SEMIGROUP THEORY
A LECTURE COURSE

VICTORIA GOULD

1. THE BAsic CONCEPT

DEFINITION 1.1. A semigroup is a pair (S,*) where S is a non-empty set and * is an
associative binary operation on S. [i.e. x is a function S x S — S with (a,b) — a * b and
for all a,b,c € S we have a x (b*c) = (a*b) * c|.

n Semigroups Groups
1 1 1
2 4 1
3 18 1
4 126 2
5 1160 1
6 15973 2
7 836021 1
8 1843120128 5
9 | 52989400714478 2

The number (whatever it means) of semigroups and groups of order n

We abbreviate “(S,*)” by “S” and often omit * in “a % b” and write “ab”. By induction
aias . . .a, is unambiguous. Thus we write a” for

aa...q.
—

n times

Index Laws For all n,m e N={1,2,...}:

anam — an—i—m

(a”)m =a"".
DEFINITION 1.2. A monoid M is a semigroup with an identity, i.e. there exists 1 € M
such that la =a =al for all a € M.

Putting a® = 1 then the index laws hold for all n,m € N° = {0,1,2,...}.
1
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NOTE. The identity of a monoid is unique.

DEFINITION 1.3. A group G is a monoid such that for all a € G there exists a b € G with
ab =1 = ba.

ExAMPLE 1.4. Groups are monoids and monoids are semigroups. Thus we have

Groups C Monoids C Semigroups.

The one element trivial group {e} with multiplication table

(&
el|e

is also called the trivial semigroup or trivial monoid.

ExaMPLE 1.5. A ring is a semigroup under x. If the ring has an identity then this
semigroup is a monoid.

EXAMPLE 1.6. (1) (N, x) is a monoid.
(2) (N,+) is a semigroup.
(3) (N° x) and (N° +) are monoids.

EXAMPLE 1.7. Let I, J be non-empty sets and set 17" = [ x J with the binary operation

(2, 7)(k, £) = (4, £).
Note

(3, 5)(k, ) (m,n) = (i, €)(m, n) = (i,n),
(4, 5) ((k, )(m,n)) = (i, ) (k. n) = (i,n),

for all (i, 7), (k,£), (m,n) € T and hence multiplication is associative.
Then T is a semigroup called the rectangular band on I x J.

Notice: (4,7)? = (4,7)(4,7) = (4,7), i.e. every element is an idempotent.
This shows that not every semigroup is the multiplicative semigroup of a ring, since any

ring where every element is an idempotent is commutative. However, a rectangular band
does not have to be commutative.

Adjoining an Identity Let S be a semigroup. Find a symbol not in S, call it “1”. On
S U{1} we define * by

a*xb=ab for all a,b € S,
axl=a=1x%a for all a € 9,
1x1=1.
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F1GURE 1. The rectangular band.

Then * is associative (check this) so SU{1} is a monoid with identity 1. Multiplication in
S U {1} extends that in S.
The monoid S is defined by

gl _ S if S is a monoid,
| Su{1} if S is not a monoid.

DEFINITION 1.8. Stis “S with a 1 adjoined if necessary”.

EXAMPLE 1.9. Let T be the rectangular band on {a} x {b,c}. Then T" = {1, (a,b), (a,c)},
which has multiplication table

| 1 (a,b) (a,c)
1 1 (a,b) (a,c)
(@b)| (@8) (@b) (a0
(@) | (@,0) (@b) (a0

The Bicyclic Semigroup/Monoid B

If AC Z, such that |A| < oo, then max A is the greatest element in A. i.e.

a

if a > b,
b ifb>a.

max{a, b} = {

We note some further things about max:



4 VICTORIA GOULD

max{a,0} = a if a € N,

max{a, b} = max{b,a},

max{a,a} = a,

max {a, max{b, c} } = max{a, b, c} = max { max{a, b}, c}.

Thus we have that (Z, max) where max(a,b) = max{a, b} is a semigroup and (N°, max) is
a monoid.

NoOTE. The following identities hold for all a,b,c € Z
a + max{b, c} = max{a + b,a + c},
(%
max{b, c} = a + max{b — a,c — a}.

Put B = N° x N°. On B we define a ‘binary operation’ by

(a'ab)(cad) = (a’_b+t7d_c+t)7
where ¢ = max{b, c}.
Proposition 1.10. B is a monoid with identity (0,0).

Proof. With (a,b), (¢,d) € B and t = max{b,c} we have t —b > 0 and t — ¢ > 0. Thus we
have a — b+t > a and d — ¢+t > d. Therefore, in particular (a —b+¢,d —c+1) € B so
multiplication is closed. We have that (0,0) € B and for any (a,b) € B we have

(0,0)(a,b) = (0 — 0+ max{0,a},b — a + max{0, a}),
=(0—-0+4+a,b—a+a),
= (a,0),
= (a,b)(0,0).

Therefore (0,0) is the identity of B.
We need to verify associativity.

Let (a,b), (¢,d), (e, f) € B. Then

((a,b)(c,d)) (e, f) = (a — b+ max{b, c},d — c + max{b, c}) (e, f),
= (a —b—d+ ¢+ max{d — ¢+ max{b, c}, e},
f — e+ max{d — ¢ + max{b, c},e}).
(a,b)((c,d)(e, [)) = (a,b)(c — d + max{d, e}, f — e + max{d, e}),
= (a — b+ max{b,c — d + max{d, e}}
f—e—c+d+max{b,c—d+max{d,e}}).

Now we have to show that



SEMIGROUP THEORY A LECTURE COURSE 5

M—d+c+max{d—c+max{b,c},e} :M+max{b,c—d+max{d,e}},
f—e+ max {d — ¢+ max{b,c}, e} = f—e— c+d+max{b c—d+max{d, e}}.

We can see that these equations are the same and so we only need to show

¢ —d+ max {d — ¢+ max{b, c},e} = max {b,c — d + max{d, e} }.
Now, we have from (x) that this is equivalent to
max { max{b,c},c¢ —d+ e} = max {b,c — d + max{d, e} }.
The RHS of this equation is
max {b, ¢ — d + max{d, e}} = max {b, max{c—d+d,c—d+ e}},
= max {b, max{c,c—d+ e}},
= max{b,c,c — d + e},
= max { max{b,c},c —d +e}.
Therefore multiplication is associative and hence B is a monoid. 0
DEFINITION 1.11. With the above multiplication, B is called the Bicyclic Semigroup/Monoid.

ExaMPLE 1.12. For any set X, the set Tx of all maps X — X is a monoid. (See Lecture
3).

DEFINITION 1.13. A semigroup S is commutative if ab = ba for all a,b € S.

For example N with + is commutative. B is not because

(0,1)(1,0)=(0—1+1,0—1+1) = (0,0),
(1,0)(0,1) = (1 =04+0,1-0+0) = (1,1).
Thus we have (0,1)(1,0) # (1,0)(0,1). Notice that in B; (a,b)(b,c) = (a,c).

DEFINITION 1.14. A semigroup is cancellative if

ac =bc = a=>, and
ca=ch=a=0b.

NOT ALL SEMIGROUPS ARE CANCELLATIVE

For example in the rectangular band on {1,2} x {1,2} we have

(1,1)(1,2) = (1,2) = (1,2)(1,2)
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B is not cancellative as e.g.

(L1)(2.2) = (2,2)(2,2).
Groups are cancellative (indeed, any subsemigroup of a group is cancellative). NY is a
cancellative monoid, which is not a group.

DEFINITION 1.15. A zero “0” of a semigroup S is an element such that, for all a € S,

0a = a = a0.

Adjoining a Zero Let S be a semigroup, then pick a new symbol “0”. Let S° = SU{0};
define a binary operation - on S° by

a-b=ab for all a € S,
0-a=0=a-0 for all a € 5,
0-0=0.

Then - is associative, so S is a semigroup with zero 0.

DEFINITION 1.16. S®is S with a zero adjoined.

2. STANDARD ALGEBRAIC TOOLS

DEFINITION 2.1. Let S be a semigroup and () T C S. Then T is a subsemigroup of S if
a,b €T = ab e T. If S is a monoid then T is a submonoid of S if T is a subsemigroup
and 1 € T.

Note T is then itself a semigroup/monoid.

ExAMPLE 2.2. (1) (N, +) is a subsemigroup of (Z, +).
(2) R ={c, | x € X} is a subsemigroup of T, since
CaCy = Cy
for all z,y € X.
R is a right zero semigroup (See Ex.1).
(3) Put E(B) = {(a,a) | a € N°}.
From Ex. 1, E(S)={a € B:a?=a}
Claim E(B) is a commutative submonoid of B.
Clearly we have (0,0) € E(B) and for (a,a), (b,b) € E(B) we have

(a,a)(b,b) =(a—a+t,b—b+1t) where t = max{a, b},
= (t7 t)?
= (b,b)(a,a).
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DEFINITION 2.3. Let S, T be semigroups then 6 : S — T is a semigroup (homo)morphism
if, for all a,b € S,

(ab)d = abbh.

If S, T are monoids then 6 is a monoid (homo)morphism if 6 is a semigroup morphism and
150 = 1.

EXAMPLE 2.4. (1) 6 : B — Z given by (a,b)f = a — b is a monoid morphism because

((a,0)(c,d))0 = (a—b+t,d—c+1)0 t = max{b, c}
=(a—b+t)—(d—c+1)
=(a—"0b)+ (c—d)

— (a,b)0 + (c,d)0.

Furthermore (0,0)0 =0 — 0 = 0.
(2) Let T'= I x J be the rectangular band then define oo : " — T by (4, j)a = ¢;. Then
we have

So, a is a morphism.

DEFINITION 2.5. A bijective morphism is an isomorphism.
Isomorphisms preserve algebraic properties (e.g. commutativity).
See handout for further information.

Embeddings Suppose « : S — T is a morphism. Then Im « is a subsemigroup (sub-
monoid) of 7. If v is 1:1, then a : S — Im « is an isomorphism, so that S = Im a. We
say that S is embedded in T'.
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Theorem 2.6 (The “Cayley Theorem” — for Semigroups). Let S be a semigroup. Then S
1s embedded in Tg1.

Proof. Let S be a semigroup and set X = S*. We need a 1:1 morphism S — Tx.

For s € S, we define p, € Tx by zps = xs.

Now define a : S — Tx by sa = ps.

We show « is 1:1: If sac = tar then p, = p; and so xp, = xp, for all z € S*; in particular
1ps = 1p; and so 1s = 1t hence s =t and « is 1:1.

We show « is a morphism: Let u,v € S. For any = € X we have

z(pupy) = (Tpu)po = (2u) py = (Tu)V = 2(UV) = TPyy.
Hence pyup, = puy and so uava = pyp, = puw = (uv)a. Therefore « is a morphism.
Hence o : S — Tx is an embedding. O

Theorem 2.7 (The “Cayley Theorem” - for Monoids). Let S be a monoid. Then there
exists an embedding S — Tg.

Proof. S' = S so Tg = Tg1. We know « is a semigroup embedding. We need only check
la = [X-
Now la = p; and for all z € X = S we have

xpp =zl =x=uxlx
and so la = p; = Ix. O

Theorem 2.8 (The Cayley Theorem - for Groups). Let S be a group. Then there exists
an embedding S — Sg.

Proof. Exercise. !

2.1. Idempotents

S will always denote a semigroup.

DEFINITION 2.9. e € S is an idempotent if e = e. We put
E(S)={ec S|e*=e}.

Now, E(S) may be empty, e.g. E(S) =0 (N under +).
E(S) may also be S. If S = I x J is a rectangular band then for any (i,j) € S we have
(i,5)* = (i,5)(i,5) = (i,7) and so E(S) = S.

For the bicyclic semigroup B we have from Ex. 1
E(B) ={(a,a) | a € N°}.

If S is a monoid then 1 € E(S).
If S is a cancellative monoid, then 1 is the only idempotent: for if €2 = e then ee = el and
so e = 1 by cancellation. In particular for S a group we have E(S) = {1}.



SEMIGROUP THEORY A LECTURE COURSE 9
DEFINITION 2.10. If E(S) = S, then S is a band.
DEFINITION 2.11. If E(S) = S and S is commutative, then S is a semilattice.

Lemma 2.12. Let E(S) # 0 and suppose ef = fe for all e, f € E(S). Then E(S) is a
subsemigroup of S.

Proof. Let e, f € E(S). Then

(ef)* = (ef)(ef) = e(fe)f =elef)f = (ee)(ff) =ef
and hence ef € E(S). O

From Lemma 2.12 if E(S) # 0 and idempotents in S commute then E(S) is a semilattice.

EXAMPLE 2.13. (1) E(B) = {(a,a) | a € N°} is a semilattice.
(2) A rectangular band I x J is not a semilattice (unless |I| = |J| = 1) since (7, 5)(k, () =
(k,0)(i,j) @ i=Fkand j ="

DEFINITION 2.14. Let a € S. Then we define (a) = {a™ | n € N}, which is a commutative
subsemigroup of S. We call (a) the monogenic subsemigroup of S generated by a.

Proposition 2.15. Let a € S. Then either
(1) {a)| = oo and (a) = (N, +) or
(ii) {a) is finite. In this case In,r € N such that

(a) ={a,a® ...,a"" '} {a)|=n+r—1
{a™, a™, ... a"" 1} is a subsemigroup of (a) and for all s,t € N,
a"t=a"" s s=1t (modr).

Proof. If a* # o’ for all 4,5 € N with i # j then 6 : (a) — N defined by a'0 = i is an
isomorphism. This is case (i).

Suppose that in the list of elements a, a?,a®,... there is a repetition, i.e. a’ = o’/ for some

i < j. Let k be least such that a* = a™ for some n < k. Then k = n + r for some r € N -
where n is the index of a, r is the period of a. Then the elements a,a? a?,...,a""" ! are
all distinct and a™ = a™*".

DO NOT CANCEL

Let s,t € N° with
s=s4+ur,t=t +or
with
0<st'<r—1,uuveN.
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Then
n+s __ an+s’+ur
/ .
a®a"t% in S*
as’ an+ra(u71)r
u—1)r

!
a® aal
— as’ an+(u71)r

/
n+s’
. . !
Similarly, "™ = ¢"™*. Therefore
/ /
AP =d"" s " =d"" & =t & s=t(modr).

Notice that

an-f—ur — "
for all u.
We have shown
{a,d® ....a" a"™, ... a"" '} = (a)

and

[{a)|=n+7r—1.
Clearly

{a",a"*, ... a"T" 1)

is a subsemigroup. In fact

an—f—san—i—t — an—i—u

where u =s+n+t (mod r) and 0 < u < r — 1. This is case (ii).

We can express this pictorially:

anJrl
n+2
a a? a® at a” a
° ° ® & -—----- > ’
/I
/
//
L
n+r—1

O

Lemma 2.16 (The Idempotent Power Lemma). If (a) is finite, then it contains an idem-
potent.



SEMIGROUP THEORY A LECTURE COURSE 11

Proof. Let n,r be the index and period of a. Choose s € N° with s = —n (mod r). Then
s+n =0 (mod r) and so s +n = kr for k € N. Then

(an—i—s)Q — an+n+s+s — an+kr+s _ an+s
and so a"** € E(S). O
In fact, {a",a™", ..., a1} is a cyclic group with identity a™".

Corollary 2.17. Any finite semigroup contains an idempotent.

2.2. Idempotents in Ty

We know c,c, = ¢, for all z,y € X and hence c,c, = ¢, for all z € X. Therefore
¢ € E(Tx) for all z € X. But if | X| > 1 then there are other idempotents in Tx as well.

EXAMPLE 2.18. Let us define an element

o= G . g) € E(Tx).

> (12 3\ (123)_ (123
@ =12 2 3 22 3/ \2 2 3)°

thus « is an idempotent.

Then

DEFINITION 2.19. Let a: X — Y be a map and let Z C X. Then the restriction of a to
the set Z is the map
alz: Z =Y,z za for every z € Z.

NOTE: Sometimes we treat the restriction a|z as a map with domain Z and codomain
Za.

ExAMPLE 2.20. Let us define a map with domain {a, b, ¢, d} and codomain {1,2,3}:
_fa b c d
“=\1 31 2)
a d

We can see that o is not one-to-one but a(qq) is.

Let a € Tx (i.e. a: X — X). Recall that

Then a|{q,q) is the following map:

Ima={za:2€ X} CX=Xa.
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EXAMPLE 2.21. In 73 we have Imc¢; = {1}, Im I3 = {1, 2,3} and

Im (:1)) . g):{z,:a}.

The following lemma gives a rather useful characterization of the idempotents of a trans-
formation monoid.

Lemma 2.22 (The E(7x) Lemma). An element ¢ € Tx is idempotent < €|me = Ime-

Proof. €|ime = Ime means that for all y € Ime we have ye = y.
Note that Ime = {ze : v € X}.
Then

e€ E(Tx) & e’ =c¢,

& xe? = xe for all z € X,

& (re)e =z for all x € X,

Sye =y for all y € Ime,

& €lime = lime- O

EXAMPLE 2.23. Let

1 2 3
“= (2 2 3) €T
this has image Im a = {2,3}. Now we can see that 2a = 2 and 3a = 3. Hence a € E(T;).

EXAMPLE 2.24. We can similarly create another idempotent in 77, first we determine its
image: let it be the subset {1,2,5,7}. Our map must fix these elements, but can map the
other elements to any of these:

1234567 1234567
<12 5 7>_>(1257527)EE(T7)'

Using Lemma 2.22 we can now list all the idempotents in 73. We start with the constant
maps, i.e. € € E(T3) such that |[Ime| = 1. These are

1 2 3 1 2 3 1 2 3
11 1) \2 2 2)° \3 3 3/

Now consider all elements € € E(73) such that |Ime| = 2. These are

1 2 3 1 2 3 1 2 3
22 3) \113)” \3 2 3)°
1 2 3 1 2 3 1 2 3
1337 \1 2 1) \1 2 2)°
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Now there is only one idempotent such that |Ime| = 3, that is the identity map

1 23
12 3)°
3. RELATIONS

Please see the handout ‘Functions and Relations’.

In group theory, homomorphic images of groups are determined by normal subgroups.
The situation is more complicated in semigroup theory, namely the homomorphic images
of semigroups are determined by special equivalence relations. Furthermore, elements of
semigroups can be quite often ‘ordered’. For example there is a natural notion of a map
being ‘bigger’ than another one: namely if its image has a bigger cardinality. These
examples show that relations play a central role in semigroup theory.

DEFINITION 3.1. A (binary) relation p on A is a subset of A x A.

Convention: we may write “a p b” for “(a,b) € p”.

3.1. Some special relations

Properties of the relation < on R:

a<a for all a € R,
a<bandb<c=a<c for all a,b,c € R,
a<bandb<a=a= for all a,b € R,

a<borb<a for all a,b € R.

Thus, the relation < is a total order on R (sometimes we say that R is linearly ordered by
<)

Recall that if X is any set, we denote by P(X) the set of all subsets of X (and call it the
power set of X. Properties of the relation C on a power set P(X) of an arbitrary set X:

ACA for all A € P(X)
ACBand BCC=ACC for all A,B,C € P(X)
ACBand BCA=A=B for all A, B € P(X)

Notice that if | X| > 2 and z,y € X with z # y then {z} € {y} and {y} € {«}, thus C is
a partial order but not a total order on P(X).
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Recall that

la) ={be A|aphb}.
If p is an equivalence relation then [a] is the equivalence-class, or the p-class, of a.

We denote by w the UNIVERSAL relation on A: w = A X A. So x w y for all z,y € A,
and [z] = A for all z € A.

We denote by ¢ be the EQUALITY relation on A:

v ={(a,a) |a € A}.
Thus z 1y < o =y and so [z] = {z} for all x € A.

3.2. Algebra of Relations
If p, \ are relations on A, then so is pN A. For all a,b € A we have

a(pnNA)be(a,b) e pNA
< (a,b) € p and (a,b) € A
& apbanda b
We note that p C X means a pb = a A\ b.

Note that ¢ C p & p is reflexive and so ¢ C p for any equivalence relation p.

We see that ¢ is the smallest equivalence relation on A and w is the largest equivalence
relation on A.

Lemma 3.2. If p, A are equivalence relations on A then so is p N A.

Proof. We have ¢ C pand ¢ C A, then ¢ C p C A, so pNA is reflexive. Suppose (a,b) € pNA.
Then (a,b) € p and (a,b) € A. So as p, A are symmetric, we have (b,a) € p and (b,a) € A
and hence (b,a) € p N A. Therefore p N A is symmetric. By a similar argument we have
p N A is transitive. Therefore p N A is an equivalence relation. OJ

Denoting by [a], the p-class of a and [a]\ the A-class of @ we have that,

lal,y={be A|bpnAal,
={beA|lbpaandb\a},
—{beAlbpaln{be A|bXa},
:[a]pﬂ[a])\.

We note that p U A need not be an equivalence relation. On Z we have
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3=1 (mod 2),
1=4 (mod 3).
( = (mod2)) U ( = (mod 3)) were to be transitive then we would have
€ (=(mod2)) U (= (m od3))}
(1 4)6(5( 0d2)) U (= (mod3))
~ (3.4) € (= (mod2)) U ( = (mod3))

=3=4 (mod 2) or 3=4 (mod 3)
but this is a contradiction!

3.3. Kernels

DEFINITION 3.3. Let a: X — Y be a map. Define a relation ker & on X by the rule

a kera b < aa = ba.
We call ker v the kernel of a.

We may sometimes write a =, b. It is clear that ker o is an equivalence relation on X.
The ker « classes partition X into disjoint subsets; a, b lie in the same class iff aa = ba.

EXAMPLE 3.4. Let a: 6 — 4 where
(123456
S \3 2322 1)
In this case the different ker a-classes are {1,3},{2,4,5},{6}.

Note that if a: A — B is a map then « is one-one if and only if kera = 14 and « is
constant if and only if ker o = wy.

DEFINITION 3.5. An equivalence relation p on a semigroup S is a congruence if

(apband cpd)= acpbd.

Lemma 3.6 (The Kernel Lemma). Let 0: S — T be a semigroup morphism. Then ker 0
1S a congruence on S.

Proof. We know ker 6 is an equivalence relation on S. Suppose a, b, c,d € S with

(a ker @ b) and (c ker 6 d).
Then afl = bl and c = db, so

(ac)f = abch = bOdo = (bd)6.

Therefore ac ker 6 bd, so that ker # is a congruence. O
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NOTE. Some remarks on the notion well-defined: usually we define a map on a set by
simply stating what the image of the individual elements should be, e.g:

a: N = Z, na = the number of 9’s less the number of 2’s in the decimal form of n.

But very often in mathematics, the set on which we would like to define the map is a set
of classes of an equivalence relation (that is, the factor set of the relation). In such cases,
we usually define the map by using the elements of the equivalence classes (for usually we
can use some operations on them). For example let

p=A{(n,m)ln=m (mod4)} CNxN.
Then p is an equivalence relation having the following 4 classes:
A=1{1,59,13,...},B=1{2,6,10,14,.. .},
C=1{3,7,11,15,...}, D = {4,8,12,16, .. .}.
Thus, the factor set of p is X = {A, B,C, D}. We try do define a map from X to N by
a: X = N, [n],a=2"

What is the image of A under a? We choose an element n of A (that is, we represent A
as [n],): 1 € A, thus A = [1],. So Aa = [1],a = 2. However, 5 € A, too! So we have
Aa = [5],a = 2° = 32. Thus, Aa has more than one values. We refer to this situation as
‘a being not well-defined’.

Keep in mind that whenever we try to define something (a map, or an operation) on a
factor set of an equivalence relation by referring to ELEMENTS of the equivalence classes,
it MUST be checked, that the choice of the elements of the equivalence classes does not
influence the result.

For example in the above-mentioned example let

8: X —>NO,[n]pB =7,

where 7@ denotes the remainder of n on division by 4 (that is, 0,1,2 or 3). In this case 3 is
well-defined, because all elements in the same class have the same remainder, for example

Aﬁ = [”pﬁ =1= [5]p6 = [9]p6 = ...
The following construction and lemmas might be familiar...

Let p be a congruence on S. Then we define

S/p={la]|a € S}.
Define a binary operation on S/p by
[a][b] = [ab].

We need to make sure that this is a well-defined operation, that is, that the product [a][b]
does not depend on the choice of a and b. If [a] = [@/] and [b] = [V/] then a p o’ and b p V;
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as p is a congruence we have ab p a'b' and hence [ab] = [d/V']. Hence our operation is
well-defined. Let [a], [b], [c] € S/p then we have

If S is a monoid, then so is S/p because we have

[1]la] = [1a] = [a] = [a1] = [a][1]
for any a € S. Hence we conclude that S/p is a semigroup and if S is a monoid, then so

is S/p.
DEFINITION 3.7. We call S/p the factor semigroup (or monoid) of S by p.
Now, define v, : S — S/p by

sv, = [s].
Then we have
svty, = [s][t] definition of v,
= [st] definition of multiplication in S/p,
= (st)v, definition of v,.

Hence v, is a semigroup morphism. Moreover if S is a monoid then 1v, = [1], so that v,
is a monoid morphism. We now want to examine the kernel of v,:

skerv, t & sy, =ty, definition of ker v,
< [s] = [t] definition of v,,
Sspt definition of p.

Therefore p = ker v, and so every congruence is the kernel of a morphism.

Theorem 3.8. [The Fundamental Theorem of Morphisms for Semigroups| Let 6: S — T
be a semigroup morphism. Then ker 6 is a congruence on S, Im#6 is a subsemigroup of T

and S/ ker = Im#é.
Proof. Define 0: S/ ker § — Im 6 by [a]0 = af. We have
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[a] = [b] < aker@ b
& af) = bl
& [a)d = [b]6.

Hence 0 is well-defined and one-one. For any x € Im 6 we have z = afl = [a]f and so 0 is
onto. Finally,

([a][b])0 = [ab]d = (ab)f = bbb = [a]A[b]6.
Therefore § is an isomorphism and S/ ker § 2 Im 6. U

Note that the analogue of Theorem 3.8 holds for monoid to give us the The Fundamental
Theorem of Morphisms for Monoids.

EXAMPLE 3.9. 0 : B — (Z,+) given by (a,b)0 = a — b is a monoid morphism. Check that
0 is onto, so by FTH we have

B/ker0 = Z.
Moreover, ker # is the congruence given by

(a,b) kerf (c,d) & a—b=c—d.

4. IDEALS

Ideals play an important role in Semigroup Theory, but rather different to that they hold
in Ring Theory. The reason is that in case of rings, ALL homomorphisms are determined
by ideals, but in case of semigroups, only some are.

4.1. Notation
If A, B C S then we write

AB ={ab|a€ Abe B},
A* = AA = {ab|a,be A}.
NOTE. A is a subsemigroup if and only if A # () and A% C A.
We write aB for {a}B = {ab | b € B}.

For example

AaB = {zay |z € A,y € B}.
Facts:
(1) A(BC) = (AB)C therefore P(S) = {S | A C S}, equipped by the above-defined

operation, is a semigroup — the power semigroup of S.

(2) ACB= AC C BC and CAC CB forall A,B,C € P(S).
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(3) AC = BC # A = B and CA = CB # A = B, i.e. the power semigroup is
not cancellative - think of a right zero semigroup, there AC = BC = C for all
A, B,CCS.

(4) A is isomorphic to the subsemigroup {{a} | a € A} of P(A).

(5) 1S =S =85

DEFINITION 4.1. Let ) # I C S then [ is
(1) aleft ideal if SI C I (iie.a€l,se€ S = sa€l);
(2) a right ideal if IS C I;
(3) an (two-sided) ideal if IS U ST C I, that is, I is both a left and a right ideal.

Note that if S is commutative, (1),(2) and (3) above coincide.
If ) # I C S then we have:

I is a left ideal < S'I C I;

I is a right ideal < IS C I;

I is an ideal < S'IS!' C I.

Note that any (left/right) ideal is a subsemigroup.

EXAMPLE 4.2. (1) Let i € I then {i} x J is a right ideal in a rectangular band I x J.

(2) Let m € N° be fixed. Then I, = {(x,y) | z > m,y € N°} is a right ideal in the
bicyclic semigroup B.
Indeed, let (x,y) € I, and let (a,b) € B. Then

(:U,y)(a,b) = (:L’—y+t,b—a+t),

where t = max{y,a}. Now, we know that x > m and that t > y, sot —y > 0.
Adding up these two inequalities, we get that x — y + ¢ > m, thus the product is
indeed in I,,.

(3) If Y € X then we have {a € Tx |Ima C Y} is a left ideal of Tx.

(4) For any n € N we define

S"={amay...a, | a; € S}.
This is an ideal of S. If S is a monoid then S™ = S for all n, since for any s € S
we can write

s=sl1l1...1€ 8™
—

n—1
(5) If S has a zero 0, then {0} (usually written 0), is an ideal.
DEFINITION 4.3. Let S be a semigroup.
(1) We say that S is simple if S is the only ideal.
(2) If S has a zero 0, then S is 0-simple if S and {0} are the only ideals and S? # 0.

Note that S? is always an ideal, so the condition S* # 0 is only required to exclude the 2-
element null semigroup. A null semigroup is a semigroup with zero such that every product
equals 0 - notice that every subset containing 0 is an ideal.
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EXAMPLE 4.4. Let G be a group and [ a left ideal. Let g € G, a € I then we have

g=(9a ael
and so G = I. Therefore G has no proper left /right ideals. Hence G is simple.
Exercise: GV is O-simple

EXAMPLE 4.5. We have (N, +) is a semigroup. Let n € N. Now define I,, C (N, +) to be

ILi={nn+1n+2, ...},
which is an ideal. Hence N is not simple.

NoTE. {2,4,6,...} is a subsemigroup but not an ideal.
EXAMPLE 4.6. The bicyclic semigroup B is simple.

Proof. Let I C B be an ideal, say (m,n) € I. Then (0,n) = (0,m)(m,n) € I. Thus
(0,0) = (0,n)(n,0) € I. Let (a,b) € B. Then

(a,b) = (a,5)(0,0) € T
and hence B = I = B is simple. U

4.2. Principal Ideals

We make note of how the S! notation can be used. For example

S'A={sa|sec S ac A},
={sa|seSU{l},ac A},
={sa|seS,aec AyU{la]|ae€ A},
= SAUA.
In particular, if A = {a} then S'a = Sa U {a}. So,

Sla = Sa < ac€ Sa,
S a=ta
for some t € S. We have S'a = Sa for a € S if:

e S is a monoid (then a = la).
e a € F(S) (then a = aa).
e a is regular, i.e. there exists © € S with a = aza (then a = (ax)a).

But in (N, +) we have 1 ¢ 1+ N. Dually,

aS' = aS U {a}

and similarly
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StaS' = SaSUaSUSaU{a}.
CramM. aS? (S'a, S'aS?') is the “smallest” right (left, two-sided ideal) containing a.

Proof. (for aS").
We have a = al € aS! and (aS')S = a(S'S) C aS'. So, aS! is a right ideal containing a.
If a € I and I is a right ideal, then aS' C IS' =TUIS C I. ]

DEFINITION 4.7. We call aS' (S'a, S'aS") the principal right (left, two-sided) ideal gen-
erated by a.

If S is commutative then aS! = S'a = S'aS!.
EXAMPLE 4.8. In a group G we have

aG' =G = Gla = GraG!
for all a € G.

ExAMPLE 4.9. In N under addition we have

n+ ‘N =1, ={nn+1n+2...}
ExAMPLE 4.10. B is simple, so
B(m,n)B = B'(m,n)B' = B
for all (m,n) € B. However:
CLAIM. (m,n)B = (m,n)B' = {(z,y) | # > m,y € N°}
Proof. We have

(m,n)B = {(m,n)(u,v) | (u,v) € B}

{
{(z,9) |2 =m,y e N°}.

N

Let x > m then

(m,n)(n+ (z—m),y) = (m—n+n+(z—m),y),
= (2,).

Therefore (z,y) € (m,n)B = {(z,y) | > m,y € N°} C (m,n)B. Hence we have proved
our claim. 0
Dually we have B(m,n) = {(x,y) |z e Ny > n}
Lemma 4.11 (Principal Left Ideal Lemma). The following statements are equivalent;

i) Sta C S'b,

ii) a € S,



22 VICTORIA GOULD

iil) a =tb for somet € S*,
iv) a=0b ora=tb for somet € S.

NoOTE. If S'a = Sa and S'b = Sb, then the Lemma can be adjusted accordingly.

Proof. 1t is clear that (ii), (iii) and (iv) are equivalent.

(i) = (ii): If S'a C S'0 then a = la € S'a C S'b = a € S'b.

(ii) = (i): If a € S', then as S'a is the smallest left ideal containing a, and as S'b is a
left ideal we have S'a C S'b. O

Lemma 4.12 (Principal Right Ideal Lemma). The following statements are equivalent:
i) aS' C bS1,
ii) a € bS!,
iil) a =0t for somet € S*,
iv) a=0b ora="0bt for somet € S.
NOTE. If aS = aS! and bS = bS! then aS C bS < a € bS < a = bt for some t € S.

The following relation is crucial in semigroup theory.

DEFINITION 4.13. The relation £ on a semigroup S is defined by the rule

albs Sta=S"
for any a,b € S.

NoOTE.

(1) L is an equivalence.

(2) If a £ b and ¢ € S then S*a = S'b, so S'ac = S'be and hence ac L be, ie. L is
right compatible. We call a right (left) compatible equivalence relation a right (left)
congruence. Thus L is a right congruence.

Corollary 4.14. We have that

albe Is, te S witha = sb and b = ta.

Proof.
albe Sta=S"
< Sta C S'hand S' C Sta
& Js,t € St with a = sb, b = ta
by the Principal Left Ideal Lemma. 0

We note that this statement about £ can be used as a definition of L.

REMARK.
(1) a Lb< a=bor there exist s,t € S with a = sb, b = ta.
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(2) If Sa = S*a and Sb = S'b, then a L b < Is,t € S with a = sb, b = ta.
Dually, the relation R is defined on S by

aRb<s aSt =bS?

and

aRb< Is,t €St with a = bs and b = at,
< a=bor ds,t € S with a =bs and b = at.

We can adjust this if aS' = aS as before. Now R is an equivalence; it is left compatible
and hence a left congruence.

DEFINITION 4.15. We define the relation H = £ NR and note that H is an equivalence.

The relations £, R, H are in fact three of the so-called Greens’ relations.

EXAMPLE 4.16. (1) If S is commutative, L =R = H.
(2) In a group G,

Gla=G=G'% and aG'=G=0bG" foralla,becG.
Soa Lband a R b for all a,b € G. Therefore L =R =w = G x G and hence

we have H = w.

ExAaMPLE 4.17. In N under + we have

a+N' ={a,a+1,...}
andsoa+ N =pb+N < a=0b. Hence L=R =H = ..
ExXaAMPLE 4.18. In B we know

(m,n)B' = {(z,y) | > m,y € N°}

and so we have
(m,n)B" = (p,q)B' & m = p.
Hence (m,n) R (p,q) < m = p. Dually,

(m,n) L (p,q) & n=q.
Thus (m,n) H (p,q) < (m,n) = (p,q), which gives us H = .
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4.3. £L and R in Tx

CLAIM. aTx C fTx < ker 5 C ker a.
(Recall kera = {(z,y) € X x X | za = yar}).

VICTORIA GOULD

Proof. (=) Suppose aTx C 8Tx. Then oo = 7 for some v € Tx. Let (x,y) € ker 8. Then
za = 2(0y) = (x8)y = (yb)y = y(By) = ya.

Hence (z,y) € ker a and so ker 8 C ker a.

(<) Suppose ker 8 C ker . Define v: X — X by

27:{ z z¢Imp

ra  z=uaf

zf3
B ®
\
\
1
T VY
i
1
1
,I
o
s
T

If 2z =xp = yp, then (z,y) € ker 8 C ker a so xaw = ya. Hence 7y is well-defined. So v € Tx
and v = a. Therefore a € 5Ty so that by the Principal Ideal Lemma, aTx C fTx. 0O

Corollary 4.19 (R-Tx-Lemma). a R § < ker a = ker 3.
Proof. We have

Oz’Rﬁ@OzTX :ﬁTX
< aTx C BTx and BTy C aTx
< ker § C ker a and ker a C ker 8
< ker a = ker f3.

FacT: Txa C Txp < Ima C Im § (See Exercises).
Corollary 4.20 (£ — Tx-Lemma). a £ < Ima = Im S.
Consequently o« H 8 < ker a = ker f and Ima = Im 3.

EXAMPLE 4.21. Let us define

e=(3 5 5)erm)
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Now we have Ime = {2,3}. We can see that ker ¢ has classes {1,2},{3}. So

aHes Ima=Ime and kerav = kere
< Ima = {2,3} and ker « has classes {1, 2}, {3}.

So we have

S o|m
M QR

€
Q@
which is the table of a 2-element group. Thus the H-class of ¢ is a group.

5. SUBGROUPS OF SEMIGROUPS

Let S be a semigroup and let H C S. Then H is a subgroup of S if it is a group under the
restriction of the binary operation on S to H; i.e.

eabe H=abe H

e Jec Hwithea=a=aeforallae H

e Vaec Hdbe H with ab=¢ = ba
REMARK.

(1) S does not have to be a monoid. Even if S is a monoid, e does not have to be 1.
However, e must be an idempotent, i.e. e € E(S).
(2) If H is a subgroup with identity e, then e is the only idempotent in H.

)

FIGURE 2. e is the only idempotent in H.

S

(3) If e € E(S), then {e} is a trivial subgroup.

(4) With o = (:_13 ?)) g) and € = (; 3 3) we have the H-class {€, a} is a subgroup
of Ts.
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(5) Sy is a subgroup of Tx. Notice

aHIx < Ima=Imly and kera = ker Iy,
& Ima = X and kera = ¢,
< o is onto and « is one-one,
& o€ Sy
Therefore Sy is the H-class of Ix.

DEFINITION 5.1. In the sequel, we are going to denote by L, the L-class of a; by R, the
R-class of a and by H, the H-class of a.

Now L, = Ly < a L b and H, = L, N R,. For example, in B, we have L3 = {(x, 3) |
T € NO}.
We are going to show that the mazximal subgroups of semigroups are just the H-classes of

idempotents. As a consequence, we will see that whenever two subgroups are not disjoint,
then they are both contained within a subgroup, as the following figure shows.

FicUrE 3. Existence of a Maximal Subgroup.

Lemma 5.2 (Principal Ideal for Idempotents). Let a € S, e € E(S). Then
(i) StaC Sle s ae=a
(ii) aS' CeS!' & ea =a.

Proof. (We prove part (i) only because (ii) is dual). If ae = a, then a € S'e so S'a C S'e
by the Principal Ideal Lemma. Conversely, if S*a C S'e then by the Principal Ideal Lemma
we have a = te for some t € S*. Then

ae = (te)e = t(ee) = te = a.
Corollary 5.3. Let e € E(S). Then we have

aRe=ea=a,
ale= ae=a,

aHe= a=ae=ea.
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Thus, idempotents are left/right/two-sided identities for their R/L/H-classes.

Lemma 5.4. Let G be a subgroup with idempotent e. Then G C H,, thus, the elements of
G are all H-related.

Proof. Let G be a subgroup with idempotent e. Then for any a € G we have ea = a = ae
and there exists a=! € G with aa™! = e = a~'a. Then

ea=a

4 =aRe
aa” " =e
ae =a

1 =ale
aa=e

=aHe.

Therefore a H e for all a € G, so G C H.. O

Theorem 5.5 (Maximal Subgroup Theorem). Let e € E(S). Then H, is the mazimal
subgroup of S with identity e.

Proof. We have shown that if G is a subgroup with identity e, then G C H,.

We show now that H, itself is a subgroup with identity e.

We know that e is an identity for H.. Suppose a,b € H.. Then b H e, so b R e hence
abR ae (R is left compatible) so

abRae=aRe.

Also, a L e = ab L eb=1>0 L e hence ab H e so ab € H.. It remains to show that for all
a € H, there exists b € H, with ab = e = ba.

Let a € H,. Then, by definition of H = R N L, there exist s,t € S! with

at =e= sa

M
aRe ale
We have
a(ete) = (ae)te = ate = ee = e = - - - = (ese)a.

Let x = ete, y = ese so x,y € S and ex = re =z, ey = ye = y. Also e = ax = ya. Now

r =exr = (ya)r = y(axr) = ye = y.
So let b = x = y. Then

eb=0>b ba=¢e be=0b ab=c¢
b%e bZe
so bH e, thus b € H,. Hence H. is indeed a subgroup. O
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Let e, f € E(S) with e # f. Since H. and H are subgroups containing the idempotents e
and f, respectively, H. # H. This implies that H. N Hy = ().

Theorem 5.6. [Green’s Theorem] If a € S, then a lies in a subgroup iff a H a®.
Proof. See later. O
Corollary 5.7. Let a € S. Then the following are equivalent:

(i) a lies in a subgroup,

(ii) a H e, for some e € E(S),
(iii) H, is a subgroup,
(iv) a H a®.

Proof. (i) = (ii): If @ € G, then G C H, where e* = e is the identity for G. Therefore
a€ H,soa®He.

(ii) = (ili): If @ H e, then H, = H. and by the MST, H. is a subgroup.

(iii) = (i): Straightforward, for a € H,.

(iii) = (iv) If H, is a subgroup, then certainly H, is closed. Hence a,a® € H, therefore
aM a’

iv) = (i) This follows from Greeen’s Theorem (Theorem 5.6).
U
Subgroups of 7,

We use Green’s Theorem to show the following.

Lemma 5.8. Let a € T,,. Then « lies in a subgroup of T, < the map diagram has no tails
of length > 2.

Proof. We have that

a lies in a subgroup < o H o?
& alao?,aRa?
& Ima =Ima? ker a = ker o?.

We know Im a? C Ima (as T,a? C T,a). Let p be an equivalence on a set X. Recall

X/p={l] | v € X}
We have seen that

In/ker a = | Ima.

We know that ker o C ker o (o*7, C a7,), which means that the ker a?-classes are just
unions of ker a-classes:

CLAIM. For a € 7,,, Ima = Im o < ker a = ker o®.



SEMIGROUP THEORY A LECTURE COURSE 29

ker «v classes

.......... ker o? classes

FIGURE 4. The classes of ker a and ker o2.

Proof.

In/ker o?| = [Ima?| < |Ima| = |n/ ker af.
Thus ker o and ker o have the same number of classes if and only if [Ima| = |Im o?|. Tt
follows that ker o = ker o if and only if Im o = Im o2, O

We now continue with the proof of Lemma 5.8:

We have that « lies in a subgroup < Ima = Ima?. Note that elements of Im « \ Im o?
are exactly those second vertices of tails in the map diagram of a which are not members
of a cycle. Thus, Ima? = Im « if and only if no such vertices exist, thus if and only if all
tails have length smaller than or equal to 1. O

An arbitrary element of 7, looks like:

e ) e

*

N
~

€ Ima \ Im o? 7\‘
EXAMPLE 5.9.

(1) We take an element of 75 to be

12345
O‘:<31431)€73'

This has map diagram
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5

Now « has a tail with length > 2 and therefore a doesn’t lie in any subgroup.
(2) Let us take the constant element ¢; € T

(12345
“A=\1111 1)

This has the following map diagram

Now ¢; has no tails of length > 2, therefore ¢ lies in a subgroup and hence c; lies
in a subgroup. Note that actually ¢} = ¢;.

Now for any S,

peH., < LHc,
< B Rce and B L ¢,
< ker § =kerc; and Im 8 = Imcq,
< ker 8 has classes {1,2,3,4,5} and Im 5 = {1},
& 6 =c.

Therefore the maximal subgroup containing ¢; is H,, = {c1}.

(3) Take the element
(12345
“=\23235)

This has map diagram
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No tails of length > 2. Therefore « lies in a subgroup. Hence « lies in a maximal
subgroup. Hence the maximal subgroup containing « is H,. For any [

feH, s [Ha,
& B Raand B L a,
& ker f =kera and Im 8 = Ima,
< Im B ={2,3,5} and ker § has classes {1,3},{2,4}, {5}.
We now figure out what the elements of H, are. We start with the idempotent.

We know that the image of the idempotent is {2,3,5} and that idempotents are
identities on their images. Thus we must have

(12345
= 23 5)°

We also know that 1 and 3 go to the same place and 2 and 4 go to the same place.

Thus we must have
(1 2 3 45
=323 25)

We now have what the idempotent is and then the other elements of H,, are (note
that 1 and 3 must have the same images, just as 2 and 4):

1 2 3 45

2 3 2 35

1 2 3 4 5\(1 2 3 45
525 2 3)\3 5 3 5 2

1 2 3 4 5\(1 2 3 45

5 3 5 3 2)\2 5 2 5 3)°

These are all 6 elements.

Check H, ~ Ss.
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6. D,J AND GREEN’S LEMMAS
Recall S'aS! = {zay | z,y € S'}.

DEFINITION 6.1. We say that a J b if and only if

aJbs StaSt = S'hS!t

Check:
aJbe Is,t,u,v e S with a = sbt b = uav.

NoTE. If a £ b, then S'a = S'b so S'aS! = S'bS' soa J b, ie. L C J, dually R C J.

Recall: S is simple if S is the only ideal of S. If S is simple and a,b € S then

SltaSt = 8§ = S'pst soaJ b

and J = w (the universal relation). Conversely if J = w and [ is an ideal of S, then pick
any a € I and any s € S. We have

se StsSt = StaSt C I.
Therefore I = S and S is simple.

We have shown that that
S is simple < J = w.

Similarly if S has a zero, then {0} and S\ {0} are the only J-classes iff {0} and S are the
only ideals.

6.1. Composition of Relations

DEFINITION 6.2. If p and A are relations on A we define

por={(z,y) € Ax A|3z€ Awith (z,2) € p and (2,y) € A}.

Lemma 6.3. If p, A are equivalence relations and if poX = Aop then po is an equivalence
relation. Also, it is the smallest equivalence relation containing p U X.

Proof. Put v =pol=MXop

e foranya € A, apa Xasoavaand v is reflexive.
e Symmetric - an exercise.
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e Suppose that a v bv ¢ then there exists z,y € A with

aprAbAlypec.

(Note that first we use that ¥ = po A\, and next we use that v = X o p.)
From x A b A y we have z \ y, so

aprAypc.

Therefore x v ¢ hence there exists z € A such that = p z A ¢, therefore a p 2 X ¢
and hence a v c. Therefore v is transitive.

We have shown that v is an equivalence relation. If (a,b) € p then a p b A b so (a,b) € v.
Similarly if (a,b) € A then a pa A b so (a,b) € v. Hence pU X C v.

Now, suppose p U XA C 7 where 7 is an equivalence relation. Let (a,b) € v. Then we have
a pc b for some c. Hence a 7 ¢ 7 bso a7 b as 7 is transitive. Therefore v C 7. 0

The smallest equivalence relation containing any p and A is denoted by p V \; we have
shown that if p and A commute, then pV A = po A.

DEFINITION 6.4. D=Ro L,ie.aDb< dce SwithaRcLDb.

Lemma 6.5 (The D Lemma). RoL=LoR

Proof. We prove that R o L C L o R, the proof of the other direction being dual. Suppose
that @ R o L b. Then there exists ¢ € S with

aRcLb
There exists u, v, s,t € S with

a=cu c= av c=sb b =tc.
1) (2) 3) 4)

Put d = bu then we have

Therefore a £ d. Also

b =tc = tav = tcuv = buv = dv.
(CYRN ) (1) 4)

Therefore b R d and hence a Lo R b. O

Hence D is an equivalence relation and D = L V'R.
By definition
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H=LNRCLCD,

H=LNRCRCD.
As J is an equivalence relation and LUR C J we must have D C 7. This has Hasse
Diagram

J

H

NoOTATION: D, is the D class of a € S and J, is the J-class of a € S.

Nore. H, < L, < D, C J, and also H, C R, € D, C J,.

Egg-Box Pictures

Let D be a D-class. Then for any a € D we have R, C D = D,, and L, C D. We
denote the R-classes as rows and the L-classes as columns. The cells (if non-empty) will
be H-classes - we show they are all non-empty!

Let u,v € D then u D v. This implies that there exists h € S with u R h L v, so
R,N L, # 0, that is, no cell is empty. Moreover

R,NL,=RyN L, = Hy.

As D is an equivalence, S is the union of such “egg-boxes”: the rows represent the R-
classes, and the columns represent the L-classes.

ulh

v

6.2. Structure of D-classes

Let S be a semigroup, s € S'. We define p, : S — S by aps = as for all a € S

Lemma 6.6 (Green’s Lemma). Let a,b € S be such that a R b and let s,s" € S be such
that

as =b and bs' = a.
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Then ps : Ly — Ly and py @ Ly — L, are mutually inverse, R-class preserving bijections
(i.e. if ¢ € Lg, then ¢ R cps and if d € Ly then d R dpg ).

Proof. If ¢ € L, then

cps =cs L as =D,
because L is a right congruence. So cps L b therefore p, : L, — L. Dually py : Ly — L,.
Let ¢ € L,. Then ¢ = ta for some t € S. Now

cpspy = taspy = tass’' = tbs' = ta = c.
So psps = I, dually, pyps =1,
Again, let ¢ € L,. Then

cs=c-s,
c=cs-s.

Therefore ¢ R cs = cps. UJ

Continuing Lemma 6.6. For any ¢ € L, we have p; : H. — H_.s is a bijection with
inverse py : H.s — H.. In particular — put ¢ = a then

ps : Hy — H, and ps : Hy — H,

are mutually inverse bijections.

Let s € S'. Then we define A, : S — S by a), = sa.

Lemma 6.7 (Dual of Green’s Lemma). Let a,b € S be such that a L b and let t,t' € S
be such that ta = b and t'b = a. Then Ny : Ry — Ry and Ay : Ry — R, are mutually
wnwverse L-class preserving bijections. In particular, for any ¢ € R, we have A\ : H. — Hy,,
A+ Hye — H. are mutually inverse bijections. So, if ¢ = a we have Ny : H, — H,,
v+ Hy — H, are mutually inverse bijections.

Corollary 6.8. If a D b then there exists a bijection H, — Hy,.

Proof. It a D b then there exists h € S with a R h L b. There exists a bijection H, — Hj,
by Green’s Lemma and we also have that there exists a bijection H, — H;, by the Dual of
Green’s Lemma. Therefore there exists a bijection H, — Hy. [

Thus any two H-classes in the same D-class have the same cardinality (just like any two
R- and L-classes).

Theorem 6.9 (Green’s Theorem — Strong Version). Let H be an H-class of a semigroup
S. Then either H* N H = () or H is a subgroup of S.
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Proof. We prove that if H?> N H # (), then H is a subgroup. This is exactly the statement
of the theorem.

So suppose H? N H # (. Then there exists a,b,c € H such that ab = c¢. Since a R c,
oy - Hy, — H. is a bijection. But H, = H. = H so p, : H — H is a bijection. Hence
Hb = H. Dually, H = H.

Let u,v € H. Then av € H so that as above, Hv = H. But then uv € H and H is a
subsemigroup. Further, vH = H so that by a standard argument (see Exercises 1), H is a
subgroup of S.

Alternatively Since b € H, b = db for some d € H. As b 'R d, d = bs for some s € St and
then d = bs = dbs = d*>. Hence H contains an idempotent, so (by the Maximal Subgroup
Theorem) it is a subgroup. 0J

Corollary 6.10. a H a? < H, is a subgroup.

Proof. We know H, is a subgroup = a,a? € H, so aH a?.
Conversely, if aHa?, then a* € H, N (H,)? Hence H,N(H,)? # (. So, by Green’s Lemma,
H, is a subgroup. 0

7. REES MATRIX SEMIGROUPS

Just as the main building blocks of groups are simple groups, the main building blocks of
semigroups are (-simple semigroups.

In general, the structure of O-simple semigroups is very complicated. In the finite case and,
more generally, in case certain chain conditions hold, their structure is transparent - they
can be described by a group and a matrix.

Construction: Let G be a group, let I, A be non-empty sets and let P be a A x I matrix
over G U {0} such that every row and every column of P contains at least one non-zero
entry.

MO = MO(G; I, A; P) is the set

I xGxAU{0}
with binary operation given by On = 0 = n0 for all n € M° and

if =
(i a N (ko) = i pa =0,
(Z7 ap)\kb7 ,U) if Drk 3& 0.
Check that M°(G; I, A; P) is a semigroup with zero 0.

DEFINITION 7.1. M® = M%G; I, A; P) is called a Rees Matriz Semigroup over G.
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DEFINITION 7.2. a € S is reqular if there exists x € S with

a = axra.

S is regular if every a € S is regular.

If S is regular then a R b < aS = bS < there exists s,t € S with a = bs and b = at, etc.

Proposition 7.3. Rees matrix facts Let M® = M°(G; 1, A; P) be a Rees Matriz Semi-
group over a group G.

MV is regular.

(t,a,\) R (J,bypn) & i=j.

(t,a,A) L (j,b, ) < A= p.

(t,a, \) H (j,b,p) =i =7 and X\ = pu.

The D = J-classes are {0} and M°\ {0} (so 0 and M" are the only ideals).

MP is 0-simple.

The so-called rectangular property:
rzyDr e rzyRe

0
xyDy@xyEy}vx’yeM

Proof. (1) We have that

(i,a,\) € BE(M") & (i,a,\) = (i,a,\)(i,a, \),
S #0,(4,a,\) = (1, apyia, N),
< pai # 0,a = apya,
& pai # 0 and py =a.

(2) 0 =000 so 0 is regular. Let (i,a,\) € M®\ {0} then there exists j € I with py; # 0
and there exists u € A with p,; # 0. Now,

(Z.a aa )‘) (j)p;jla’_lp;il) :u)(la aa )‘) = (Za a’7 )‘)
and hence M9 is regular.

(3) {0} is an R-class. If (i,a,\) R (4,b, p) then there exists (k,c,v) € M with

(Z.a a, )‘) = (]7 ba M)(ka C, V) = (ja bpukca V)
and so ¢ = j. Conversely, if ¢ = j, pick k& with p,; # 0. Then

(4,0, A) = (5, b, 1) (k, pp b, A)
and together with the dual we have (i,a,\) R (7,b, 1)
(4) Dual.
(5) This comes from (3) and (4) above.
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(6) {0} is a D-class and a J-class. If (i,a, ), (j, b, u) € M then

(i,a,A) R (i,a,p1) £ (4,0, p)
so (i,a,\) D (j,b,u) and so (i,a,\) J (j,b, ;). Therefore D = J and {0} and
MO\ {0} are the only classes.

(7) We have already shown that the only J-classes are {0} and M°\ {0}. Let i € I,
then there exists A € A with py; # 0 so (i,1,\)? # 0. Therefore (M)? # 0 and so
MV is 0-simple.

(8) If zy R x, then clearly xy D x, because R C D. For the other direction, suppose
that zy D x. Notice that the two D-classes are zero and everything else. If zy = 0,
then necessarily x = 0, because Dy = {0}. If zy # 0, then necessarily z,y # 0, so
we have that

r=(ia))  y=0bu)
Then zy = (4, apa;b, 1), so xy R . The result for £ is dual. OJ

Some more facts!
(9) Put Hiy = {(i,a,\) | a € G}. By (5) we have H, is an H-class (H;\ = H; o n). If
pai 7 0 we know (i, py;', A) is an idempotent and so Hj, is a group, by the Maximal
Subgroup Theorem. The identity is (4,py;, \) and (i,a,A\)~! = (i,py a™t, py}, A).

(10) If py; # 0 and p,; # 0 then H;y ~ Hj,. It is clear that (i,a,\) — (j,a,p) is a
bijection, but this is not in general a morphism. Fzxercise: find a morphism!

Chain conditions

A finitary property is a property held by all finite semigroups: chain conditions are one
kind of finitary property.

DEFINITION 7.4. A semigroup S has M if there are no infinite chains

Slal D Slag D) Slag D,

of principal left ideals. My is the descending chain condition (d.c.c.) on principal left
ideals.
The left /right dual is Mg.

Lemma 7.5 (The Chain Lemma). The semigroup S has My if and only if any chain

Slay D Stay D ...

terminates (stabilizes) i.e. there exists n € N with

1 1
San:San_H:...
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Proof. If every chain with D terminates, then clearly we cannot have an infinite strict chain

Slal D) Slag D,
So S has M.

Conversely, suppose S has My and we have a chain

S'ay 2 S'ay D ...
Let the strict inclusions be at the j;th steps:

Slay = Stay =+ = Slajl D Slaj1+1 = Slaj1+2
== S, D S'aj, = ...
Then
Sta; D S'aj, O ...
As S has My, this chain is finite with length n say. Then

1 1
S Qj,4+1 = S Aj, 42 = ...

and our sequence has stabilised. O]

DEFINITION 7.6. The ascending chain condition (a.c.c.) on principal ideals on left/right
ideals M% (M%) is defined as above but with the inclusions reversed.

The analogue of the Chain Lemma holds for M* and (M*).
EXAMPLE 7.7. Every finite semigroup has My, Mz, ML, M. For example, if

Slal D) Sla2 D) Slag Dy,
then in every step, the cardinality of the sets must decrease at least by one, so the length
of a strict sequence cannot be greater than |S)|.

EXAMPLE 7.8. The Bicyclic semigroup B has M’ and M. We know

B(z.y)={(p.a) | ¢ >y}
and so
B(z,y) € B(u,v) &y > v,
and inclusion is strict if and only if y > v. If we had an infinite chain

B(z1,y1) C B(z2,y2) C B(xs,y3) C ...
then we would have

Y1 >Y2 > Y3 > ...,

which is impossible in N.
Hence M* holds, dually M# holds.



40 VICTORIA GOULD

However, since 0 < 1 < 2 < ... we have

B(0,0) D B(1,1) D B(2,2) D ...
so there exists infinite descending chains. Hence B does not have M, or Mg.

EXAMPLE 7.9. Let M® = M°G; I; A; P) be a Rees Matrix Semigroup over a group G.
Then M° has My, Mp, M* and M%.

Proof. We show that the length of the strict chains is at most 2. Suppose aM® C SMP.
We could have @ = 0. If « # 0 then aM? # {0} so 8 # 0 and we have a = (i, g, \),
B = (j,h,n) and o = [ for some v = (¢, k,v). Then

<i7 g, )‘> = (.77 h’7 M)(A k7 V) = (ju hpugk, V)'
This gives us that i = j and so a R 8 and aM® = BMO.
Summarising, 0M° C aM? for all non-zero o. But if o # 0 and aM® C SMY, then
aM® = M. Hence M° has My and M*: dually M° has M;, and M*. O

DEFINITION 7.10. A O-simple semigroup is completely 0-simple if it has Mgz and M.

By above, any Rees Matrix Semigroup over a group is completely 0-simple. Our aim is to
show that every completely 0-simple semigroup is isomorphic to a Rees Matrix Semigroup
over a group.

Theorem 7.11 (The D = J Theorem). Suppose

(%)

Then D = 7.

EXAMPLE 7.12.
(1) If S is a band, a = a® for all @ € S and so (x) holds.
(2) Let S be a semigroup having My and let a € S. Then
SlaD S'a? D 5% D . ...
Since S has M, we have that this sequence stabilizes, so there exists n € N such

that S'a™ = S'a™™ which means that a" £ o™, Similarly, if S has Mg, then for
every a € S there exists m € N such that a™ R a™*!.

Proof. of D =J Theorem
We know D C J. Let a,b € S with a J b. Then there exists z,y,u,v € S* with

Vae S, IneN witha" L a"™,
Va€ S, I3meN with a™ R a™™.

b= zay, a = ubv.
Then

b= way = a(ubv)y = (wu)b(vy) = (2u)bvy)? = - - = (zu)"boy)"
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for all n € N. By (%), there exists n with (zu)™ £ (zu)"*!. Therefore

b= (zu)"b(vy)" L (zu)"b(vy)" = zu((zu)"b(vy)") = zub.
Therefore b L xzub, so

Sty = S'zub C Stub C S'b.

So S'b = S'ub, which means that b £ ub. Dually, b R bv. Therefore a = ubv R ub L b. So
aDband J CD. Consequently, D = 7. O
As a consequence we have the following:
Corollary 7.13. If a semigroup S has My, and Mg, then it satisfies (x) and thus D = 7.
In the same vein we have:
Lemma 7.14. The Rectangular Property:
Let S satisfy (x). Then for all a,b € S we have

(i) a J ab< aDab< aR ab,

(ii)) b J ab < b D ab < b L ab.

Proof. We prove (i), (ii) being dual. Now,

aJ ab< aDab

as D= J. Clearly if a R ab then a D ab; as R C D.
Conversely, If a J ab then there exists z,y € S with

a = zaby = xa(by) = z"a(by)"
for all n. Pick n with (by)™ R (by)" ™. Then

a=z"a(by)"” R 2"a(by)"*" = 2"a(by)"by = aby.
Now
aS' = abyS' C abS!' C aS'.
Hence aS' = abS"' and a R ab. O

7.1. Completely 0-simple semigroups

Let S have a 0. Recall that S is 0-simple if and only if 0 (properly, {0}) and S are the
only ideals and S? # 0. If in addition S has My and M, then S is completely 0-simple.

Lemma 7.15. [0-Simple Lemma/ Let S have a 0 and S* # 0. Then the following are
equivalent:
(i) S is 0-simple,
(ii) SaS =S for alla € S\ {0},
(iii) S'aSt =S for alla € S\ {0},
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(iv) the J-classes are {0} and S\ {0}.
Proof. (i) < (iii) < (iv) is a standard exercise.
(ii) = (iii): Let a € S\ {0}. Then
S =SaS C S'aS* C S
and therefore S = S'aS!.
(i) = (ii): Since S? # 0 and S? is an ideal, then S? = S. Therefore

SP=852=5=5#0.
Let I ={x € S| SxS =0} Clearly 0 € I and hence I # (). If z € [ and s € S, then

0C SxsS C SzS=0.
Therefore SzsS = 0 and so s € I. Dually sz € I; therefore I is an ideal. If I = S, then

S? = SIS,
= U SxS,
zel
= 0.
This is a contradiction, therefore I # S. Hence I = 0. Let a € S\ {0}. Then SaS is an
ideal and as a ¢ I we have SaS # 0. Hence SaS = S. O

Corollary 7.16. Let S be completely 0-simple. Then S contains a non-zero idempotent.
Proof. Let a € S\ {0}. Then SaS = S, therefore there exists a u,v € S with a = uav. So,

a = uav = vlav® = - = v av"”

for all n. Hence u™ # 0 for all n € N. Pick n, m with u" R u"*!, ™ £ u™!. Notice

un+1 R un+2

as R is a left congruence. Similarly,

un+2 R un+3
we deduce that ™ R «"* for all ¢ > 0. Similarly u™ £ ™" for all ¢ > 0. Let s =
max{m,n}. Then u® R u?*, u® L u* so u® H u** = (u®)%. Hence by Corollary 5.7, u® lies
in a subgroup. Therefore u® H e for some idempotent e. As u® # 0 and Hy = {0}, we have

e # 0. 0

Theorem 7.17 (Rees’ Theorem - 1941). Let S be a semigroup with zero. Then S is
completely 0-simple < S is isomorphic to a Rees Matriz Semigroup over a group.
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Proof. If S = M°(G; I; A; P) where G is a group, we know M9 is completely 0-simple (by
Proposition 7.3, Rees Matrix facts and Example 7.9), hence S is completely O-simple.

Conversely, suppose that S is completely O-simple. By the D = J Theorem, D = J (as
S has Mg and My, it must have (x)). As S is O-simple, the D = J-classes are {0} and
S\ {0}. Let D =S\ {0}. By Corollary 7.16, D contains an idempotent e = €.

Let {R; | i € I} be the set of R-classes in D (so I indexes the non-zero R-classes). Let
{Lx | A € A} be the set of L-classes in D (so A indexes the non-zero L-classes).

Denote the H-class R;N Ly by H;y. Since D contains an idempotent e, D contains the sub-
group H, (Maximum Subgroup Theorem or Green’s Theorem). Without loss of generality
we can assume that both I and A contain a special symbol 1, and we can also assume that
e € Hy,. Put G = Hyq, which is a group.

For each A € A let us choose and fix an arbitrary g, € Hi, (take ¢; = e).
Similarly, for each i € I let r; € H;; (take 1 = e).
Notice that

e=¢e e R qn = eqn =
Thus, by Green’s Lemma,

Por: He = G — Hiy,
is a bijection. Now,
e=eXelr,=rie=r.

By the dual of Green’s Lemma

)‘7’1 : Hl)\ — Hi)\

is a bijection. Therefore for any i € I, A € A we have

P Ar + G — Hiy
is a bijection.
NOTE. By the definition of p,, and A,,, we have that
APgy Ar; = Ti0Gx
for every a € G,7 € [ and A € A.

So, each element of H;, has a unique expression as r;aqy where a € G. Hence the mapping

0:(IxGxA)U{0}—S
given by 00 = 0, (i,a, \)0 = r;aq, is a bijection.
Put py; = quri- If py; # 0 then gyr; D gy D r;. By the rectangular property

eRopRaori Lr; Le
so that ¢ r; € G.
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Ly Ly
Ri|a ax
R | 7 Tiagx

So, P = (pxi) = (qur;) is a A x [ matrix over G U {0}. For any ¢ € I, by the 0O-simple
Lemma (Lemma 7.15) we have Sr;S = S. So, ur;v # 0 for some u,v € S. Say, u = rybgy
for some k, A and b. Then

pri = qri # 0
as rpbgariv # 0. Therefore every column of P has a non-zero entry. Dually for rows.
Therefore

M = M°(G;I; A; P)

is a Rees Matrix Semigroup over a group G. For any x € M° (x = 0 or x is a triple) then

(0)0 =060 = 0 = 0(z0) = 00x0.
Also, (20)0 = z000. For (i,a, ), (k,b,u) € M° we have

06 if =0
((4,a,\)(k, b, 1)) =3 if pax =0,

(1, apyib, )0 if pyr # 0,
riapaebqu i pxe # 0,

= 1iapxrbqy,

= ryaqxribq,,

_— ('L, a,, )\)6’([{:’ b’ M)e

Therefore 0 is a morphism, and since it is bijective, it is an isomorphism. ]

8. REGULAR SEMIGROUPS

DEFINITION 8.1. We say that a € S is regular if a = axa for some x € S. The semigroup
S is regular if every a € S is regular.
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Examples of regular semigroups: any band, Rees matrix semigroups, groups.

Examples of non-regular semigroups: (N, +), (Z, )

Nontrivial null (or zero) semigroups i.e. S = X U {0} with X # () and all products are 0.
Note that (N, +) has no regular element.

DEFINITION 8.2. An element a’ € S is an inverse of a if
a=adaand a’ = d'ad’.

We denote by V(a) the set of inverses of a.

If G is a group then V(a) = {a™'} for all a € G.

CAUTION: Inverses need not be unique. For example, in a rectangular band T'= 1 x A,

(i, 3)(k, €)(i, 5) = (i, 5)
(k, 0)(@, 3)(k, £) = (k, )
for any (7, 7) and (k,¢). So every element is an inverse of every other element.

Lemma 8.3. Ifa € S, then a is reqular < V(a) # 0.

Proof. It V(a) # 0, clearly a is regular. Conversely suppose that a is regular. Then there
exists x € S with a = axa. Put a’ = xax. Then

ad'a = a(rax)a = (axa)ra = ara = a,
and
d'ad’ = (vax)a(razr) = x(axa)(raz)
= za(rar) = z(aza)r = xaxr = d'.

So a' € V(a). O

NoOTE. If ¢ = axa then

(az)? = (az)(az) = (aza)z = ax
so ax € F(S) and dually, xa € E(S). Moreover

a=ara ar=ar=a'R azr,

a=azra xa=2za= al xa.

DEFINITION 8.4. S is inverse if |V (a)| =1 for all @ € S, i.e. every element has a unique
inverse.

EXAMPLE 8.5.
(1) Groups are inverse; V(a) = {a"'}.
(2) A rectangular band T is regular; but (as every element of 7" is an inverse of every
other element) 7T is not inverse (unless 7' is trivial).
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Ta

FIGURE 5. The egg box diagram of D,,.

(3) If S is a band then S is regular as e = €® for all e € S; S need not be inverse.

(4) B is regular because (a,b) = (a,b)(b,a)(a,b) for all (a,b) € B. Furthermore, B is
inverse - see later.

(5) MY is regular (see “Proposition 7.3, Rees Matrix Facts”).

(6) Tx is regular (see Exercises).

(7) (N, +) is not regular as, for example 1 # 1+ a + 1 for any a € N.

Theorem 8.6. [Inverse Semigroup Theorem/] A semigroup S is inverse iff S is reqular and
E(S) is a semilattice (i.e. ef = fe for alle, f € E(S)).

Proof. (<) Let a € S. As S isregular, a has an inverse by Lemma 8.3. Suppose x,y € V(a).
Then

a = azra T = rax a = aya Yy = yay,

1 2) 3) (4)
so ax,za,ay,ya € E(S). This gives us that

x 5 rax 5 zr(aya)r = (za)(ya)x = (ya)(za)r = y(aza)z

= yar = aya\|xr = Qa ar) = axr)la = axa = yay = vy.
T (3)y(y) y(ay)(ar) = y(ax)(ay) = y( )y(l)yy(4)y

So |V(a)] =1 and S is inverse.

Conversely, suppose S is inverse. Let a’ denote the unique inverse of a € S.
Certainly S is regular. Let e € E(S). Then e is an inverse of e, because e = eee and
e = eee, so the inverse of any idempotent e is just itself: ¢ = e.

Let e, f € E(S). Let = (ef)’. Consider the element fxe. Then

(fwe)? = (fze)(fre) = f(zefa)e = fe
as x = (ef)’. So fre € E(S) and therefore fre = (fxe)'.
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We want to show that fze and ef are mutually inverse:
ef(fre)ef = ef?ze’f = efxef = ef,
(fze)ef(fxe) = fre fPre = f(xefr)e = fxe.

Therefore we have ef = (fze)' = fre € E(S), so the product of any two idempotents is
an idempotent. Therefore E(S) is a band. Let e, f € E(S). Then

ef(fe)ef =ef’e’f =efef =ef
and fe(ef)fe = fe similarly. Therefore we have ef = (fe)' = fe. O

EXAMPLE 8.7.
(1) Let B be the Bicyclic Semigroup. Then

E(B) = {(a,a) |a € NO},

and

(a,a)(b,b) = (t,t) = (b,b)(a,a)

where t = max{a,b}. So F(B) is commutative, and since B is regular, we have
that it is inverse. Note that (a,b)’ = (b, a).

(2) Tx — we know Ty is regular. For |X| > 2 let z,y € X with x # y we have
€y ¢y € E(Tx). Then c,cy # ¢ e, so Tx is not inverse.

(3) If S is a band, then S is regular. Furthermore we have

S is inverse < ef = fe for all e, f € E(9),
Sef=feforalle, fes,

& S is a semilattice.
(4) Let M® = M(G; I, A; P). If pyi, pui are both non-zero, then

(i,p55 ), (4,9, 1) € B(M°)
and
(Zup;zl7 )‘)<Z7p;217 :u) = (Zup;zl7 M)<Z7p)_\zl7 )‘>

if and only if A = p. So for M° to be inverse, for every i € I there must be ezactly
one A € A with py; # 0; dually for each k € A there exists exactly one j € I with
DPxj 7é 0.

It is an Ezercise to check that, conversely, if the above condition holds then AM°
is inverse and isomorphic to a Brandt semigroup.
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8.1. Green’s Theory for Regular D-classes

If e € E(S) then H, is a subgroup of S (by the Maximal Subgroup Theorem or Green’s
Theorem). If e D f then |H.| = |Hy| (by the Corollary to Green’s Lemmas). We will show
that He = Hf.
Lemma 8.8. We have that
(i) If a = axa then ax,za € E(S) and ax R a L xa,
(ii)) IfbR f € E(S), then b is reqular;
(iii) If b L f € E(S), then b is regular.
Proof.
(i) We have already proven this.
(ii) If bR f then fb=0b. Also, f = bs for some s € S*. Therefore b = fb = bsb and it
follows that b is regular.
(iii) Dual to (ii).
0

From Lemma 8.8 an element a € S is regular if and only if it is R-related to an idempotent.
Dually, a € S is regular if and only if it is L-related to an idempotent.

Lemma 8.9 (Regular D-class Lemma). If a D b then if a is reqular, so is b.
Proof. Let a be regular with a D b . Then a R ¢ L b for some c € S.

FIGURE 6. The egg box diagram of D.

There exists e = €? with e R a R ¢ by (i) above. By (ii), ¢ is regular. By (i), ¢ £ f = f>.
By (iii), b is regular. O

Corollary 8.10. [Corollary to Green’s Lemmas] Let e, f € E(S) with e D f. Then
H, = H.

Proof. Suppose e, f € E(S) and e D f. There exists a € S with e R a L f.
As e R a there exists s € S! with e = as and ea = a. So a = asa. Put x = fse. Then
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ar = afse = ase = e* = e

and so a = ea = axa. Since a L f there exists t € S! with ta = f. Then

xa = fsea = fsa = tasa = ta = f.
Also

raxr = fr = ffse = fse =x.
So we have
e=ax a = ara r = zax f=za.
We have e R a and ea = a therefore p, : H. — H, is a bijection. From a £ f and za = f
we have \, : H, — Hy is a bijection. Hence p,\, : H. — Hj is a bijection.
So we have the diagram

Pa
/\
pd S
€ a
Az

Let h,k € H.. Then

h(pare)k(pare) = (zha)(zka) = zh(az)ka =
zheka = xhka = hk(p, ;).
S0, paAz is an isomorphism and H, = Hy. O
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It is worth noting that the previous proof also allows us to locate the inverses of a regular

element.

Lemma 8.11. Ifa € S is regular, and x € V' (a), then there ezist idempotents e = ax and

f = xa such that

aReLlx al fRuz.
Conversely, if a € S and e, f are idempotents such that

aRe, aLlf,
then there ezists x € V(a) such that ax = e and za = f (and then
elLx, fRz)
a e=ax
f=xa x

Proof. For the first part, one just has to define e = ax and f = xa. As we have seen, e
and f are idempotents satisfying the required properties.
The converse follows directly from the proof of Corollary 8.10 (Corollary to Green’s Lem-

mas).

EXAMPLE &.12.

O

(1) For M° = M%G; I; A; P) we know that M°\ {0} is a D-class. We have H;y =
{(i,9,\) | g € G}. If px; # 0, Hyy is a group H-class. If pxi, p,; # 0 then H;y = Hj,

(already seen directly).

(2) The Bicyclic Monoid B is bisimple with E(B) =

{(a, a)}. Clearly Hyq) = Hpp).-

(3) In 7, then a D 8 & p(a) = p(B) where p(a) = |Im(c)|.

{(a, a) | a € NO} and H,q =

By Corollary 8.10 , if

e, p € E(T,) and p(e) = p(p) = m say, then H. = H,. In fact H. = H, = S,,.



