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Abstract. Restriction semigroups and their one-sided versions arise from a
number of sources. Attracting a deal of recent interest, they appear under a
plethora of names in the literature. It is known that the class of left (right)
restriction semigroups admits proper covers, and that proper left (right) re-
striction semigroups can be described by monoids acting on the right (left)
of semilattices. As for restriction semigroups (the two-sided versions), proper
covers are known to exist. Here we consider whether proper restriction semi-
groups can be described in a natural way by monoids acting on both sides of
a semilattice.

It transpires that to obtain the full class of proper restriction semigroups,
we must use partial actions of monoids, thus recovering results of Petrich and
Reilly and of Lawson for inverse semigroups and ample semigroups, respec-
tively. We also describe the class of proper restriction semigroups such that
the partial actions can be mutually extendable to actions. Proper inverse and
free restriction semigroups (which are proper) have this form, but we give
examples of proper restriction semigroups which do not.

Introduction

Restriction semigroups and their one-sided versions arise from many sources
and have equally many names. The reader can consult [9] or the unpublished
notes [8] for history and further details. Restriction semigroups form a variety
of semigroups augmented with two unary operations a 7→ a+ and a 7→ a∗. Every
inverse semigroup is restriction with a+ = aa−1 and a∗ = a−1a, so that, as re-
striction semigroups form a variety, every subsemigroup of an inverse semigroup
that is closed under + and ∗ is restriction. But certainly, not every restriction
semigroup is obtained in this way. It is easy to see that any monoid M is restric-
tion, where we declare a+ = 1 = a∗, for every a ∈M ; such restriction semigroups
are called reduced, so that a reduced inverse semigroup is simply a group. We
view restriction semigroups as being natural extensions of inverse semigroups
and, indeed, they have many analogous properties. This paper studies the notion
of proper for a restriction semigroup. There are some remarkable similarities to

Date: September 17, 2010.
2000 Mathematics Subject Classification. 20 M10.
Key words and phrases. restriction semigroup, cover, partial action, semilattice.

1



2 CLAIRE CORNOCK AND VICTORIA GOULD

the inverse case - and some curious differences. We outline the picture in this
Introduction; further details of undefined terms will be given in Section 1.

The relations additional to associativity that define restriction semigroups are:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x,

their duals:

xx∗ = x, x∗y∗ = y∗x∗, (xy∗)∗ = x∗y∗, x∗y = y(xy)∗,

and the connecting relations:

(x+)∗ = x+ and (x∗)+ = x∗.

A semigroup with a unary operation of a 7→ a+ (a 7→ a∗) satisfying the first
(second) set of identities is called left (right) restriction. For any left restriction
semigroup S, we put

E = {x+ : x ∈ S},
so that if S is restriction, then by the last set of identities, we also have that
E = {x∗ : x ∈ S}. It is easy to see that E is a semilattice under the semigroup
multiplication, the distinguished semilattice of S. We remark that a restriction
semigroup is proper if and only if it is proper as both a left and as a right
restriction semigroup.

A classical result of McAlister [12] tells us that for any inverse semigroup S,

there is a proper inverse semigroup Ŝ (a ‘proper cover’ of S) and an idempotent

separating onto morphism θ : Ŝ 7→ S (a ‘covering morphism’). Correspondingly,
from [6, Lemma 6.6] and [1, Theorem 6.4], every (left) restriction semigroup has

a proper cover Ŝ, where here Ŝ is a proper (left) restriction semigroup and now
we only insist that θ separate the idempotents of E.

Of course, the power of the McAlister theory is that [12] was followed by [13],
in which a structure theorem is given for proper inverse semigroups. Namely,
an inverse semigroup is proper if and only if it is isomorphic to a ‘P-semigroup’
P(G,X ,Y), where G is a group acting on a partially ordered set X containing a
semilattice Y as a sub-partially ordered set, subject to certain conditions. Notice
that if S is proper inverse, then S is isomorphic to some P(S/σ,X , E(S)), where
E(S) is the set of idempotents of S and σ is the least congruence identifying
all the idempotents of E(S). Correspondingly, in [1, Theorem 7.2] it is shown
that a left restriction semigroup S is proper if and only if it is isomorphic to a
‘strong M-semigroup’ M(T,X ,Y), where T is a monoid (regarded as a reduced
left restriction semigroup) acting by endomorphisms on a semilattice X with sub-
semilattice Y , again subject to certain conditions. The interested reader should
note that although we can take X to be a semilattice, we have lost the condition
‘GX = Y ’ which appears in McAlister’s result. Further, if S is left restriction,
then in the strong M-semigroup isomorphic to S, we can take T = S/σE and
Y = E, where here σE is the least congruence identifying all the idempotents of
E.
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To complete the picture we would, of course, like a structure theorem for proper
restriction semigroups, indeed, this is the aim of the current article. But, here is
one of those odd situations where one-sided conditions are easier to handle than
two-sided. Although it is possible to adapt the one-sided approach to the two-
sided case, by adding extra conditions on M-semigroups (see [11] for the proof
for the sub-quasi-variety of ample semigroups, and [2] for restriction semigroups),
the results are lop-sided and rather artificial.

Since restriction semigroups and monoids form varieties, free objects exist, in
particular the free restriction monoid FRM(X) exists on any non-empty set
X. The structure of FRM(X) has recently been determined [6]; the notable
point for this article being that it is obtained from a monoid acting on both sides
of a semilattice subject to some compatibility conditions. Since FRM(X) is
proper, we were anticipating that a truly two-sided structure theorem for proper
restriction semigroups would follow. This is certainly true, but not quite in the
way we expected.

In Section 2 we define a strong M-quadruple (T,X ,X ′,Y) where T is a monoid
acting on the left (right) of a semilattice X (X ′) such that X and X ′ both con-
tain Y as a subsemilattice, subject to certain constraints, including compatibility
conditions for the actions. We then construct a semigroupM(T,X ,X ′,Y) which
is proper restriction.

Unfortunately, it is not the case that every proper restriction semigroup S is
isomorphic to some M(T,X ,X ′,Y). In Section 3 we determine those S that
do have this property, calling them extra proper. Inverse semigroups and free
restriction monoids are extra proper, but we can easily produce examples of
proper restriction semigroups that are not. Essentially, extra proper restriction
semigroups have an extra amount of left/right symmetry, which is guaranteed by
the existence of an involution in the inverse case.

All is not lost, however. Given a proper restriction semigroup S, it is always
the case that S/σE acts partially on the left and right of E, again subject to a
variation of the compatibility conditions. From this idea, in Section 4 we develop
the notion of a strong M-pair (T,Y), where T is a monoid acting partially on
the left and right of a semilattice Y in an analogous way. We then define a
semigroup Q(T,Y) and show that Q(T,Y) is proper restriction. In Section 5
we show that, conversely, every proper restriction semigroup S is isomorphic to
some Q(S/σE, E). In fact, this idea is in spirit exactly that of [15] and [11] which
consider the inverse and ample cases, respectively. Our proof, however, uses none
of their machinery. Sections 4 and 5 give another example of the use of partial
actions in understanding the structure of semigroups.
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1. Preliminaries

In this section we briefly define the tools needed for the rest of the paper.
We refer the reader to [10] for general semigroup background and [8] for further
details concerning restriction semigroups and related classes.

We first note that restriction semigroups are algebras with two unary oper-
ations, and hence have signature we denote by (2, 1, 1). Similarly, left (right)
restriction semigroups are algebras of type (2, 1). In particular, morphisms be-
tween (one-sided) restriction semigroups should be considered as morphisms in
these augmented signatures.

Just as Green’s relations are the major tools for dealing with inverse semi-

groups, we have relations R̃E and L̃E to help elucidate restriction semigroups.
Let E be a subset of idempotents of a semigroup S; we do not assume that E

is the set E(S) of all idempotents of S. The relation R̃E is defined on S by the

rule that for any a, b ∈ S, a R̃E b if and only if for all e ∈ E,

ea = a if and only if eb = b.

The relation L̃E is defined dually.

Proposition 1.1. [8, Proposition 4.3] Let S be a semigroup equipped with a unary
operation a 7→ a+. Then S is left restriction with distinguished semilattice E if
and only if E ⊆ E(S), E is a commutative subsemigroup, for every a ∈ S the

R̃E-class of a contains a unique idempotent a+ in E, the relation R̃E is a left
congruence, and the ‘ample condition’ holds, that is, for all a ∈ S and e ∈ E,
ae = (ae)+a.

Let S be a (left) restriction semigroup. The relation σE on S is the least
congruence identifying all the elements of E. As explained in [8, Section 8], we
can regard σE as either a semigroup congruence or a congruence in the augmented
signature.

Lemma 1.2. [8, Lemma 8.1] Let S be a left restriction semigroup. Then for any
a, b ∈ S, we have that a σE b if and only if ea = eb for some e ∈ E.

It follows by duality that if S is right restriction, then a σE b if and only if
af = bf for some f ∈ E, so that if S is restriction, then either characterisation
of σE will suffice.

Definition 1.3. A left (right) restriction semigroup is proper if R̃E ∩ σE = ι

(L̃E ∩ σE = ι). A restriction semigroup is proper if it is proper as both a left and
as a right restriction semigroup.

We remark that if S is a proper left restriction semigroup, then E is a σE-class,
but the converse need not be true [4, Example 3]. However, it is well known that

an inverse semigroup (for which we always have R̃E(S) = R) is proper if and only
if it is E-unitary, that is, if and only if E(S) forms a σ = σE(S)-class.
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Our aim is to find a structure theorem for proper restriction semigroups: our
tools will be actions and partial actions of monoids on partially ordered sets and
semilattices.

Definition 1.4. Let T be a monoid and let X be a set. Then T acts on X (on
the left) if there is a map T ×X → X, (t, x) 7→ t · x, such that for all x ∈ X and
s, t ∈ T we have

1 · x = x and st · x = s · (t · x).

Definition 1.5. Let T be a monoid and let X be a set. Then T acts partially
on X (on the left) if there is a partial map T ×X → X, (t, x) 7→ t · x, such that
for all s, t ∈ T and x ∈ X,

∃1 · x and 1 · x = x

and

if ∃t · x and ∃ s · (t · x) then ∃ st · x and s · (t · x) = st · x,
where we write ∃u · y to indicate that u · y is defined.

Of course, a partial left action of T on X with domain of the action T ×X is
an action. Dually, we may define the (partial) right action of T on X.

Definition 1.6. If a monoid T acts on (the left of) a partially ordered set X
(semilattice Y ), then the action is order preserving (by morphisms) if, for any
t ∈ T and x, y ∈ X with x ≤ y (e, f ∈ Y ) we have that

t · x ≤ t · y
(
t · (e ∧ f) = (t · e) ∧ (t · f)

)
.

Notice that if a monoid acts by morphisms on a semilattice Y , then its action
is order preserving, but the converse need not be true. If a group G acts by
order preserving maps on a partially ordered set, then, as any group action is by
bijections, it acts by order automorphisms.

Suppose now that the monoid T acts by morphisms on a semilattice Y . We
denote by Y ∗ T the semidirect product of Y and T , so that

Y ∗ T = Y × T and (e, s)(f, t) = (e ∧ (s · f), st)

for all (e, s), (f, t) ∈ Y ∗ T . It is an easy exercise to check that Y ∗ T is proper
left restriction with (e, s)+ = (e, s) and inverse if T is a group. Unfortunately,
semidirect products of this kind do not even yield all proper inverse semigroups,
which is where the McAlister construction using P-semigroups comes into play.
Nevertheless, the ideas underlying all attempts to describe proper semigroups are
adaptations of the notion of semidirect product.

There are various approaches to constructing a ‘P-theorem’ for left restriction
semigroups and their specialisations (see [4, 11, 7, 1]). The one we now describe
is that of [1], since it is this construction that we need in detail for Theorem 3.5.
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Definition 1.7. Let T be a monoid acting by morphisms on the left of a semi-
lattice X having subsemilattice Y . Suppose that there exists an upper bound ε
for Y in X such that the following hold:

(a) for all t ∈ T , there exists e ∈ Y such that e ≤ t · ε;
(b) for all e, f ∈ Y and all t ∈ T ,

e ≤ t · ε⇒ e ∧ t · f lies in Y .

Then the triple (T,X ,Y) is called a strong left M-triple.

We note that in [1], strong leftM-triples we referred to for simplicity as strong
M-triples. Given a strong left M-triple (T,X ,Y), we define

M =M(T,X ,Y) = {(e, s) ∈ Y × T : e ≤ s · ε},

with binary operation defined by

(e, s)(f, t) = (e ∧ s · f, st)

for (e, s), (f, t) ∈M. We shall call M(T,X ,Y) a strong M-semigroup.
Dually, we may define the notion of a strong rightM-triple (T,X ,Y), where T

acts on the right of X satisfying the duals of Conditions (a) and (b), and then a
semigroupM′ =M′(T,X ,Y) = {(s, e) ∈ T×Y : e ≤ ε◦t} under the appropriate
semidirect product multiplication.

Proposition 1.8. [1, Lemma 7.1] Let (T,X ,Y) be a strong left M-triple. Then
M(T,X ,Y) is a proper left restriction semigroup with

(e, s)+ = (e, 1), E = {(e, 1) : e ∈ Y} ∼= Y and M(T,X ,Y)�σE
∼= T.

A left restriction semigroup S with E = E(S) is weakly left ample; if, in

addition, R̃E(S) = R∗, then S is left ample. The obvious definitions then apply
to give (weakly) (right) ample semigroups.

Theorem 1.9. [7, 1] A semigroup is proper left restriction (weakly left ample,
left ample) if and only if it is isomorphic to a strong M-semigroup M(T,X ,Y)
for some strong left M-triple (T,X ,Y) (where T is unipotent, right cancellative).

We note that the above result in the left ample case can easily be deduced from
the given references. The original description of proper left ample semigroups
appears in [4] and was re-worked in [11].

2. Double Actions and semigroups M(T,X ,X ′,Y)

As explained in the Introduction, our aim is to describe proper restriction
semigroups in a way that is genuinely two-sided. Inspiration arose from the
definition of a double action [6], used to determine the structure of the free ample
monoid.
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Definition 2.1. Let T be a monoid and let Y be a semilattice with identity.
Then T acts doubly on Y , if T acts by morphisms on the left and right of Y and
the compatibility conditions hold, that is, for all t ∈ T and e ∈ Y ,

(t · e) ◦ t = (1 ◦ t)e and t · (e ◦ t) = e(t · 1).

It is proved in [6, Lemma 6.2] that if a monoid T acts doubly on a semilattice
Y with identity, then the set

S = {(e, s) : e ≤ s · 1} ⊆ Y ∗ T
with

(e, s)(f, t) = (e ∧ s · f, st) and (e, s)+ = (e, 1)

is a proper restriction monoid.
Moreover, the free restriction monoid is proper and has a structure as above,

suggesting that we could use the idea of a double action to produce a structure
theorem for proper restriction monoids and semigroups. The natural way is to
proceed as follows:

Definition 2.2. Let X and X ′ be semilattices and Y be a subsemilattice of both
X and X ′. Let ε ∈ X and ε′ ∈ X ′ such that a ≤ ε, ε′ for all a ∈ Y . Let T be a
monoid with identity 1, which acts by morphisms on the left of X via · and on
the right of X ′, via ◦.

Suppose in addition that for all t ∈ T and e ∈ Y , the following hold:

(A) e ≤ t · ε⇒ e ◦ t ∈ Y ;
(B) e ≤ ε′ ◦ t⇒ t · e ∈ Y ;
(C) e ≤ t · ε⇒ t · (e ◦ t) = e;
(D) e ≤ ε′ ◦ t⇒ (t · e) ◦ t = e;
(E) for all t ∈ T , there exists e ∈ Y such that e ≤ t · ε.

We then say that (T,X ,X ′,Y) is a strong M-quadruple.

The above may look a little lopsided, but, in view of the following, it is not.

Lemma 2.3. Let (T,X ,X ′,Y) be a strong M-quadruple. Then

(F) for all t ∈ T , there exists b ∈ Y such that b ≤ ε′ ◦ t
holds.

Proof. Taking t ∈ T , by (E), there exists a ∈ Y such that a ≤ t · ε. By (A),
a ◦ t ∈ Y and clearly a ◦ t ≤ ε′ ◦ t. �

Proposition 2.4. Let (T,X ,X ′,Y) be a strong M-quadruple. Then (T,X ,Y) is
a strong left M-triple. Dually, (T,X ′,Y) is a strong right M-triple.

Proof. It only remains to show that if e, f ∈ Y and t ∈ T with e ≤ t · ε, then
e ∧ t · f ∈ Y . We have e ◦ t ∈ Y by Condition (A). Then

(e ◦ t) ∧ f ≤ e ◦ t ≤ ε′ ◦ t.
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Using Conditions (C) and (B), we now have

e ∧ t · f = t · (e ◦ t) ∧ t · f = t · ((e ◦ t) ∧ f) ∈ Y .

�

Let (T,X ,X ′,Y) be a strong M-quadruple. We define

M =M(T,X ,X ′,Y) =M(T,X ,Y) and M′ =M′(T,X ,X ′,Y) =M′(T,X ′,Y).

Proposition 2.5. Let (T,X ,X ′,Y) be a strong M-quadruple as above. Then

θ :M→M′ given by (e, s)θ = (s, e ◦ s)

is a semigroup isomorphism.

Proof. First note that if (e, s) ∈ M then by Condition (A), e ◦ s ∈ Y and
e ◦ s ≤ ε′ ◦ s, so that (s, e ◦ s) ∈M′.

If (e, s), (f, t) ∈ M and (e, s)θ = (f, t)θ, then clearly s = t and e ◦ t = f ◦ t.
As e, f ≤ t · ε, we have by (C) that

e = t · (e ◦ t) = t · (f ◦ t) = f.

Thus θ is one-one.
Choosing (u, g) ∈ M′, we have that g ≤ ε′ ◦ u, so that u · g ∈ Y and as

u · g ≤ u · ε, we have that (u · g, u) ∈M. Now using Condition (D),

(u · g, u)θ = (u, (u · g) ◦ u) = (u, g),

so that θ is onto, and hence a bijection.
To see that θ is an isomorphism, let (e, s), (f, t) ∈M. Then

(e, s)θ(f, t)θ = (s, e ◦ s)(t, f ◦ t)
=

(
st, ((e ◦ s) ◦ t) ∧ f ◦ t

)
=

(
st, (e ◦ s ∧ f) ◦ t

)
.

Now, (e ◦ s) ∧ f ≤ e ◦ s ≤ ε′ ◦ s, so that

(e ◦ s) ∧ f =
(
s · ((e ◦ s) ∧ f)

)
◦ s

=
(
(s · (e ◦ s)) ∧ s · f

)
◦ s

= (e ∧ s · f) ◦ s.

We can now deduce that θ is an isomorphism, for

(e, s)θ(f, t)θ =
(
st, ((e ∧ s · f) ◦ s) ◦ t

)
=

(
st, (e ∧ s · f) ◦ st

)
=

(
e ∧ s · f, st

)
θ

=
(
(e, s)(f, t)

)
θ.

�

We can now give the main result of this section.
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Theorem 2.6. Let (T,X ,X ′,Y) be a strong M-quadruple. ThenM =M(T,X ,X ′,Y)
is a proper restriction semigroup such that

(e, t)+ = (e, 1), (e, t)∗ = (e ◦ t, 1), E = {(e, 1) : e ∈ Y} and M�σE
∼= T.

Proof. From Proposition 1.8, we know that M is proper left restriction with
(e, t)+ = (e, 1), E = {(e, 1) : e ∈ Y} and M�σE

∼= T . Dually, M′ is a proper
right restriction with (t, e)∗ = (1, e) and distinguished semilattice E ′ where E ′ =
{(1, e) : e ∈ Y}. Clearly Eθ = E ′, where θ is the isomorphism from M to M′

given in Proposition 2.5, so that M is proper restriction with

(e, s)∗ =
(
((e, s)θ)∗

)
θ−1 =

(
(s, e ◦ s)∗

)
θ−1 = (1, e ◦ s)θ−1 = (e ◦ s, 1).

�

In view of Theorem 1.9 we may easily adapt Theorem 2.6 to special cases.

Corollary 2.7. Let (T,X ,X ′,Y) be a strong M-quadruple and letM =M(T,X ,X ′,Y).
If T is unipotent, then the proper restriction semigroup M is weakly ample, and
if T is left (right) cancellative, then M is right (left) ample.

3. Extra proper restriction semigroups

We would like to be able to say that every proper restriction semigroup S is
isomorphic to M(T,X ,X ′,Y) for some strong M-quadruple (T,X ,X ′,Y). Un-
fortunately, this is not the case.

Lemma 3.1. Let the proper restriction semigroup S be isomorphic toM(T,X ,X ′,Y)
for some strong M-quadruple (T,X ,X ′,Y). Then

E ∼= Y and S/σE
∼= T.

Proof. Since the isomorphism preserves + and ∗,

E ∼= {(e, 1) : e ∈ Y} = Y ′ ∼= Y
and so

S/σE
∼=M/σY ′ ∼= T.

�

Proposition 3.2. Let S be a finite proper ample semigroup. Suppose that S is
isomorphic toM =M(T,X ,X ′,Y) for some strong M-quadrupleM(T,X ,X ′,Y).
Then S is inverse.

Proof. From [4, Lemma 1.3] (adjusted to the semigroup case) we have that S/σE

is cancellative. By Lemma 3.1, T is cancellative and hence a group by finiteness.
If we let (e, t) ∈ M, then e ≤ t · ε, so that e ◦ t ∈ Y and e = t · (e ◦ t). Hence
e = t · (t−1 · e) = t · (e ◦ t) so that t−1 · e = e ◦ t. As t−1 · e ≤ t−1 · ε, we see that
(t−1 · e, t−1) ∈M and

(e, t)(t−1 · e, t−1)(e, t) = (e, 1)(e, t) = (e, t),

giving that M is regular. Since E(M) is a semilattice, M is inverse. �
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We remark that finite proper ample semigroups that are not inverse certainly
exist. From [5, Theorem 3.2 and Corollary 3.3], every finite ample semigroup has
a finite proper ample cover, so that if all finite proper restriction semigroups were
inverse, so would all finite ample semigroups be inverse. Let I2 be the symmetric
inverse semigroup on {1, 2} and let α ∈ I2 be defined by dom α = {1}, 1α = 2.
Then S = {α, α+, α∗, ∅} is a subsemigroup of I2 closed under + and ∗, which is
ample but not inverse.

In order to isolate those proper restriction semigroups that are isomorphic to
some M(T,X ,X ′,Y), we introduce the following notion.

Let S be a restriction semigroup. Then S satisfies Condition (EP) if it satisfies
(EP)r and its dual (EP)l.

(EP)r: for all s, t, u ∈ S, if s σE tu then there exists v ∈ S with t+s = tv and
uσE v.

Lemma 3.3. Let S be a restriction semigroup satisfying Condition (EP) such
that E is a σE-class. Then S is proper.

Proof. Let a, b ∈ S and suppose that a (R̃E ∩ σE) b. Then a σE bb
∗ so that with

a = s, b = t and b∗ = u in (EP)r we have that b+a = bv for some v ∈ S with
b∗ σE v, giving v ∈ E. But b+ = a+ and so a = bv = (bv)+b = a+b = b. Dually,

L̃E ∩ σE is trivial. �

Definition 3.4. Let S be a proper restriction semigroup. Then S is extra proper
if it satisfies Condition (EP).

Theorem 3.5. Let S be a proper restriction semigroup. Then S is isomorphic
to some M(T,X ,X ′,Y) if and only if S is extra proper.

Proof. LetM =M(T,X ,X ′,Y) for some strong M-quadruple (T,X ,X ′,Y). We
show that M is extra proper.

Let α, β, γ ∈M be such that

ασE βγ.

Then we must have that β = (e, s), γ = (f, t) and α = (g, st) for some e, f, g ∈ Y
and s, t ∈ T .

We have that

e ∧ g ≤ e ≤ s · ε
so that by (A), (e ∧ g) ◦ s ∈ Y and so (e ∧ g) ◦ s ≤ ε′. Since the action of t is
order preserving, this gives us that (e ∧ g) ◦ st ≤ ε′ ◦ t. Also, as

e ∧ g ≤ g ≤ st · ε
we have that (e ∧ g) ◦ st ∈ Y . Since also (e ∧ g) ◦ st ≤ ε′ ◦ t, (B) gives that
t · ((e ∧ g) ◦ st) ∈ Y . Now (e ∧ g) ◦ st ≤ ε and so t · ((e ∧ g) ◦ st) ≤ t · ε, yielding
that

ν = (t · ((e ∧ g) ◦ st), t) ∈M.



PROPER RESTRICTION SEMIGROUPS AND PARTIAL ACTIONS 11

Clearly, ν σE γ and

βν = (e, s)(t · ((e ∧ g) ◦ st), t) =
(
e ∧ (s · (t · ((e ∧ g) ◦ st)), st

)
=(

e ∧ (st · ((e ∧ g) ◦ st)), st
)

= (e ∧ (e ∧ g), st) = (e ∧ g, st) = (e, 1)(g, st) = β+α.

We have shown that M satisfies (EP)r. From Lemma 3.1, M ∼= M′ =
M′(T,X ′,Y) and by duality, we must have that M′ satisfies (EP)l. As the
isomorphism between M and M′ preserves the distinguished semilattices, we
must have that M satisfies (EP)l also.

To prove the converse, we use the construction of the strong M-triple associated
with a proper restriction semigroup S given in [1, Theorem 7.2]. Before doing so,
we make the following remark, that will help us over an awkward point in our
argument.

Suppose we have disjoint semilattices X and X ′ containing subsemilattices Y
and Y ′ respectively, such that there is an isomorphism θ : Y → Y ′. Suppose that
there are upper bounds ε ∈ X and ε′ ∈ X ′ of Y and Y ′, respectively. Let T be a
monoid with identity 1, which acts by morphisms on the left of X via · and on
the right of X ′, via ◦.

Suppose in addition that for all t ∈ T and e ∈ Y , the following hold:

(A)′ e ≤ t · ε⇒ eθ ◦ t ∈ Y ′;
(B)′ eθ ≤ ε′ ◦ t⇒ t · e ∈ Y ;
(C)′ e ≤ t · ε⇒ t · (eθ ◦ t)θ−1 = e;
(D)′ eθ ≤ ε′ ◦ t⇒ (t · e)θ ◦ t = eθ;
(E) for all t ∈ T , there exists e ∈ Y such that e ≤ t · ε.

Then, by suitable relabelling, it is possible to construct a strong M-quadruple
(T,X ,X ′′,Y) where X ′′ = (X ′ \ Y ′) ∪ Y .

Suppose now that S is extra proper. From [1, Theorem 7.2], S is isomorphic
to M =M(T,BT ,Y) for some strong M-triple (T,BT ,Y) constructed as below.

First, T = S/σE. We then let B be the semilattice of ideals of E with a zero
adjoined. Notice that if I, J are ideals of B, then IJ = I ∩ J and I ≤ J if and
only if I ⊆ J . We have that BT is the semilattice of all maps from T into B,
with operation defined by α(fg) = (αf)(αg) for all α ∈ T and for all f, g ∈ BT .
Moreover, T acts on the left of BT via α(β · f) = (αβ)f , for all α, β ∈ T and
f ∈ BT .

For any e ∈ E, the map fe ∈ BT is defined by

(tσE)fe = {(ne)+ : nσE t}

and then

Y = {fe : e ∈ E}
is a subsemilattice of BT isomorphic to E via e 7→ fe. Defining ε ∈ BT by

(tσE)ε = {m+ : mσE t}
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we have that ε is an upper bound for Y in BT . Moreover, (T,BT ,Y) is a strong
M-triple and S is isomorphic to M(T,BT ,Y) via a (2, 1)-isomorphism ψ, where
sψ = (fs+ , sσE).

We show that the strong M-triple (T,BT ,Y) can be extended to a strong M-
quadruple (T,BT ,X ′,Y), for some partially ordered set X ′.

By the dual of [1, Theorem 7.2], we can construct a strong right M-triple
(T,TB,Y ′), where TB is the semilattice of functions from T to B written on the
left of their arguments, and T acts on TB on the right via (f ◦ α)(β) = f(αβ) for
all f ∈ TB and α, β ∈ T . For any e ∈ E we define ge ∈ TB by

ge(tσE) = {(en)∗ : nσE t}
and put Y ′ = {ge : e ∈ E}. Then Y ′ is a subsemilattice of TB isomorphic to E via
e 7→ ge. It follows that θ : Y → Y ′ given by feθ = ge is an isomorphism. Finally,
ε′ ∈ TB defined by

ε′(tσ) = {m∗ : mσE t}
is an upper bound for Y ′ in TB which enables the conditions for (T,T B,Y ′) to be
a strong right M-triple to be satisfied.

We need to show that Conditions (A)′-(D)′ are satisfied. We show that (A)′

and (C)′ hold; (B)′ and (D)′ then follow by duality.
We first show that for any s ∈ S, gs+ ◦ sσE = gs∗ .
Let rσ ∈ T . Then

gs∗(rσE) = {(s∗h)∗ : hσE r}
= {(sh)∗ : hσE r}
= {(s+sh)∗ : hσE r}
⊆ {(s+k)∗ : k σ sr}
= (gs+ ◦ sσE)(rσE).

For the converse, we need (EP)r. Let (s+k)∗ ∈ (gs+ ◦ sσE)(rσE) where k σE sr.
By (EP)r, there exists v ∈ S with v σE r such that s+k = sv. Then

(s+k)∗ = (sv)∗ ∈ gs∗(rσE)

and it follows that
gs∗(rσE) = (gs+ ◦ sσE)(rσE).

Since rσE was any element of T , gs∗ = gs+◦sσE as required. By duality, sσE ·fs∗ =
fs+ .

Let fe ∈ Y , let tσE ∈ T and suppose that fe ≤ tσE · ε. From the proof of [1,
Theorem 7.2], there is an s ∈ S such that s+ = e and s σE t. By the above, we
have that

feθ ◦ tσE = ge ◦ tσE = gs+ ◦ sσE = gs∗ ∈ Y ′

so that Condition (A)′ holds. Further,

sσE · (fs+θ ◦ sσE)θ−1 = sσE · gs∗θ
−1 = sσE · fs∗ = fs+

so that Condition (C)′ holds.
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From the remarks at the beginning of this direction of the proof, relabelling
will produce a strong M-triple (T,BT ,TB,Y) as required. It remains to show that
ψ preserves ∗. Let s ∈ S then (bearing in mind we have identified Y and Y ′), we
have

(sψ)∗ = (fs+ , sσE)∗ = (fs+ ◦ sσE, 1) = (fs∗ , 1) = s∗ψ,

so that ψ is an isomorphism in the signature (2, 1, 1), as required. �

Example 3.6. Every inverse semigroup has (EP). For, if s, t, u are elements of
an inverse semigroup S with s σ tu, then t+s = tt−1s and t−1s σ tt−1uσ u.

Example 3.7. Every reduced restriction semigroup has (EP). For, if s, t, u are
elements of a reduced restriction semigroup S with s σ tu, then s = tu and t+s =
s = tu.

Less trivially, free restriction monoids have (EP).

Example 3.8. Let FRM(X) be the free restriction monoid on a non-empty set
X. We use the characterisation of FRM(X) as a submonoid of the free inverse
monoid FIM(X) on X, given in [6].

Let FG(X) be the free group on X, and regard elements of FG(X) as reduced
words over X. Let

Y = {A ⊆ FG(X) : 1 ≤ |A| <∞, A is prefix closed}.
Then

FIM(X) = {(A,w) : A ∈ Y , w ∈ A}
with

(A,w)(B, v) = (A ∪ wB,wv) and (A,w)−1 = (w−1A,w−1).

From [6], FRM(X) is the submonoid of FIM(X) given by

FRM(X) = {(A,w) ∈ FIM(X) : w ∈ X∗}
and for any (A,w), (B, v) ∈ FRM(X), we have that

(A,w)+ = (A, 1) and (A,w)σE (B, v) if and only if w = v.

Suppose that (A,w), (B, v), (C, u) ∈ FRM(X) with

(A,w)σ (B, v)(C, u).

Then w = vu and

(B, v)+(A,w) = (B, v)(B, v)−1(A,w) = (B, v)(v−1B, v−1)(A,w) =

= (B, v)(v−1B ∪ v−1A, v−1w) = (B, v)(v−1B ∪ v−1A, u)

and as (v−1B ∪ v−1A, u) ∈ FRM(X), Condition (EP)r holds. Dually, (EP)l

holds.

Finally in this section we give an example of an infinite proper ample semigroup
without (EP), also showing that a proper ample semigroup can be a (2, 1, 1)-
subalgebra of a proper inverse semigroup, yet not itself be extra proper.
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Example 3.9. Let X be a set with at least two elements, and let Xi = {xi : x ∈
X} for i ∈ {0, 1} be sets in one-one correspondence with X. Let S be a strong
semilattice Y = {1, 0} of cancellative monoids S1 = X∗1 and S2 = FG(X0), with
connecting morphism φ1,0 given by x1φ1,0 = x0.

It follows from [3, Theorem 1], that S is ample, with R∗ = L∗ = H∗-classes S1

and S0. As the connecting homomorphism is one-one, it is easy to see that S is
proper.

Let x, y be distinct elements of X. Then

e0x1 = x0 = y0(y
−1
0 x0) = e0(y1y

−1
0 x0)

so that x1 σE y1(y
−1
0 x0). If y+

1 x1 = y1w for some w ∈ S we would have that
x1 = y1w, which is impossible.

4. Partial Actions and semigroups M(T,Y)

In this section we use partial actions to define the notion of a strong M-pair
(T,Y), where T is a monoid acting partially on both sides of a semilattice Y , based
on strong M-triples and quadruples. From a strong M-pair (T,Y) we can define
a semigroup M(T,Y) which is proper restriction. In Section 5 we show that,
conversely, every proper restriction semigroup is isomorphic to some M(T,Y).
Our construction is analogous to that of Petrich and Reilly in the inverse case
[15] and Lawson in the ample case [11]. However, our proofs are new and direct.

Let T be a monoid, acting partially on the left and right of a semilattice Y ,
via · and ◦ respectively. Suppose that both actions preserve the partial order and
the domains of each t ∈ T are order ideals, that is, for each t ∈ T and e, f ∈ Y
with e ≤ f , if ∃t · f (∃f ◦ t), then ∃t · e (∃e ◦ t) and t · e ≤ t · f (e ◦ t ≤ f ◦ t).
Suppose in addition that for e ∈ Y and t ∈ T , the following hold:

(A) if ∃e ◦ t, then ∃t · (e ◦ t) and t · (e ◦ t) = e;
(B) if ∃t · e, then ∃(t · e) ◦ t and (t · e) ◦ t = e;
(C) for all t ∈ T , there exists e ∈ Y such that ∃e ◦ t.

We then say that the pair (T,Y) is a strong M-pair. It is clear from Conditions
(A) and (C) that a strong M-pair also satisfies the dual of Condition (C). Notice
that the partial actions of an element t of T on the left and right of Y are mutually
inverse on their respective domains.

For a strong M-pair (T,Y) we define

M =M(T,Y) = {(e, s) ∈ Y × T : ∃e ◦ s}
with binary operation given by

(e, s)(f, t) = (s · ((e ◦ s) ∧ f), st).

Dually, we can define M′ =M′(T,Y).
To proceed to show that M is a semigroup, we require a technical result.

Proposition 4.1. Let (T,Y) be a strong M-pair. Then
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(1) if ∃e ◦ a and ∃f ◦ a, then ∃(e ∧ f) ◦ a and

e ◦ a ∧ f ◦ a = (e ∧ f) ◦ a.
(2) if ∃a · e and ∃a · f , then ∃a · (e ∧ f) and

a · e ∧ a · f = a · (e ∧ f).

Proof. (1) Suppose ∃e ◦ a and ∃f ◦ a. As ∃e ◦ a and e ∧ f ≤ e, ∃(e ∧ f) ◦ a since
the domain of ◦ a is an order ideal. It follows from ◦ being order preserving that
(e ∧ f) ◦ a ≤ e ◦ a and similarly we have (e ∧ f) ◦ a ≤ f ◦ a. Therefore

(e ∧ f) ◦ a ≤ e ◦ a ∧ f ◦ a.
Conversely, as ∃e◦a, Condition (A) gives that ∃a·(e◦a) = e. As e◦a∧f◦a ≤ e◦a

we must have ∃a · (e ◦ a ∧ f ◦ a) since the domain of a · is an order ideal. Since ·
is order preserving,

a · (e ◦ a ∧ f ◦ a) ≤ a · (e ◦ a) = e.

Similarly, a · (e ◦ a ∧ f ◦ a) ≤ f and so a · (e ◦ a ∧ f ◦ a) ≤ e ∧ f.
From Condition (B), ∃[a · (e ◦ a ∧ f ◦ a)] ◦ a and

e ◦ a ∧ f ◦ a = [a · (e ◦ a ∧ f ◦ a)] ◦ a ≤ (e ∧ f) ◦ a.
Hence e ◦ a ∧ f ◦ a = (e ∧ f) ◦ a and so (1) holds. The proof of (2) is dual. �

Theorem 4.2. Let (T,Y) be a strong M-pair. Then M = M(T,Y) is a proper
restriction semigroup with

(e, a)+ = (e, 1), (e, a)∗ = (e ◦ a, 1), E = {(e, 1) : e ∈ Y} ∼= Y and M/σE
∼= T.

If T is unipotent, (right,left) cancellative, then M is weakly ample, (left, right)
ample, respectively.

Proof. To see that the binary operation inM is well defined, let (e, a), (f, b) ∈M.
We wish to show (a · ((e ◦ a) ∧ f), ab) ∈ M . By Condition (A), ∃a · (e ◦ a) since
∃e ◦ a. As (e ◦ a) ∧ f ≤ e ◦ a, certainly ∃a · ((e ◦ a) ∧ f).

We wish to show that ∃[a · ((e ◦ a)∧ f)] ◦ ab. We have ∃[a · ((e ◦ a)∧ f)] ◦ a and
[a · ((e ◦ a)∧ f)] ◦ a = (e ◦ a)∧ f . Also, ∃f ◦ b so that ∃((e ◦ a)∧ f) ◦ b and hence

∃
(
[a · ((e ◦ a) ∧ f)] ◦ a

)
◦ b.

From Definition 1.5, we deduce ∃[a · ((e ◦ a) ∧ f)] ◦ ab. Therefore the binary
operation is closed.

We now show the multiplication is associative. Suppose (e, a), (f, b), (g, c) ∈
M(T,Y). Then

(e, a)[(f, b)(g, c)] = (e, a)(b · ((f ◦ b) ∧ g), bc)

= (a · ((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))), abc).

As ∃b · ((f ◦ b) ∧ g), Condition (B) gives ∃(b · ((f ◦ b) ∧ g)) ◦ b and so

∃((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))) ◦ b.
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Then by Condition (A),

∃b ·
(
((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))) ◦ b

)
and

b ·
(
((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))) ◦ b

)
= (e ◦ a) ∧ (b · ((f ◦ b) ∧ g)).

So,

(e, a)[(f, b)(g, c)] =
(
a · (b · (((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))) ◦ b)), abc

)
=
(
ab · (((e ◦ a) ∧ (b · ((f ◦ b) ∧ g))) ◦ b), abc

)
.

We also have (f ◦ b) ∧ g ≤ f ◦ b and so by Condition (A),

b · ((f ◦ b) ∧ g) ≤ b · (f ◦ b) = f.

Using Proposition 4.1,(
(e ◦ a) ∧ (b · ((f ◦ b) ∧ g))

)
◦ b = ((e ◦ a) ∧ f ∧ (b · ((f ◦ b) ∧ g))) ◦ b

= (((e ◦ a) ∧ f) ◦ b) ∧ ((b · ((f ◦ b) ∧ g)) ◦ b)
= (((e ◦ a) ∧ f) ◦ b) ∧ ((f ◦ b) ∧ g).

So,

(e, a)[(f, b)(g, c)] = (ab ·
(
(((e ◦ a) ∧ f) ◦ b) ∧ ((f ◦ b) ∧ g)

)
, abc)

= (ab ·
(
(((e ◦ a) ∧ f) ◦ b) ∧ g

)
, abc)

as ◦ is order-preserving.
We have (e, a)(f, b) ∈M(T,Y), ∃a · ((e ◦ a) ∧ f) and so by Condition (B),
∃(a · ((e ◦ a) ∧ f)) ◦ a and (a · ((e ◦ a) ∧ f)) ◦ a = (e ◦ a) ∧ f . So,

(((e ◦ a) ∧ f) ◦ b) ∧ g = (((a · ((e ◦ a) ∧ f)) ◦ a) ◦ b) ∧ g
= ((a · ((e ◦ a) ∧ f)) ◦ ab) ∧ g.

Hence

(e, a)[(f, b)(g, c)] = (ab · (((a · ((e ◦ a) ∧ f)) ◦ ab) ∧ g), abc)

= (a · ((e ◦ a) ∧ f), ab)(g, c)

= [(e, a)(f, b)](g, c).

Therefore M(T,Y) is a semigroup.
It is easy to see that

E = {(e, 1) : e ∈ Y}
is a semilattice isomorphic to Y .

We define unary operations of + and ∗ on M by

(e, a)+ = (e, 1) and (e, a)∗ = (e ◦ a, 1).
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Clearly M satisfies the identities

x+x = x, x+y+ = y+x+, x∗y∗ = y∗x∗, (x+)∗ = x+ and (x∗)+ = x∗.

Let (e, a), (f, b) ∈M. Then(
(e, a)+(f, b)

)+
=
(
(e, 1)(f, b)

)+
= (e∧f, b)+ = (e∧f, 1) = (e, 1)(f, 1) = (e, a)+(f, b)+,

and(
(e, a)(f, b)

)+
(e, a) =

(
a · (e ◦ a ∧ f), ab

)+
(e, a)

= (a · (e ◦ a ∧ f), 1)(e, a)
= (a · ((e ◦ a) ∧ f) ∧ e, a)
= (a · ((e ◦ a) ∧ f), a) as a · ((e ◦ a) ∧ f) ≤ a · (e ◦ a) = e
= (e, a)(f, 1)
= (e, a)(f, b)+

so that M satisfies (x+y)+ = x+y+ and xy+ = (xy)+x.
Further,

(e, a)(e, a)∗ = (e, a)(e ◦ a, 1) = (a · (e ◦ a ∧ e ◦ a), a) = (e, a),

so that xx∗ = x holds, and(
(e, a)(f, b)∗

)∗
=
(
(e, a)(f◦b, 1)

)∗
= (a·(e◦a∧f◦b), a)∗ = (e◦a∧f◦b, 1) = (e, a)∗(f, b)∗,

so that (xy∗)∗ = x∗y∗ holds. Finally,

(f, b)
(
(e, a)(f, b)

)∗
= (f, b)(a · (e ◦ a ∧ f), ab)∗

= (f, b)([a · (e ◦ a ∧ f)] ◦ ab, 1)
=

(
b · (f ◦ b ∧ [a · (e ◦ a ∧ f)] ◦ ab), b

)
=

(
b · (f ◦ b ∧ [a · (b · ((e ◦ a) ∧ f) ◦ b)] ◦ ab), b

)
= (b · (f ◦ b ∧ [ab · ((e ◦ a ∧ f) ◦ b)] ◦ ab), b)
= (b · (f ◦ b ∧ (e ◦ a ∧ f) ◦ b), b)
= (b · ((f ∧ e ◦ a ∧ f) ◦ b), b)
= (e ◦ a ∧ f, b)
= (e ◦ a, 1)(f, b)
= (e, a)∗(f, b)

so that x∗y = y(xy)∗ is satisfied and M is a restriction semigroup with +, ∗ and
E as given.

Again, let (e, a), (f, b) ∈M. If a = b, then clearly

(e ∧ f, 1)(e, a) = (e ∧ f, 1)(f, b)

so that (e, a)σE (f, b); conversely, if we are given that (e, a)σE (f, b), then as
(g, 1)(e, a) = (g, 1)(f, b) for some (g, 1) ∈ E, we must have that a = b. It follows
that

(e, a)σE (f, b) if and only if a = b

and hence M/σE
∼= T .
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Suppose now that (e, a), (f, a) ∈M. If in addition we have that (e, a) R̃E (f, a),
then (e, 1) = (e, a)+ = (f, a)+ = (f, 1), so that e = f and (e, a) = (f, a). On

the other hand, if we are given that (e, a) L̃E (f, a), then (e ◦ a, 1) = (e, a)∗ =
(f, a)∗ = (f ◦ a, 1) so that e ◦ a = f ◦ a. But then

e = a · (e ◦ a) = a · (f ◦ a) = f

and again, (e, a) = (f, a). It follows that M is proper as required.
It is clear that if T is unipotent, then E = E(M) so thatM is weakly ample.

If in addition T is left (right) cancellative, then it is an easy exercise to show
that for any element (e, a) ∈ M, we have that (e, a)∗ L∗ (e, a) ((e, a)+R∗(e, a)),
so that M is right (left) ample. �

As we claim our approach is symmetric, we finish this section with our justifi-
cation.

Proposition 4.3. Let (T,Y) be a strong M-pair. Then the map θ : M → M′

given by (e, a)θ = (a, e ◦ a) is an isomorphism.

Proof. It is straightforward to show that θ is a well defined bijection, and preserves
+ and ∗. To show that θ preserves the binary operation, let (e, a), (f, b) ∈ M.
Then

(e, a)θ(f, b)θ = (a, e ◦ a)(b, f ◦ b)
= (ab, (e ◦ a ∧ b · (f ◦ b)) ◦ b)
= (ab, (e ◦ a ∧ f) ◦ b)
= (ab, ((a · (e ◦ a ∧ f)) ◦ a) ◦ b)
= (ab, (a · (e ◦ a ∧ f)) ◦ ab)
= (a · (e ◦ a ∧ f), ab)θ
=

(
(e, a)(f, b)

)
θ.

�

We end this section with a brief word on the case for proper inverse semigroups.
A group G acts partially on the left of a set X if it acts partially as a monoid
and if, in addition, for any g ∈ G and x ∈ X, if ∃g · x, then ∃g−1 · (g · x) and
g−1 · (g · x) = x. Whenever we talk explicitly of groups acting partially, we will
assume the partial action is subject to this extra condition.

Corollary 4.4. Let (G,Y) is a strong M-pair where G is a group. ThenM(G,Y)
is a proper inverse semigroup.

Proof. We know from Theorem 4.2 that M = M(G,Y) is ample. If ∃e ◦ g, we
have from the above that (e ◦ g, g−1) ∈M and then

(e, g)(e ◦ g, g−1) = (g · (e ◦ g ∧ e ◦ g), 1) = (e, 1) = (e, g)+.

It follows that M is inverse. �
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5. A structure theorem for proper restriction semigroups

We now show that any proper restriction semigroup is isomorphic to one con-
structed as in the previous section. The directness of our proof is influenced by
Munn’s approach [14] to the proof of the P-theorem.

Theorem 5.1. Every proper restriction semigroup S is isomorphic to some
M(S/σE, E).

Proof. Let T = S/σE. We shall define a partial action of T on the right of E by

∃e ◦mσE ⇔ ∃s ∈ S with e = s+ and mσE = sσE,

in which case

e ◦mσE = s+ ◦ sσE = s∗.

This is clearly well-defined, since S is proper.
For any e ∈ E, we have that e = e+ and eσE = 1T , so that ∃e ◦ 1T and

e ◦ 1T = e.
Suppose ∃s+ ◦ sσE and ∃(s+ ◦ sσE) ◦ tσE. As ∃s∗ ◦ tσE, there must be a u ∈ S

with s∗ = u+ and uσE = tσE. So

(s+ ◦ sσE) ◦ tσE = s∗ ◦ tσE = u+ ◦ uσE = u∗.

We wish to show that ∃s+ ◦ (st)σE and u∗ = s+ ◦ (st)σE. We have (su)+ =
(su+)+ = (ss∗)+ = s+ and similarly (su)∗ = u∗. Clearly, su σE st, so ∃s+ ◦ (st)σE

and

s+ ◦ (st)σE = (su)+ ◦ (su)σE = (su)∗ = u∗

as required. Therefore ◦ is a partial right action.
We shall show that the domain of each zσE ∈ T is an order ideal. Suppose

e, f ∈ E with e ≤ f and ∃f ◦ zσE. Then there exists s ∈ S with s+ = f and
s σE z. Now (es)+ = es+ = ef = e and es σE s σE z, so that ∃e ◦ zσE. Further,
from the third identity for ∗, (es)∗s∗ = (ess∗)∗ = (es)∗, so that

e ◦ zσE = (es)∗ ≤ s∗ = f ◦ zσE,

and the action is order-preserving.
Dually, we can define a partial left action of T on Y by

∃mσE · e⇔ ∃s ∈ S with e = s∗ and mσE = sσE,

in which case

mσE · e = sσE · s∗ = s+.

Then · is a partial left action by order-preserving partial maps, such that the
domain of each t ∈ T is an order ideal.

Suppose ∃e◦mσE. Then e = s+ and mσE = sσE for some s ∈ S and e◦mσE =
s+ ◦ sσE = s∗. Certaily then ∃sσE · s∗ and

mσE · (e ◦mσE) = sσE · (s+ ◦ sσE) = sσE · s∗ = s+ = e.
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Thus Condition (B) holds, and dually, Condition (A) in the definition of strong
M-pair, also holds. Finally, if mσE ∈ T , then ∃m+ ◦mσE, so that (C) holds.

We have shown that (S/σE, E) is a strong M-pair. LetM =M(S/σE, E) and
let θ : S →M be defined by

sθ = (s+, sσE).

As S is proper, θ is one-one, and by definition of ◦, θ is onto.
We must show that θ is a morphism. Let s, t ∈ S. Then

sθtθ = (s+, sσE)(t+, tσE)
=

(
sσE · (s+ ◦ sσE ∧ t+), (st)σE

)
= (sσE · (s∗t+), (st)σE)
=

(
(st+)σE · (st+)∗, (st)σE

)
= (st+)+, (st)σE)
= ((st)+, (st)σE)
= (st)θ.

Finally, for any s ∈ S,

s∗θ = (s∗, 1) = (s+, sσE)∗ = (sθ)∗

and

s+θ = (s+, 1) = (s+, sσE)+ = (sθ)+

so that θ is an isomorphism as required. �

For a different presentation of the following corollary in the ample case we refer
the reader to [11, Theorem 4.3]. We note that if (T,Y) is a strong M-pair, then,
as commented earlier, the partial left and right action of t ∈ T on Y produces
mutually inverse elements of IY . This fact appears explicitly in the statement of
[11, Theorem 4.3].

Corollary 5.2. Cf [11] A semigroup proper restriction (weakly ample, left ample,
right ample, ample) if and only if it is isomorphic toM(T,Y) for some strong M-
pair (T,Y) (where T is unipotent, right cancellative, left cancellative, cancellative,
respectively).

Our final result is, again couched in other language, Corollary 3.3 of [15].

Corollary 5.3. Cf [15] A semigroup is proper inverse if and only if it is isomor-
phic to some M(G,Y) where G is a group.

Proof. From Corollary 4.4, if G is a group, thenM =M(G,Y) is proper inverse.
Conversely, let S be proper inverse. From Theorem 5.1, we know that S is

isomorphic to M =M(S/σ,E) where E = E(S). We must show that G = S/σ
acts partially as a group on E.

Notice that if ∃tσ · e, then tσ = sσ ad e = s∗ = s−1s for some s ∈ S.
Now tσ · e = sσ · s∗ = s+ = ss−1. We have (tσ)−1 = (sσ)−1 = s−1σ, and
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(s−1)∗ = ss−1 = s+, so ∃(tσ)−1 · (tσ · e) = s−1σ · (s−1)∗ = (s−1)+ = s−1s = e. The
dual argument finishes the proof.

�

References

[1] M.J.J. Branco, G.M.S. Gomes, V. Gould, ‘Extensions and Covers for Semigroups whose
Idempotents form a Left Regular Band’, Semigroup Forum, 81 (2010), 51–70.

[2] C. Cornock, Restriction Semigroups: Structure, Varieties and Presentations PhD thesis,
in preparation.

[3] J. Fountain, ‘Right PP monoids with central idempotents’, Semigroup Forum 13 (1977),
229–237.

[4] J. Fountain, ‘A class of right PP monoids’, Quart. J. Math. Oxford 28 (1977), 285-300.
[5] J. Fountain and G. M. S. Gomes, ‘Proper covers of ample monoids’, Proc. Edinburgh Math.

Soc. 49 (2006), 277–289.
[6] J. Fountain, G. M. S. Gomes, V. Gould, ‘The free ample monoid’, Int. J. Alg. Comp.19

(2009), 527–554.
[7] G.M.S. Gomes, V. Gould, ‘Proper weakly left ample semigroups’, Int. J. Algebra Comp. 9

(1999), 721–739.
[8] V. Gould, ‘Notes on restriction semigroups and related structures’, preprint at

http://www-users.york.ac.uk/∼varg1/restriction.pdf.
[9] C. D. Hollings, ‘From right PP monoids to restriction semigroups: a survey’, European

Journal of Pure and Applied Mathematics, 2(1) (2009), 21–57.
[10] J.M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, 1995.
[11] M.V. Lawson, ‘The Structure of Type A Semigroups’, Quart. J. Math. Oxford, 37 (2)

(1986), 279–298.
[12] D. B. McAlister, ‘Groups, Semilattices and Inverse Semigroups’, Trans. Amer. Math. Soc.

192 (1974), 227–244.
[13] D. B. McAlister, ‘Groups, Semilattices and Inverse Semigroups II’, Trans. Amer. Math.

Soc. 196 (1974), 351–370.
[14] W. D. Munn, ‘A Note on E-unitary Inverse Semigroups’, Bull. London Math. Soc. 8 (1976),

71–76.
[15] M. Petrich and N. R. Reilly, ‘A Representation of E-unitary Inverse Semigroups’, Quart.

J. Math. Oxford 30 (1979), 339–350.

Department of Mathematics, University of York, Heslington, York, YO10
5DD, UK

E-mail address: clh129@york.ac.uk, varg1@york.ac.uk


