KNOT SEMIGROUPS

A semigroup is called cancellative if it satisfies two conditions: if \(xz = yz \) then \(x = y \), and if \(xy = xz \) then \(y = z \). For each given knot diagram \(D \), we define a cancellative semigroup which we call the \textit{knot semigroup of} \(D \) and denote by \(KD \); the construction has been introduced and studied in [1]. By an \textit{arc} we mean a continuous line on a knot diagram from one undercrossing to another undercrossing. For example, consider the knot diagram \(T \) on the figure; it has three arcs, denoted by \(a \), \(b \) and \(c \). To denote a crossing on a knot diagram we shall use notation \(x \leftarrow y \rightarrow z \), where \(x \) and \(z \) are the two arcs terminating at the crossing and \(y \) is the arc passing over the crossing. For example, the crossings on diagram \(T \) are \(b \leftarrow a \rightarrow c \), \(b \leftarrow a \rightarrow a \) and \(c \leftarrow a \rightarrow a \). To define the knot semigroup of a diagram \(D \), assume that each arc is denoted by a letter. Then at every crossing \(x \leftarrow y \rightarrow z \), ‘read’ two defining relations \(xy = yz \) and \(yx = zy \). The cancellative semigroup generated by the arc letters with these defining relations is the knot semigroup \(KD \) of \(D \). For example, on diagram \(T \) we can read relations \(ba = ac \) and \(ab = ca \) at the left-top crossing, relations \(ba = aa \) and \(ab = aa \) at the right-top crossing and relations \(ca = aa \) and \(ac = aa \) at the bottom crossing. Using these relations, one can deduce equalities of words in \(KT \). In particular, from \(aa = ba = ca \), using cancellation, one can deduce \(a = b = c \), that is, all generators are equal to one another; in other words, \(KT \) is an infinite cyclic semigroup.

Currently I work (with several collaborators) on several fascinating questions related to knot semigroups, including the following.

(1) We proved that a braid is trivial if and only if certain conditions are satisfied in its knot semigroup. We have nearly finished proving that a knot diagram represents a trivial knot if and only if its knot semigroup is infinite cyclic (as in the example above). If a knot diagram is a trivial knot, the proof of this fact can be presented visually as a sequence of elegant tangle diagrams.

(2) We are in the process of clarifying how the knot semigroup of a knot diagram is related to other algebras defined by knot diagrams, including the \textit{ki}, the \textit{quandle} and several types of groups (especially the \(\pi \)-\textit{orbifold group}).

(3) Rational knots are an important ‘nice’ class of knots. We are working on describing knot semigroups of alternating diagrams of rational knots and, in particular, finding a simple algebraic proof of the flype conjecture for rational knots (note that knot semigroups are not knot invariants: a knot semigroup of a knot diagram expresses certain properties of both the knot and the specific diagram of the knot).

References