-
tents E embeds in TE , as we now explain.

Let S be an inverse semigroup with E(S) = E. For any a ∈ S we define a
partial map αa of E by:

dom αa = Eaa−1 and eαa = a−1ea for all e ∈ Eaa−1.

Then αa : Eaa−1 → Ea−1a is an isomorphism between principal ideals of E, that
is, it lies in TE .

For any set X we denote by IX the identity map of X.
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Theorem 4.1. [36] Let E be a semilattice. Then TE is a fundamental inverse
semigroup with semilattice of idempotents

E = {IEe : e ∈ E}

isomorphic to E.
Conversely, let S be an inverse semigroup with E(S) = E. Let θ : S → TE

be given by
aθ = αa.

Then θ is morphism with kernel µ such that

θ|E : E → E

is an isomorphism.

It follows from the above that fundamental inverse semigroups are precisely
full subsemigroups of Munn semigroups, and one strategy for describing any in-
verse semigroup S with semilattice E is to solve an extension problem for a full
subsemigroup of TE by µ. Munn [37] also explains how, for example, his results can
be used to obtain arbitrary 0-bisimple inverse semigroups in terms of semilattices
and groups.

4.1. Restriction semigroups. When moving from inverse semigroups to restric-
tion and then Ehresmann semigroups, the step to restriction semigroups is, as in
Section 3, straightforward.

Let S be an Ehresmann semigroup with distinguished semilattice E. We
denote by µE the greatest congruence contained in H̃E , where H̃E = R̃E ∩ L̃E ,
and say that S is fundamental (or E-fundamental) if µE is trivial. This extends the
definition given above, as in an inverse semigroup, H = H̃. However, it is also not
unusual to say that an arbitrary semigroup is fundamental if the largest congruence
contained in H is trivial, or if the largest idempotent separating congruence is
trivial - neither of which concepts is quite right for us here. We remark that for
an Ehresmann semigroup, or indeed an ample semigroup, there may be no greatest
idempotent separating congruence [11]. However, it is clear that any congruence
contained in H̃E separates the idempotents of E.

Recall that in an inverse semigroup we have that a+ = aa−1, a∗ = a−1a and
a−1ea = (ea)−1ea = (ea)∗, for any idempotent e. If S is a restriction semigroup
we may happily adapt the definition of αa (a ∈ S) by putting

αa : Ea+ → Ea∗, eαa = (ea)∗ for all e ∈ Ea+,

retaining the property that αa is an isomorphism.
The following is taken from [13], where restriction semigroups are called

weakly E-ample. It extends the corresponding result for ample semigroups, which
may be found in [11].
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Theorem 4.2. Let S be a restriction semigroup with distinguished semilattice E.
Then θ : S → TE given by aθ = αa, is a morphism with kernel µE such that

θ|E : E → E

is an isomorphism.

We remark that Theorem 4.2 characterises the relation µE on a restriction
semigroup S with distinguished semilattice E by the rule that

aµE b⇔ a+ = b+ and (ea)∗ = (eb)∗ for all e ∈ E;

by duality,
aµE b⇔ a∗ = b∗ and (ae)+ = (be)+ for all e ∈ E.

4.2. Ehresmann semigroups. To further generalise the above to the Ehresmann
case, we must analyse the method a little.

If S is an Ehresmann semigroup with distinguished semilattice E, then we
may define αa as before, and dually, βa. For restriction semigroups, these two maps
were mutually inverse, but this will not be true in general. Moreover, for a purpose
that will become clear, we need to extend their domains to E1, that is, E with an
identity adjoined if necessary. To avoid confusion we call the new maps α1

a and β1
a.

Specifically,
α1
a : E1 → E and β1

a : E1 → E

are given by
eα1

a = (ea)∗ and eβ1
a = (ae)+.

For a restriction semigroup, the maps αa and βa were morphisms. In general,
α1
a and β1

a (and indeed αa and βa) need not be, but they will be order preserv-
ing. We define O1(E1) to be the semigroup of those order preserving maps of the
semilattice E1 having image contained in E, and we let O∗1(E1) be its dual (in
which maps are composed right to left). It transpires that the analogue of IE use-
ful for our purposes here is O1(E1) × O∗1(E1). If S is Ehresmann then it is not
hard to define a morphism from S to O1(E1) × O∗1(E1) having kernel µE , as we
indicate below. The real difficulty is in picking out an Ehresmann subsemigroup of
O1(E1)×O∗1(E1) that contains all the images of the relevant morphisms from Ehres-
mann semigroups having semilattice E, in other words, a maximal E-fundamental
Ehresmann semigroup.

The semigroups O1(E1) and O∗1(E1) are partially ordered by ≤ where

α ≤ β if and only if xα ≤ xβ for all x ∈ E1.

It is easy to see that ≤ is compatible with multiplication. The subset CE of
O1(E1)×O∗1(E1) is then defined by

CE = {(α, β) ∈ O1(E1)×O∗1(E1) : ∀x ∈ E1, ρxα ≤ βρxα and ρxβ ≤ αρxβ}.

We note that for any e ∈ E, the pair e = (ρe, ρe) ∈ CE , where ρe is the order
preserving map of E1 given by multiplication with e.
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Theorem 4.3. [17] The set CE is a fundamental Ehresmann subsemigroup of
O1(E1)×O∗1(E1) having distinguished semilattice

E = {e : e ∈ E}
isomorphic to E and such that for any (α, β) ∈ CE,

(α, β)∗ = (ρ1α, ρ1α) and (α, β)+ = (ρ1β , ρ1β).

Conversely, if S is an Ehresmann semigroup with distinguished semilattice
E, then φ : S → CE given by

aφ = (α1
a, β

1
a)

is a morphism with kernel µE.

As in Subsection 4.1, Theorem 4.3 gives us a closed form for determining µE
on an Ehresmann semigroup.

4.3. Left restriction and left Ehresmann semigroups. If S is left restriction
or even left Ehresmann, then β1

a : E1 → E is order preserving, and as βaβb = βba,
we can certainly represent S as a subsemigroup of O∗1(E1). Moreover the kernel of
the representative morphism will be µRE , the largest congruence contained in R̃E
(Cf [11]). Indeed, calling a left Ehresmann semigroup left fundamental if µRE is
trivial, then O∗1(E1) is itself left fundamental [25], a more straightforward situation
than the two-sided case. This approach is currently being considered by Jones [25],
as part of a fresh view of the varieties of semigroups related to those presented in
this article.

5. The covering approach

Whereas Munn’s theory, outlined at the beginning of Section 4, constructs
an image Sθ of an inverse semigroup S, with E(S) ∼= E(Sθ), McAlister’s seminal
papers [32, 33] construct a preimage Ŝ of S such that E(Ŝ) ∼= E(S). Just as
we know how to construct TE(S) (of which Sθ is a full subsemigroup), so we can
determine the structure of Ŝ - it is ‘almost’ a semidirect product of E(S) by the
maximal group image of S.

Let S be a semigroup and let E ⊆ E(S). The relation σE on S is the least
congruence identifying all the elements of E. It is well known that if S is inverse
and σ = σE(S), then a σ b if and only if ea = eb for some e ∈ E(S) [34], and further,
σ is the least congruence such that S/σ is a group.

An inverse semigroup is proper if R ∩ σ = ι, where ι denotes the trivial
congruence. This definition is only apparently one sided, for it is easily seen to be
equivalent to L ∩ σ = ι. Moreover, an inverse semigroup is proper if and only if it
is E-unitary, that is, E(S) forms a σ-class.

The first of McAlister’s results tell us that every inverse semigroup is closely
related to a proper one, and is knows as McAlister’s Covering Theorem.
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Theorem 5.1. [32] Let S be an inverse semigroup. Then there exists a proper
inverse semigroup Ŝ and an idempotent separating morphism θ : Ŝ � S from Ŝ
onto S.

The semigroup Ŝ appearing in Theorem 5.1 is a proper cover of S.
The second of McAlister’s results determines the structure of proper inverse

semigroups, as follows. We first recall the notion of a monoid acting on a set.

Definition 5.2. Let T be a monoid and let X be a set. Then T acts on X (on
the left) if there is a map T ×X → X, (t, x) 7→ t · x, such that for all x ∈ X and
s, t ∈ T we have

1 · x = x and st · x = s · (t · x).

Let G be a group acting on the left of a partially ordered set X by order
automorphisms, which contains Y as an ideal and subsemilattice, such that

(a) G · Y = X and (b) for all g ∈ G, g · Y ∩ Y 6= ∅.

Then (G,X ,Y) is a McAlister triple.
If (G,X ,Y) is a McAlister triple, we put

P = P(G,X ,Y) = {(e, g) ∈ Y ×G : g−1 · e ∈ Y},

and define a binary operation on P by

(e, g)(f, h) = (e ∧ g · f, gh).

Of course, if X = Y, then (a) and (b) would be redundant and P(G,X ,Y) would
be a semidirect product. In general, however, we cannot dispense with the X and
remark that although the conditions of a McAlister triple ensure that e∧ g · f ∈ Y
in the definition of the binary operation, we need not have that g · f ∈ Y.

Theorem 5.3. [33] An inverse semigroup is proper if and only if it is isomorphic
to a semigroup of the form P = P(G,X ,Y).

Semigroups of the form P(G,X ,Y) are known as P-semigroups and Theo-
rem 5.3 as the McAlister P-Theorem. Given a proper inverse semigroup S, the
group and semilattice that appear in the corresponding McAlister triple are S/σ
and E(S), respectively. Finding the X is the major difficulty. Proper inverse semi-
groups form an important class in their own right - for example, the free inverse
semigroup is proper [38]. Having a good structure theory for such semigroups en-
ables the investigation of classes of proper inverse semigroups, such as 1-dimensional
tiling semigroups. Further, it guides the way for the study of the corresponding
classes of inverse semigroups with zero, which include tiling semigroups [30].
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5.1. Left restriction semigroups. Unlike the case for the ‘categorical’ and ‘fun-
damental’ approaches of the previous two sections, for the ‘covering’ method it
helps to deal first with the one-sided situation.

Let S be left restriction. It is clear that the least semigroup congruence
identifying all the elements of E is also the least unary semigroup congruence to do
so. Thus there is no ambiguity in talking of σE as the least congruence identifying
all the elements of E.

We will say that a (left) restriction semigroup S is reduced if its distinguished
semilattice is trivial. A reduced (left) restriction semigroup is simply a monoid, in
augmented signature. Clearly, if S is (left) restriction, then S/σE is reduced.

Lemma 5.4. [21] Let S be a left restriction semigroup. Then for any a, b ∈ S, we
have that a σE b if and only if ea = eb for some e ∈ E.

A left restriction semigroup S is proper if R̃E ∩ σE = ι. A proper cover of
S is a proper left restriction semigroup Ŝ such that there exists an epimorphism
θ : Ŝ � S that separates distinguished idempotents. It follows that EŜ ∼= ES .

Theorem 5.5. [4] Let S be left restriction. Then there is a proper cover Ŝ of S.

We now give a recipe for constructing proper left restriction semigroups,
inspired by the P-theorem. Naturally, the group in a McAlister triple will be
replaced by a monoid.

Let T be a monoid acting on the left of a semilattice X via morphisms.
Suppose that X has subsemilattice Y with upper bound ε such that

(a) for all t ∈ T there exists e ∈ Y such that e ≤ t · ε;
(b) if e ≤ t · ε then for all f ∈ Y, e ∧ t · f ∈ Y.
Then (T,X ,Y) is a strong left M-triple.
We remark that we have ‘gained’ over the formulation of McAlister triples

in that we may take X to be a semilattice, but ‘lost’ in that we no longer have
T · Y = X .

For a strong left M-triple (T,X ,Y) we put

M(T,X ,Y) = {(e, t) ∈ Y × T : e ≤ t · ε}
and define

(e, s)(f, t) = (e ∧ s · f, st), (e, s)+ = (e, 1).

Theorem 5.6. [4] A left restriction semigroup is proper if and only if it is isomor-
phic to some M(T,X ,Y).

Whilst properly stated for left restriction semigroups in [4], Theorems 5.5 and
5.6 may essentially be found in [15], where they are stated for ‘weakly left ample’
semigroups, which are left restriction semigroups S with E = E(S). If S is proper
left restriction, then the T and Y that appear in Theorem 5.6 are S/σE and E,
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respectively. In the weakly left ample case, we must insist that T be unipotent,
that is, |E(T )| = 1.

By replacing T with a right cancellative monoid, we can specialise to the left
ample case. The first result is not immediate, but easy to obtain following a similar
method to that given in [14, Theorem 7.1]. It was first proven, via a different
technique, in [10].

Corollary 5.7. [10] Let S be left ample. Then there is a proper left ample cover
Ŝ of S.

Corollary 5.8. A left ample semigroup is proper if and only if it is isomorphic to
some M(T,X ,Y) where T is right cancellative.

Corollary 5.8 also appears under a different formulation in [10, 28].

5.2. Restriction semigroups. It follows by duality that if S is right restriction,
then a σE b if and only if af = bf for some f ∈ E, so that if S is restriction, then
either characterisation of σE will suffice.

A restriction semigroup S is proper if R̃E ∩σE = ι = L̃E ∩σE , that is, if S is
proper as a left and as a right restriction semigroup. A proper cover of S is a proper
restriction semigroup Ŝ such that there exists an epimorphism θ : Ŝ � S that
separates distinguished idempotents. The next result is stated in [14] for monoids,
but a remark at the end of that article explains how to deduce the corresponding
result for semigroups.

Theorem 5.9. [14] Let S be a restriction semigroup. Then S has a proper ample
cover.

Of course the question then is, can we find a structure theorem for proper
restriction semigroups? Of course, a proper ample semigroup S is proper left ample,
so that there is a strong left M-triple (T,X ,Y) (with T right cancellative) such that
S ∼= M(T,X ,Y). In [28] conditions are put on a strong left M-triple (which has
a slightly different formulation in [28]) such that the semigroup built from it be
proper ample. This is extended to the restriction case in [6]. However, there is no
left-right symmetry about these descriptions.

Again, if S is proper restriction, then as it is proper left restriction, there is a
strong left M-triple (T,X ,Y) such that S ∼=M(T,X ,Y), and as S is proper right
restriction, there is a strong right M-triple (T,X ′,Y) (where a strong right M-triple
is defined in a dual manner to a strong left M-triple) such that S ∼= M′(T,X ,Y)
(where M′(T,X ′,Y) is also defined in a dual manner). In both cases, we can take
T = S/σE and Y = E. For the strong left M-triple, T acts on the left of X , and
for the strong right M-triple, T acts on the right of X ′. Now, X and X ′ both
contain Y = E as a subsemilattice, and clearly these actions must be linked in
some way. In [14] the author and colleagues developed the notion of double action
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of a monoid acting on the left and the right of a semilattice, satisfying what were
called ‘compatibility conditions’. This inspired the following definitions.

Let (T,X ,Y) and (T,X ′,Y) be strong left and right M-triples respectively.
Denote the left action of T on X by · and the right action of T on X ′ by ◦. Suppose
that for all t ∈ T and e ∈ Y, the following and the dual holds:

e ≤ t · ε⇒ e ◦ t ∈ Y and t · (e ◦ t) = e.

Then (T,X ,X ′,Y) is a strong M-quadruple.

Proposition 5.10. [7] For a strong M-quadruple (T,X ,X ′,Y),

M(T,X ,Y) ∼=M′(T,X ′,Y)

via an isomorphism preserving the distinguished semilattices.

Consequently, if (T,X ,X ′,Y) is a strong M-quadruple, then putting

M(T,X ,X ′,Y) =M(T,X ,Y),

we have that M(T,X ,X ′,Y) is proper restriction.
From results of [14], every restriction monoid has a proper cover of the form

M(T,X ,X ′,Y), where, in fact, we can take X = X ′ = Y to be a semilattice with
identity, and, moreover, the free restriction monoid has this form. However, it is
shown in [6] that if M(T,X ,X ′,Y) is finite, then it must be inverse. As there
are certainly finite proper ample semigroups that are not inverse, it follows that
not all proper ample (and hence certainly not all proper restriction) semigroups
are isomorphic to some M(T,X ,X ′,Y). In [7] a condition is given on a proper
restriction semigroup S such that S ∼=M(T,X ,X ′,Y) for some strong M-quadruple
M(T,X ,X ′,Y).

To obtain a truly two-sided structure theorem for proper restriction semi-
groups, we are forced to use partial actions.

Definition 5.11. Let T be a monoid and let X be a set. Then T acts partially on
X (on the left) if there is a partial map T ×X → X, (t, x) 7→ t · x, such that for all
s, t ∈ T and x ∈ X,

∃1 · x and 1 · x = x

and
if ∃t · x and ∃ s · (t · x) then ∃ st · x and s · (t · x) = st · x,

where we write ∃u · y to indicate that u · y is defined.

Of course, a partial left action of T on X with domain of the action T ×X
is an action. Dually, we may define the (partial) right action of T on X, using the
symbol ‘◦’ to replace ‘·’.

Let T be a monoid, acting partially on the left and right of a semilattice Y,
via · and ◦ respectively. Suppose that both actions preserve the partial order and
the domains of each t ∈ T are order ideals. Suppose in addition that for e ∈ Y and
t ∈ T , the following and their duals hold:
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(a) if ∃e ◦ t, then ∃t · (e ◦ t) and t · (e ◦ t) = e;
(b) for all t ∈ T , there exists e ∈ Y such that ∃e ◦ t.

Then (T,Y) is a strong M-pair.
For a strong M-pair (T,Y) we put

M(T,Y) = {(e, s) ∈ Y × T : ∃e ◦ s}

and define operations by

(e, s)(f, t) = (s · (e ◦ s ∧ f), st), (e, s)+ = (e, 1) and (e, s)∗ = (e ◦ s, 1).

Theorem 5.12. [7]A semigroup is proper restriction if and only if it is isomorphic
to some M(T,Y).

Our approach to the above result is very direct, inspired by the philosophy
of [39]. If S is proper restriction, then the T and Y that we take for Theorem 5.12
are, naturally, S/σE and E. The following corollaries are then almost immediate.

Corollary 5.13. [28] A semigroup is proper ample if and only if it is isomorphic
to M(C,Y) for a cancellative monoid C.

Corollary 5.14. [41] A semigroup is proper inverse if and only if it is isomorphic
to M(G,Y) for a group G.

Corollories 5.13 and 5.14 are presented in a slightly different form in [28] and
[41], respectively. In those articles more explicit mention is made of the fact that,
effectively, our compatibility conditions are insisting that the left and right actions
of an element of T be mutually inverse on certain domains.

The reader might wonder why we claim that Theorem 5.12 is truly left/right
dual. As we explain in [7], if (T,Y) is a strong M -pair, then

M′(T,Y) = {(s, e) ∈ T × Y : ∃s · e}
with operations given by

(s, e)(t, f) = (st, (e ∧ t · f) ◦ t), (s, e)∗ = (1, e) and (s, e)+ = (1, s · e)

is a restriction semigroup isomorphic to M(T,Y).

5.3. Left Ehresmann semigroups. We recall that for left Ehresmann semi-
groups, we do not have the identity xy+ = (xy)+x. This identity ensures that
for a left restriction semigroup S, if we have a product

s = t0e1t1 . . . tn−1entn

where t0, . . . , tn ∈ S and e1, . . . , en ∈ E, then we can re-write this as

s = ft0t1 . . . tn
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for some f ∈ E. Moreover, S acts by morphisms on E on the left by

s · e = (se)+.

These two facts underly the description of a proper left restriction semigroup as a
semigroup of the form M(T,X ,Y) for some strong left M-triple (T,X ,Y). More-
over, building on the first observation, if S = 〈E ∪ T 〉 for a subsemigroup T of S,
then any element of S can be written as

t or et

where e ∈ E, t ∈ T and e < t+. If this expression is unique, then it is easy to see
that S is proper. Consider now a strong left M-triple (T,Y,Y) and put

T ′ = {(t · 1, t) : t ∈ T}.

We know that
E = {(e, 1) : e ∈ Y}

and it is easy to see that T ′ is a subsemigroup isomorphic to T , such that M =
M(T,Y,Y) = 〈E ∪ T ′〉 and every element of M can be written uniquely as

(t · 1, t) or as (e, 1)(t · 1, t) for some (e, 1)+ < (t · 1, t)+,

the latter condition being equivalent to e < t · 1.
Having lost our identity, we must think again. We cannot move idempotents

to the front in products, and hence we cannot find expressions of the form t/et
where E ∪ T is a set of generators for a left Ehremann semigroup S, t ∈ T and
e ∈ E. Moreover, the action of S on E as above will be by order order preserving
maps, but not usually by morphisms.

We now briefly describe work taken from recent preprints [3],[18]. These
articles consider the case for monoids, which for convenience we focus on here.

Let M be a left Ehresmann monoid and let T be a submonoid of M such
that E ∪ T generates M as a semigroup (equivalently, as a unary monoid). Then
any m ∈M can be written as

m = t0e1t1 . . . entn

for some t0, tn ∈ T , ti ∈ T \ {1} (for 1 ≤ i ≤ n − 1) and ej ∈ E \ {1} with
ei < (ti . . . entn)+ (for 1 ≤ j ≤ n).

Such an expression is a T -normal form. If this expression for each m is
unique, then M has uniqueness of T -normal forms. We remark that if If M = 〈X〉
and T is the submonoid generated by X, then M = 〈E ∪ T 〉.

From an action of T on a semilattice Y by order preserving maps, we can
construct a semigroup P(T,Y) that has uniqueness of T -normal forms. We refer
to [18] for the details.

Theorem 5.15. [18] A left Ehresmann monoid S with set of generators E∪T , for
some submonoid T , has uniqueness of T -normal forms if and only if it is isomorphic
to some P(T,E).
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The notion of cover for a left Ehresmann monoid is defined in the obvious
way.

Theorem 5.16. [18] Every left Ehresmann monoid has a cover of the form P(X∗,Y).
Moreover, P(X∗,Y) is left adequate.

Since left Ehresmann monoids form a variety, the free object on any set X
exists, and as it is left adequate, it is also the free left adequate monoid on X.

Theorem 5.17. [18] The free left Ehresmann monoid on X is isomorphic to some
P(X∗,Y).

Kambites [26] has also determined the structure of the free left Ehresmann
monoid, using a completely different approach. He also determines the structure
of the free Ehresmann monoid [27]. In both cases he uses labelled trees, in what
can be seen as an analogue of Munn’s approach [38] to the structure of free inverse
semigroups.

A strong M-triple with X = Y gives rise to a proper left restriction semigroup
with the normal form property. We therefore anticipate that our class of monoids
of the form P(T,Y) are a subclass of a class of monoids of the form P(T,X ,Y),
where P(T,X ,Y) is constructed from a monoid T acting by order preserving maps
on a partially ordered set X containing Y as semilattice. We also anticipate that
that this class can be abstractly characterised by some notion of ‘proper’, which
will of necessity be a little more technical than that for left restriction semigroups.

A suggested notion, that of ‘T -proper’ appears in [3]. The author and her
colleagues and students are working on semigroups of the form P(T,X ,Y), and,
indeed, the corresponding approaches in the two-sided case.
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