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Motivation

Chomsky-Schiitzenberger Theorem (1963):
Let L be a language. Then the following are equivalent:

» L is context-free;
» L is accepted by a polycyclic monoid automaton of rank 2;

» L is accepted by a free group automaton of rank 2.

Greibach (1968): Let L be a language. Then the following are
equivalent:

» L is accepted by a bicyclic monoid automaton;

» L is accepted by a partially-blind one-counter automaton.



Motivation

Aims:

» To understand these theorems from a structure theoretical
point of view.

» To introduce the notion of a partially blind group automaton
with respect to a submonoid.

» To describe language classes accepted by automata over
bisimple F-inverse monoids with the help of partially blind
automata over their maximal group homomorphic image with
respect to a submonoid.

» To describe language classes accepted by automata over
bisimple strongly F*-inverse monoids with the help of partially
blind automata over their universal group homomorphic image
with respect to a submonoid.



Notation

finite set of symbols called an alphabet.

. set of finite sequences of symbols elements of which

are called words.

. language over Y.

. number of occurrences of the letter a in the word w.



Notation

A

W(M, a):

Inverse monoid

Natural partial order on M:

s<t = s=et, ec E(M).

: Minimum group congruence

sot <= du € M such that u < s and u < t.

Let A be a choice of generators for a monoid M with
a : A* — M. The identity language for M with
respect to A is

W(M,a) ={w e A" | a(w) = 1}.



E-unitary and F-inverse monoids
An inverse monoid M is E-unitary if

e<s, ec E(M) = se E(M).

It is well known that

M is E-unitary <= Kero = E(M).

An inverse monoid M is F-inverse if each o-class contains a unique
maximal element.



Strongly E*-unitary monoids

Szendrei:
An inverse monoid M is E*-unitary if and only if

e<s, 0#ec E(M) = sec E(M).

Bullman-Fleming, Fountain, Gould [1999]:
An inverse monoid M with zero is strongly E*-unitary if and only if
there exists a function § : S — G such that

» s0=0 <— s=0;
»sh=1 < sec E(M),
> if st # 0, then (st)f = sOt6.

We call 6 an O-restricted idempotent-pure pre-homomorphism.



Strongly E*-unitary monoids

Bullman-Fleming, Fountain, Gould [1999]:
Let S be an inverse semigroup with zero. Then S is strongly
E*-unitary if and only if S = M(G,X,)).



Strongly F*-inverse monoids

An inverse monoid M is F*-inverse if for each 0 £ s € M, there
exists a unique element m € M such that s < m.

An inverse monoid M is strongly F*-inverse if M is F*-inverse and
strongly E*-unitary.



Finite state automata

Definition
A Finite State Automaton A is a tuple A = (Q, X, 9, o, F), where
> @ is a finite set of states:
» 3 is an alphabet;
» 0:Q x (XU {e}) = P(Q) transition relation;
> go € Q is the initial state;
» [ C Q is the set of final states.



Finite state automata

We can think of a FSA as a finite directed graph, where
> the set of vertices @ are the states of the automaton;
> qo is a distinguished vertex called an initial state;
» F C Q@ terminal states;

> edges are labelled by elements of X U {e}.

A word w € £* is accepted by the automaton A if there exists a
path from the initial vertex to a final vertex whose label is w. The
language accepted by A is

L(A) ={w € ¥ | w is accepted by A}.



Finite state automata

Example

Consider A = ({qo,q1},{a, b}, 9, qo, {q1}):
a,b
a,b

Then

L(A) = {w e {a,b}* | |w| = 2k + 1}.



Extended finite automata - Valence automata -
M-automata

A extended finite automaton over M is a finite state automaton
Apn whose edges are labelled by elements of X* x M.

A word is accepted by Ay, if there exists a path from the initial
vertex to a final vertex, whose label is (w,1).

The language L4(M) in ©* accepted by Ay, consists of all words
w € ¥* that are accepted by Ay,.

We let £(M) denote the family of languages that are accepted by
M-automata.



M-automata

Example
Let M=Z=<a>, ¥={x,y}and Ay :

(x,a)

(e,1)

start —{ 4o

La(M) = {x"y" | n > 0}.



Partially blind one-counter automata: Greibach 1968

Consider a path p in a Z-automaton:

Gaa) /N Garo2) . » (xm)
do a1
G N

l2(p,~):al—|—az—|—...+a,-, (1§i§n)

Let

A word is accepted by a partially blind automaton, if there exists a
path p from the initial vertex to a final vertex whose label is (w,0)
and is such that lo(p;) > 0 forall 1 </ < |p|.

In case the counter would go negative, no further transitions are
defined and the machine is blocked.



Partially blind one-counter automata: Greibach 1968

We will denote the family of languages accepted by a partially
blind one-counter automaton A by L(Z|ZT).



General results

Proposition[Kambites 2009]
Let M and N be monoids and assume that M is generated by a
finite set X. Then W(M, X) € L(N) if and only if L(N) C L(M).

Proposition[Render, Kambites 2010]
For every monoid M there is a simple or O-simple monoid N such
that £L(M) = L(N).

Proposition[Render, Kambites 2010]
Let M be a monoid. Then either £L(M) = L(G), where G is a
group or L£(M) contains the partially blind one-counter languages.



Examples

monoid M

L(M)

finite monoid

bicyclic monoid P
polycylic monoid P,, n > 2
free group F,, n > 2

Zn

regular

partially blind languages
context free languages
context free languages

blind n-counter languages



Bicyclic and polycyclic monoids

Bicylic monoid: P; | Polycyclic monoid: P,

bisimple 0-bisimple
F-inverse strongly F*-inverse
oc:P1—>7Z ¢ Py — F20 suitable homomorphism

L(P1) = L(Z|ZT) | L(P2) = L(F)

Kambites: “The polycyclic monoid automaton apparently makes
fundamental use of its ability to fail, by reaching a zero
configuration of the register monoid. Since the free group has no
zero, the free group automaton seems to have no such capability,
and appears to be blind in a much more fundamental way.”



Partially blind automata over G with respect to M

Let G be a group and M be a submonoid of G.
A partially blind automaton A over G with respect to M is a
G-automaton in which a word w is accepted if

> there exists a path p from the initial vertex to a final vertex,

whose label is (w, 1)

> lo(pi) € Mforall 1 <i<|p|.

We let
La(GIM)

denote the language accepted by such an automaton.

We let £(G|M) denote the family of languages accepted by
partially blind automata over G with respect to M.



Example: Bicyclic monoid

The bicyclic monoid is given by the monoid presentation

Pi=<ab:ab=1>.

The identity language of P; is:

W(P1) = {w € {a, b}t : |w|s = |wl|p, if w = uv then |ul, > |u|p}.



Bicyclic monoid: P-representation
Let G=7Z, X=Zand Y =7Z". Let oy : ex — €kim-

€6

€5

(071 €4

€3

€2

€1

1=¢g €0
ba=-e_1 e_1
b%a? =e_y e 2
b3ad =e_3 €-3

b*a* =e_4

b*a® = e_; e_s
pPa® = e ¢ €6




Bicyclic monoid: P-representation

P(Z,X,Y)={(e,g) €V x G | € ecV}

p:P1— P(Z,X,Y); a— (ey,1) b— (e—1,-1)



Bicyclic monoid: Identity language

Observation: Let
w = (fb, ho)(fl, hl) e (fn, hn),

where (f;, h;) € {(eo, 1), (e—1,—1)}.
Then

w=(e,0) < fh=e
ho+...+hn:0
ho+...+heZt (1<i<n-1)



Bicyclic monoid: L£(Py) = L(Z|Z™)

Replace each arrow

Q (xi,(fi,hi)) Q
ri riy1

with

and vica versa.



Bisimple E-unitary inverse semigroups

Theorem [Clifford,Reilly,McAlister 1968]
Let S be an E-unitary bisimple inverse monoid and R be the
R-class of 1. Then

» S=RIR;
» R is a cancellative submonoid;

» principal left-ideals of R form a semilattice under intersection;
» R can be embedded in S/o.



Bisimple E-unitary inverse semigroups

Theorem [McAlister 1974]
Let S be an E-unitary bisimple inverse monoid and R be the
R-class of 1. Let G = S/o. Let

X={Rg|geG} and Y={Ra|acR}
and define a transitive action of G on ) by "Rg = Rgh™!. Let
P(G,X,Y) ={(Ra,g) €Y x G | Rag € V}

with
(Ra, g)(Rb, h) = (RanéRb, gh).
Then
S=P(G,X,Y); a ‘b (Raa lb).



Bisimple E-unitary inverse semigroups

Observation:

(R,1) = (Ra1,g1)(Ra2, &) ... (Ran, gn) =1 = a1
l=g1...8n
g1...86 €R
(1<i<n)

Conjecture [P Davidson, ED]: Let S is a bisimple F-inverse
semigroup and let R denote the R-class of 1. Then
L(S) = L(S/c|R/0).



Polycyclic monoids

The polycyclic monoid of rank 2 is defined by the monoid
presentation

Py=<abal,btlaat=bbt=1abt=bat=0fori#j>.

Properties of P;:
» combinatorial;
> O-bisimple;
» strongly F*-unitary;
> 0: P, — F20 idempotent pure pre-homomorphism;
» 0:u v red(umtv), 0 0.

We let © = {a, b}.



Polycyclic monoid: identity language

Proposition [Schiitzenberger, Chomsky, Corson]
For all nonempty word w € A*, if w € W(P), then either

» w = uv, where u,v € W\ {0}, or
» w=aWal or w=bWb1

Note: W is the language of properly matched arrangements of
parenthesis and brackets:

a=( a ! =) b= b1 =]

(restricted Dyck language)



Polycyclic monoids: P*-representation

PN
VANERVAN
AN AN WA

[NERENEN]

+{0}

V:



Polycyclic monoids: P*-representation

'X:
LW 2
/z\b / o
= *
)(zy Z\‘ T
. Z‘“_ . 2‘
/\ / ‘/\Z‘L"Lla
\ + /"
Soe MBS T
\ AN A
4



Polycyclic monoids: P*-representation

Action of G on X:
8y *u=Y*ug !



Polycyclic monoids: P*-representation

McAlister O-triple:
(F2, X, V)

» X is a partially ordered set;

v

Y is a subsemilattice and order ideal of X;
GY =X,
gynNY#(forall g €G;

X has a smallest element: (.

P(G, X, YV)={(Ag)eYxG:Age )}

v

v

v



Polycyclic monoids: P*-representation

o) :P2 — Po(G,X,y) = P(G,X,y)/({@} X G)

v v (Tfu,utv), 00

ars (I%,2), b (Z*,b)

ale (Xfa,al), bl (b, b7Y)



Polycyclic monoid: Identity language

Observation: Let
w = (fb, ho)(fl, hl) e (fn, hn),

where (f;, h;) € {(X*, a), (X%, b), (X*a,a 1), (Z*b, b~ 1)}.
Then

w=(X"1) <= fob=1"
hohy ... hy, =1
ho...hieX* (1<i<n—1)



Polycylic monoid: L£(P,) = L(F,|X¥)

Replace each arrow

Q (xi,(xX*aj,h;)) Q
ri riy1

with

and vica versa.



0-bisimple strongly E*-unitary inverse semigroups

Theorem [Lawson 1999]
Let S be a 0-bisimple strongly E*-unitary inverse monoid and R be
the R-class of 1.Then

» S*=R1R;
» R is a cancellative submonoid:;

» principal left-ideals of R are either disjoint or intersect in a
principal left ideal,

> R can be embedded in a group.



0-bisimple strongly E*-unitary inverse semigroups

Theorem [Jiang]

Let M be an 0-bisimple strongly E*-unitary inverse monoid and R
be the R-class of 1. Let § : M — G° be a suitable homomorphism.
Let

Y = {Ra|ae RYU{0} and X={Ag|Ae Y, ge G}

and define a transitive action of G on X by "Ag = Agh™!. Then
(G,X,)) is a McAlister O-triple and we can construct

P(G,X,Y) ={(Ra,g) € ¥ x G | Rag € J'}

with
(Ra,g)(Rb, h) = (RanéRb, gh).

Then
S= PO(Gy'X‘vy)y a_lb — (I?a7 a_lb).



0-bisimple strongly E*-unitary inverse semigroups

Observation:

(R,1) = (Ra1,g1)(Ra2, &) ... (Ran, gn) =1 = a1
l=g1...8n
g1...86 €R
(1<i<n)

Conjecture [P Davidson, ED]: Let S be a 0-bisimple strongly
F*-inverse monoid and let R denote the R-class of 1. Let G be a
fundamental group of M. Then L(S) = L(G|R).



Semidirect products

Observation: Let Y be a semilattice and G be a group acting on
Y on the left by automorphisms. Assume that S=Y x G is
finitely generated. Then, for any maximal element e € Y, we have
that £(S,{e}) = L(G).



Further questions

v

Understand the relationship between the language classes
L(G) and L(G|M).
Understand properties of languages in L(G|M).

Understand the relationship between £(S) and £(S/0), where
S is an E-unitary or strongly E*-unitary inverse semigroup.

Understand if £(S) can be described in terms of £(S/o|M)
for arbitrary E-unitary inverse semigroups.

v

v

v



Thank you for listening!
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