1. Semigroup basics

- \(S = \) finite semigroup.

(Three running) Egs: \([n] = \{1, \ldots, n\} \)

(i). \(S_n = \) all bijections \([n] \rightarrow [n] \) under composition.

(ii). \(I_n = \) all partial bijections \(X \rightrightarrows Y \), \(X, Y \subseteq [n] \) under composition:

\[
\begin{array}{ccc}
& a & \\
\rightarrow & ab & \\
& b & \\
\end{array}
\]

(all fun, actions, etc.
on the right)

(ii). \(T_n = \) all maps \([n] \rightarrow [n] \) under composition.

- Inverses in semi-groups: an inverse of \(a \in S \) is a \(b \) s.t.

\[(*) \quad ab = a \quad \quad ba = b \]

(i). In a monoid s.t. \(\forall a \exists! b \) with \(ab = 1 = ba \) \((\Rightarrow (*))\)

\[i.e.: \ a \text{gp!} \]

(ii). In a monoid s.t. \(\forall a \exists! b \) satisfying \((*)\) \(< \Rightarrow ab = id_X \ \text{idempotents}\) \(ba = id_Y \)

\[i.e.: \ \text{in an inverse monoid} \]

(iii). In a monoid s.t. \(\forall a \exists (\text{many}) b \) satisfying \((*)\)
fibres of a (equiv. classes of a)

e.g.:

In a regular monoid

from now on $S = \text{finite regular monoid}$

- Structure: Green's relations in S_n, T_n
 1. $a \mathcal{L} b \iff \text{im}(a) = \text{im}(b)$
 2. $a \mathcal{R} b \iff \text{fibres of } a = \text{fibres of } b$
 3. $a \mathcal{J} b \iff |\text{im}(a)| = |\text{im}(b)|$
 4. $a \mathcal{H} b \iff 1 + 2$

S_n: these are all trivial! (any a, b are related)

In: (by 1, 2)

$X \rightarrow Y$

$X \rightarrow Z$

$W \rightarrow Y$

$W \rightarrow Z$

$\text{dom} = X$

$\text{dom} = W$

$\text{Ga} \text{im} = Y$

$\text{Gb} \text{im} = Z$

by 3: $a \mathcal{J} b \iff$

belong in same eggbox

$i.e.: J_a = J:\text{-class of } a:$

H-classes

R-classes

L-classes

R and L commute
to give nice
"eggbox" picture
These pictures hold for all S (finite regular monoids).

In T_n / T_n the J-classes not totally ordered:

- Idempotents/subgroups:
 - Idempotent $e = e^2$

Fix domain X: only one such map $\xrightarrow{id_X} X$ with $X \leq \{n\}$

Every R-class has exactly one idempotent (similarly every L-class).

Similarly for every inverse or regular semigroup.

H-class in T_n of contains all bijections $\{x_1, \ldots, x_n\} \to \{y_1, \ldots, y_n\}$ i.e. a copy of S_n in T_n

In general the a subgp. of S (with identity e)

If G a subgroup of S then $G \leq H_e$ for some e.

(hereditary or maximal subgroups)
R-class:

\[\xymatrix{ e & a \ar@{<-}[u] \ar@{->}[r] & H \ar@{<-}[lu] \ar@{->}[u] } \]

$\text{gp. } H_e$ \hspace{1cm} H_a (clear in In)

\Rightarrow every element of H_a has unique expression $ga (g \in H_e)$ (and similarly in an L-class).

Two gp. H-classes in a J-class isomorphic.