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Famous semigroups

Let X be a countable set.

Bin(X )

Part(X )

Inv(X )Self(X )

Epi(X ) Mon(X )

Sym(X )

If X is finite, then Epi(X ) = Mon(X ) = Sym(X ).
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Relational structures

Let M be a set. A relational signature σ contains a set {R̄i : i ∈ I} of

relation symbols indexed by some countable set I , where each R̄i of these

symbols is assigned an arity ni ∈ N. In addition, σ contains variables

ranging over M and logical connectives (including equality), quantifiers

and punctuation.

A σ-structure M is a set M (called the domain) together with subsets

RMi ⊆ Mni interpreting each relation R̄i ∈ σ. If x̄ is an ni -tuple of M,

say that R̄i (x̄) holds in M if and only if x̄ ∈ RMi . (We often drop the bar

on R̄i ∈ σ.)

A function α :M→N between two σ-structures is a homomorphism if

for all x̄ ∈ RMi then x̄α ∈ RNi . A function β :M→N is an embedding

when x̄ ∈ RMi if and only if x̄β ∈ RNi .
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Distinguishing relational structures

Example 1

Let σ be the signature containing a single binary relation R. Then a

σ-structure M could be a graph, a digraph, a poset... (not very useful!)

What differentiates any two of these structures is the rules that they

satisfy. A σ-sentence is a string of characters from σ with no

unquantified variables. Say that a σ-structure models a σ-sentence φ (or

set of σ-sentences) if the sentence is true in M.

Example 2

Let σ be as in Example 1. Suppose that

φ = (∀x , y)(¬R(x , x) ∧ (R(x , y)→ R(y , x))).

Any model of φ is a simple, undirected graph.
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Key difference between sets and relational structures

Let X be a countable set. A bog-standard transformation f : X → X

could do one of the following two things:

send two points x , y ∈ X to the same point xf = yf in X .

omit a point from the image; there may exist x ∈ X such that x /∈ Xf .

The properties of the function are dependent on these; for instance, if

there is no such pair x 6= y where xf = yf , then f is injective.

As every endomorphism α :M→M is a function, this behaviour can also

be observed in this setting. However, there is also the possibility of a

further type of behaviour:

non-relations of M changed to relations; so x̄ /∈ RMi but x̄α ∈ RMi .

This difference expands the range of potential monoids associated to M.
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Example behaviour

Example 3

Let M be a graph with vertex set Z and adjacencies i ∼ j if and only if

i ≤ 0 and j = i − 1.

−3 −2 −1 0 1 2 3

The function α :M→M defined by iα = i − 2 for all i ∈ Z is an

endomorphism, as every edge is preserved. Furthermore, the two nonedges

(0, 1) and (1, 2) are changed to edges.

α is a bijection; but the inverse function α−1 :M→M is not an

endomorphism, as the edge (−1, 0) becomes the nonedge (1, 2).
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Picture for relational structures

Part(M)

Inj(M)End(M)

Inv(M)Epi(M) Mon(M)

Bi(M) Emb(M)

Aut(M)

partial map monoids

endomorphism monoids

intermediate monoids

If M finite, then Mon(M) = Epi(M) = Bi(M) = Emb(M) = Aut(M).

This is boring, so assume M is countably infinite.
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Examples (1/3)

Example 4

(1) Let M = (Q, <). Then every partial homomorphism preserves

non-relations (as there are none) so is a partial isomorphism. Similarly, any

endomorphism is an embedding. So the picture looks like this:

Part(M) = Inj(M) = Inv(M)

End(M) = Mon(M) = Emb(M)

Epi(M) = Bi(M) = Aut(M)
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Examples (2/3)

Example 5

(2) Let M = D, the generic digraph without 2-cycles. Then every

endomorphism must be injective as to avoid the creation of 2-cycles.

Partial homomorphisms need not be injective, however.

Part(D)

Inj(D)

End(D) = Mon(D) Inv(D)

Epi(D) = Bi(D) Emb(D)

Aut(D)
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Examples (3/3)

Example 6

(3) Let M = R, the random graph. There exist examples that distinguish

each of the aforementioned monoids from each other; so for R, the picture

looks like this:

Part(R)

Inj(R)End(R)

Inv(R)Epi(R) Mon(R)

Bi(R) Emb(R)

Aut(R)
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Initial case: Mon(X )

Mon(X ) is right-cancellative.

Definition 7

Let α ∈ Mon(X ). Define the defect of α to be the set D(α) = X r Xα.

Write d(α) = |D(α)|, and say that d(α) =∞ if X r Xα is infinite.

Here, D(αβ) = D(β) ∪ D(α)β and this is a disjoint union. Following this,

Mon(X ) is not regular, and its only idempotent is the identity. The set

Ik = {α ∈ Mon(X ) : d(α) ≥ k} is an ideal of X .

Proposition 8

Let α, β ∈ Mon(X ). Then:

(1) αL β if and only if D(α) = D(β);

(2) αRβ if and only if d(α) = d(β), and hence L = H ;

(3) αJ β if and only if d(α) = d(β), and hence R = D = J .
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First pieces of semigroup theory of Bi(M)

Every bimorphism of M is a permutation of the domain M. So Bi(M) ≤
Sym(M) and therefore it is a group-embeddable monoid. This means that

we get lots of nice semigroup-theoretic properties for free...

Lemma 9

Bi(M) is a cancellative monoid.

The only idempotent of Bi(M) is the identity element e.

Bi(M) is regular if and only if Bi(M) = Aut(M). The only regular

elements of Bi(M) are automorphisms.

In addition, the group of units of Bi(M) is Aut(M).

Tom Coleman (St Andrews) York Semigroup 12 / 33



Green’s relations

Because these maps are bijective...

Proposition 10

Let α, β ∈ Bi(M).

If γ, δ ∈ Bi(M) are such that γα = β and δβ = α, the maps γ and δ

are automorphisms.

If γ, δ ∈ Bi(M) are such that αγ = β and βδ = α, the maps γ and δ

are automorphisms.

Suppose that αJ β, and α and β add in finitely many relations. For

all γ, δ, ε, ζ ∈ Bi(M) such that γαδ = β and εβζ = α, the maps

γ, δ, ε, ζ are automorphisms.

So L ,R and J depend on how and where α, β add in relations.
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Adding in relations

Understanding how relations are added by bimorphisms is crucial to the

study of Bi(M).

Definition 11

Define a σ-structure A(α) with domain M and relations

ā ∈ R
A(α)
i if and only if ā /∈ RMi and āα ∈ RMi

for all i ∈ I . We say that A(α) is the additional structure of α.

Define the support of α to be the set

S(α) = {x ∈ M : x ∈ ā and ā ∈ R
A(α)
i for some i ∈ I}.

Define the support structure of α to be the σ-structure M[S(α)]

induced on S(α) with relations from M.
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Example 12

Let M be the graph from Example 3.

−3 −2 −1 0 1 2 3

Set α ∈ Bi(M) to be the function iα = i − 2 for all i ∈ Z. Then A(α) is

the graph on Z with the only two adjacencies given by 0 ∼ 1 and 1 ∼ 2,

S(α) is the set {0, 1, 2}, and M[S(α)] is the null graph induced by M on

the vertex set S(α).

A(α)

−3 −2 −1 0 1 2 3

M[S(α)]

210
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Composition of bimorphisms

Let α, β be bimorphisms. How are relations added by αβ?

Lemma 13

Suppose that α, β ∈ Bi(M) and Ri ∈ σ. Define the set

R
A(β)
i α−1 =

{
x̄ ∈ Mni : x̄α ∈ R

A(β)
i

}
.

Then

R
A(αβ)
i = R

A(α)
i ∪ R

A(β)
i α−1

and this is a disjoint union.

Here R
A(α)
i is the set of relations added by α, and R

A(β)
i α−1 is the set of

relations added by β once α has been applied.
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Ideals

Bimorphisms do not delete relations; so this lemma gives a basis for an

ideal structure.

Define ei (α) = |RA(α)i |, writing ei (α) =∞ if R
A(α)
i is infinite.

Corollary 14

Let α, β ∈ Bi(M).

If both ei (α) and ei (β) are finite then ei (αβ) = ei (α) + ei (β).

ei (αβ) =∞ if and only if at least one of R
A(α)
i or R

A(β)
i is infinite.

Let k ∈ N ∪ {∞}. Define I (i , k) := {α ∈ Bi(M) : ei (α) ≥ k}.
Then, if non-empty, I (i , k) is an ideal of Bi(M).
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Green’s relations

Theorem 15

Let α, β ∈ Bi(M).

αL β if and only if S(α)α = S(β)β and the bimorphism αβ−1

induces an isomorphism from M[S(α)] to M[S(β)].

αRβ if and only if A(α) = A(β).

αDβ if and only if there exists a bimorphism η such that: ηβ−1

induces an isomorphism from M[S(α)] to M[S(β)], α−1η induces an

isomorphism from M[S(α)α] to M[S(β)β], and S(β)β = S(η)η.

If α is such that ei (α) is finite for all i ∈ I , then Dα = Jα.

Open problem

Characterise Green’s J -relation in Bi(M).
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Embeddings

Embeddings are monomorphisms α of M such that Mα ∼=M. Need to

measure how things are left out!

Definition 16

Let α ∈ Emb(M).

Define the defect of α to be the set O(α) = M \Mα, and write

o(α) = |O(α)|.
Define the omitted structure of α to be the set O(α) =M[O(α)].

Lemma 17

Let α, β ∈ Emb(M). Then O(αβ) = O(β) ∪ O(α)β and this is disjoint.
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Initial semigroup theory

Emb(M) ≤ Mon(M), and so is right cancellative.

Lemma 18

The only idempotent element in Emb(M) is the identity.

If Emb(M) 6= Aut(M), then Emb(M) is not regular.

The set Jk = {ε ∈ Emb(M) : o(ε) ≥ k}, if non-empty, is an ideal of

Emb(M) for k ∈ N ∪ {∞}.
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Green’s relations (1/2)

Due to right-cancellativity, we have:

Lemma 19

If γ, δ ∈ Emb(M) are such that γα = β and δβ = α, the maps γ and

δ are automorphisms.

Suppose that αJ β, and α and β omit finitely many vertices. For all

γ, δ, ε, ζ ∈ Emb(M) such that γαδ = β and εβζ = α, the maps

γ, δ, ε, ζ are automorphisms.

In addition:

Proposition 20

R = D in Emb(M).
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Green’s relations (2/2)

Theorem 21

Let α, β ∈ Emb(M). Then αL β if and only if O(α) = O(β).

If there exists an isomorphism between O(α) and O(β) that extends

to an automorphism of M, then αRβ. If o(α), o(β) are finite, then

the converse is true.

If o(α) <∞, then Lα = Hα and Rα = Dα = Jα.

Compare and contrast with Green’s relations in Mon(M)! Here’s a teaser:

Open problem

Characterise Green’s J -relation in Emb(M).
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Monomorphisms

A general monomorphism of M may change a non-relation to a relation

and leave out vertices. So we need to measure how things are left out and

added in. Thankfully, machinery for this already exists; we can extend

concepts used for bimorphisms and embeddings.

Lemma 22

The only idempotent element in Mon(M) is the identity.

If Mon(M) 6= Aut(M), then Mon(M) is not regular.

The sets I (i , k) := {α ∈ Bi(M) : ei (α) ≥ k} and Jk = {ε ∈
Mons(M) : o(ε) ≥ k}, if non-empty, are ideal of Emb(M) for i ∈ I

and k ∈ N ∪ {∞}.
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Green’s relations (1/2)

Proposition 23

If γ, δ ∈ Mon(M) are such that γα = β and δβ = α, the maps γ and

δ are automorphisms.

Suppose that αJ β, and α and β omit finitely many vertices. For all

γ, δ, ε, ζ ∈ Mon(M) such that γαδ = β and εβζ = α, the maps

γ, δ, ε, ζ are automorphisms.

Tom Coleman (St Andrews) York Semigroup 24 / 33



Green’s relations (2/2)

Theorem 24

Let α, β ∈ Mon(M). Then αL β if and only if O(α) = O(β),

S(α)α = S(β)β and M[S(α)] ∼=M[S(β)] via the isomorphism

induced by αβ−1.

Let α, β ∈ Mon(M). Then αRβ if and only if there exists a

monomorphism f : O(α)→ O(β) that extends to a monomorphism η

of M such that η|Mα = α−1β :Mα→Mβ; and there exists a

monomorphism g : O(β)→ O(α) that extends to a monomorphism θ

of M such that θ|Mβ = β−1α :Mβ →Mα.

Open problem

Characterise Green’s D and J -relation in Emb(M). In particular, does

R = D in Mon(M)?
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A reminder

For a countably infinite relational first-order structure M:

Inv(M) is the symmetric inverse monoid of M; the monoid of all

isomorphisms between substructures of M.

Part(M) is the partial homomorphism monoid of M.

Inj(M) is the partial monomorphism monoid of M.

Fun aside!

Much like Bi(M) ⊆ Sym(M) is a group-embeddable monoid that isn’t a

group, Inj(M) ⊆ Inv(M) is a inverse semigroup-embeddable monoid that

isn’t an inverse semigroup.
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Example 25: Composition in Part(R)

f

g

fg dom g ∩ im f

[dom g ∩ im f ]f ∗

[dom g ∩ im f ]g
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Where to begin...

Lemma 26

Let ε ∈ Inj(M). Then ε is an idempotent if and only if ε is the identity

map on some substructure of M.

This is decidedly not true in Part(M)!

But Lemma 26 does give us this!

Corollary 27

If M is countably infinite, then |Inv(M)| = |Inj(M)| = |Part(M)| = 2ℵ0 .

Now onto Green’s relations...
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Easy case: Inv(M)

Every partial isomorphism α of M has an inverse α−1. Therefore, Inv(M)

is an inverse semigroup, and hence is regular; therefore, it inherits Green’s

relations from Inv(M):

Corollary 28

Suppose α, β ∈ Inv(M). Then:

αL β if and only if im α = im β;

αRβ if and only if dom α = dom β;

αDβ if and only if M[im α] ∼=M[im β], and;

D = J .
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Harder case: Inj(M)

Inj(M) is decidedly not regular. As each partial monomorphism can be

assumed to be bijective (wlog), we can use the same machinery for partial

monomorphisms as we could for bimorphisms (with the caveat that we

restrict to the appropriate domain). Here’s the main technical result:

Lemma 29

Suppose that α, β ∈ Inj(M). Then

R
A(αβ)
i = (R

A(α)
i ∪ R

A(β)
i α−1) ∩ (dom αβ)n

and the first term of the intersection is a disjoint union.

Lemma 13 is a direct consequence of this result.
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Harder case: Inj(M)

Theorem 30

Suppose α, β ∈ Inj(M). Then:

αL β in Inj(M) if and only if im α = imβ, and the resulting map

αβ−1 is an isomorphism sending M[S(α)] to M[S(β)], and

S(α)α = S(β)β.

αRβ if and only if dom α = dom β and A(α) = A(β).

αDβ if and only if there exists a partial monomorphism η such that

dom α = dom η and im η = im β;

ηβ−1 induces an isomorphism from M[S(α)] to M[S(β)], and α−1η

induces an isomorphism from M[S(α)α] to M[S(β)β], and;

S(β)β = S(η)η.

Open question

J ?
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Hardest case: Part(M)

???? (Note: progress has been made in some areas.)
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Questions (?)

Investigate semigroup theory of Epi(M) in more detail. Studies in

this direction should presumably extend work of Bi(M) (due to the

example of D) could influence work on Part(M).

Links with constraint satisfaction?

Is there a structural analogue for the binary relation monoid?

J .
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