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A NOTION OF RANK FOR RIGHT CONGRUENCES
ON SEMIGROUPS

Victoria Gould
Department of Mathematics, University of York, Heslington, York, UK

We introduce a new notion of rank for a semigroup S. The rank is associated with
pairs �I� ��, where � is a right congruence and I is a �-saturated right ideal. We allow
I to be the empty set; in this case the rank of �∅� �� is the Cantor-Bendixson rank of
� in the lattice of right congruences of S, with respect to a topology we title the finite
type topology. If all pairs have rank, then we say that S is ranked. Our notion of
rank is intimately connected with chain conditions: every right Noetherian semigroup
is ranked, and every ranked inverse semigroup is weakly right Noetherian.

Our interest in ranked semigroups stems from the study of the class ���S of existentially
closed S-sets over a right coherent monoid S. It is known that for such S the set of
sentences in the language of S-sets that are true in every existentially closed S-set, that
is, the theory TS of ���S , has the model theoretic property of being stable. Moreover,
TS is superstable if and only if S is weakly right Noetherian. In the present article,
we show that TS satisfies the stronger property of being totally transcendental if and
only if S is ranked and weakly right Noetherian.

Key Words: Monoid; Morley rank; Noetherian; Semigroup; S-set; Total transcendence; Type.

1991 Mathematics Subject Classification: 20M30; 03C60.

1. INTRODUCTION

Let S be a semigroup; we denote by �� and �� the lattices of right
congruences and of right ideals of S, respectively. The semigroup S is right
Noetherian if the ascending chain condition holds for �� and weakly right
Noetherian if the ascending chain condition holds for �� . It is well known that a
right Noetherian semigroup is weakly right Noetherian but the converse is certainly
not true—one needs only to think of the case where S is a group and �� is the
subgroup lattice of S. In an attempt to provide a property intermediate between
right Noetherian and weakly right Noetherian, we introduce a notion of rank for
elements of ��, inspired by the model theoretic Morley rank.

To be a little more precise, we define rank on elements of �, where � is the
set of all congruence pairs �I� ��, where � ∈ ��� I ∈ �� and I is �-saturated. A pair
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4632 GOULD

�I� �� ∈ � defines a complete sublattice

��I� �� = �� ∈ �� � �I� �� ∈ � and � ∩ �I × I� = � ∩ �I × I��

of ��. The S-rank S�I� �� of �I� �� is the Cantor-Bendixson rank of � in ��I� ��
under the restriction of the finite type topology. The topology and the calculation
of S-rank we give explicitly in Section 3. The Cantor-Bendixson rank of a point in
a topological space is an ordinal (or �) which measures how far the point is from
being isolated. Isolated points have rank zero; a point has rank at least 	+ 1 if it
cannot be isolated amongst points of rank 	. We say that a semigroup S is ranked
if every element of � possesses an ordinal S-rank (not �).

The motivation behind our study of ranked semigroups comes from an old
model theoretic question which we shall now explain. However, readers who wish
to skim over the model theoretic references can safely do so.

Let LS denote the language of (right) S-sets over a monoid S and let
∑

S be
a set of sentences in LS which axiomatizes S-sets. A general result of model theory
says that

∑
S has a model companion, denoted by TS , precisely when the class �S

of existentially closed S-sets is axiomatizable and in this case, TS axiomatizes �S .
The monoid S is right coherent if every finitely generated S-subset of every finitely
presented S-set is finitely presented; it is known that TS exists and is stable if and
only if S is right coherent (Gould, 1987; Ivanov, 1992). Details of right coherent
monoids can be found in Gould (1992); we make no explicit use of this notion here.

Stability properties arose from the question of how many models a theory
(a set of sentences of a first order language) has of any given cardinality. The
seminal work of Shelah shows that an unstable theory, indeed a non-superstable
theory, has 2
 models of cardinality 
 for any 
 > �T � (Shelah, 1978). The philosophy
then is that, in these cases, there are too many models to attempt to classify by
means of a sensible structure theorem. It is reasonable therefore for the algebraist
to consider for a given class of algebras ‘how stable’ is the theory associated with
it, before embarking on the search for structure or classification theorems.

It is known (Ivanov, 1992; Mustafin, 1988), c.f. (Fountain and Gould,
preprint) that TS is superstable if and only if S is weakly right Noetherian. We
approached this question in Fountain and Gould (preprint) by determining the
U-rank of a type p in S�A�, where A is an S-set. Associated to p is a congruence
pair �Ip� �p�; then U�p� is the foundation rank of �Ip� �p� in the sublattice of ��
consisting of those right ideals that are �p-saturated. Since TS is superstable if and
only if every p has U-rank, it is then easy to see that TS is superstable if and only
if S is weakly right Noetherian. The question of under which conditions TS satisfies
the stronger property of being totally transcendental proved rather more problematic.
For a countable theory T , it is a fact that T is totally transcendental if and only if
T is �-stable (Morley, 1965). There are, however, uncountable theories T which are
not totally transcendental but are �-stable for all � with �T � ≤ �.

A stable theory T is totally transcendental if every type p has a Morley rank
M�p�, not �. We note it is always the case that U�p� ≤ M�p�. In Fountain and
Gould (preprint) we characterised those right coherent monoids S such that every
type p has U�p� = M�p� < �. The aim of the last section of this article is to
improve upon this result by showing that TS is totally transcendental if and only if
S is weakly right Noetherian and ranked.
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RIGHT CONGRUENCES ON SEMIGROUPS 4633

The structure of the article is as follows. In Section 2, we give brief details of
foundation rank for a partially ordered set and the connection with the U-rank of
a type over an S-set. A fuller account of types is reserved until later in the article.
Section 3 introduces S-rank for elements of �. We show that S is ranked if and
only if every pair �∅� �� is ranked and investigate the conditions under which an
element of � has rank zero. The property of being ranked is inherited by maximal
subgroups, monoid principal factors, and monoid �-classes, as we show in Section 4.

Above, we presented ranked semigroups as a class having properties related
to chain conditions. This is justified in Section 5, where we show that a right
Noetherian semigroup is ranked, and an inverse ranked semigroup is weakly right
Noetherian. We also prove that a chain is ranked if and only if it is finite. In a
subsequent article we use this result to show that the bicyclic monoid B is not
ranked, whilst being right coherent, weakly right Noetherian, and having trivial
subgroups.

After giving further examples of ranked semigroups in Section 6, Section 7
concentrates on the model-theoretic motivation for our notion of rank. We give the
necessary details of Morley rank and show that every type over TS has Morley rank
if and only if S is weakly right Noetherian and ranked; moreover, we obtain an
upper bound on M�p� for a type p in terms of S-rank. We can be more precise with
our upper bound in the case where S is a group.

A few remarks on notation. Even if not stated explicitly, S will always denote
a semigroup with set of idempotents E�S�. Where there is more than one semigroup
in question, we use subscripts for clarity; for example, we denote by��S the lattice of
right congruences on S. In an attempt to streamline, we suppress explicit mention
of indexing sets. For example, if ��ai� bi� � i ∈ I� is a finite set of pairs of elements
of S, then we write ���ai� bi��� for ���ai� bi� � i ∈ I��. It is worthwhile pointing out
that if H ⊆ S × S, then for any a� b ∈ S, a is related to b via the right congruence
generated by H if and only if a = b or there is a finite sequence

a = c1t1� d1t1 = c2t2�    � dltl = b�

where for each i, �ci� di� ∈ H ∪H−1 and ti ∈ S1.
This article is intended to be accessible to readers having familiarity with the

basic ideas of semigroup theory. Knowledge of model theory (and in particular
of the notion of a type) is not required until the final section, which nevertheless
contains the required definitions and gives a more leisurely account than is usual
in the stability literature. For background in model theory we recommend Chang
and Keisler (1973) and Enderton (1972) and in semigroup theory Howie (1976). Full
accounts of the stability theory we use can be found in the books Baldwin (1988),
Bouscaren (1979), Lascar (1987), Pillay (1983, 1996), and Prest (1988).

2. FOUNDATION RANK

We recall the foundation rank on a set � partially ordered by ≤. We define
subclasses � 	 of � for each ordinal 	 by transfinite induction:

(I) � 0 = � ;
(II) � 	 = ⋂

�� � � � < 	�, if 	 is a limit ordinal;
(III) x ∈ � 	+1 if and only if x < y for some y ∈ � 	.
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4634 GOULD

We thus obtain a nested sequence of subclasses of � indexed by the ordinals.
The foundation rank of x ∈ � , denoted by R�x�, can now be defined as follows.

If x ∈ � 	 for all ordinals 	, then we write R�x� = �. Otherwise, R�x� = 	,
where 	 is the (unique) ordinal such that x ∈ � 	\� 	+1; in this case, we say that x
has R-rank.

The convention that 	 < � for all ordinals 	 simplifies the statements of the
following standard proposition (see for example Pillay, 1996, p. 35).

Proposition 2.1. (i) For any x ∈ � and any ordinal 	

R�x� ≥ 	 if and only if x ∈ �	

(ii) Let x� y ∈ � , where x < y. If R�y� is an ordinal, then R�x� > R�y�. Moreover, if
R�x� is an ordinal, then so is R�y�.

(iii) For any x ∈ � �R�x� is an ordinal if and only if there are no infinite chains of the
form

x = x0 < x1 < · · · 

For the first application of foundation rank, consider a right congruence � on
a semigroup S, that is, � ∈ ��, and put

� = �J � �J� �� ∈ ��

The relation ≤ is taken as the usual inclusion order of right ideals. If J ∈ � , then
R�J� is said to be the �-rank of J and is written as �-R�J�.

Corollary 2.2. Let �I� �� ∈ �. Then �-R�I� is an ordinal if and only if S has the
ascending chain condition on �-saturated right ideals containing I .

The significance of the above result for us is the following.

Theorem 2.3 (Fountain and Gould, preprint). Let S be a right coherent monoid.
For any S-set A and p ∈ S�A�,

U�p� = �p-R�Ip�

Consequently, TS is superstable if and only if S is weakly right Noetherian.

Denoting the identity relation on S by �, every right ideal I of S is �-saturated.
We let V�I� be �-R�I� and refer to this as the V-rank of I . Clearly, V�I� = 0 if and
only if I = S and for any �J� �� ∈ �� �-R�J� ≤ V�J�. In view of Proposition 2.1,
every right ideal has V-rank if and only if S is weakly right Noetherian. In the case
where S is a right coherent monoid, we aim to use the V-rank of Ip and the S-rank
of �Ip� �p� to obtain a bound on the Morley rank of a type p over the theory TS .
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RIGHT CONGRUENCES ON SEMIGROUPS 4635

3. S-RANK OF CONGRUENCE PAIRS

We introduce sandwich rank for semigroups, ultimately to determine those
right coherent monoids S for which TS is totally transcendental.

Sandwich rank, or S-rank, is defined on elements of �. We first define subsets
in �� which we will refer to as having finite type. Let � denote a finitely generated
right congruence on S and let K ⊆ S × S be finite. Then

��� K� = �� ∈ �� � � ⊆ � ⊆ S × S\K��

we say that ��� K� is a subset of finite type. Clearly, subsets of finite type are convex
and ���H� ∩ ��� K� = ��� ∪ ��� H ∪ K�, so that finite intersections of subsets of finite
type are of finite type. Hence the set of subsets of finite type are a basis for a
topology on ��; we call this the finite type topology.

Let �I� �� ∈ �. The S-rank of �I� �� is the Cantor-Bendixson rank of � in
��I� �� equipped with the restriction of the finite type topology. We make this
explicit by defining subsets �	 of � for each ordinal 	, as follows:

(I) �0 = �;
(II) if 	 is a limit ordinal, then

�	 = ⋂
��� � � < 	��

(III) �I� �� ∈ �	+1 if and only if �I� �� ∈ �	 and for all subsets of finite type ��� K�
with � ∈ ��� K�, there exists �I� �� ∈ � with

� ∈ ��� K�� � ∩ �I × I� = � ∩ �I × I�� � �= �

and

�I� �� ∈ �	

The S-rank of �I� ��∈� is S�I� ��, where if �I� ��∈�	 for all 	 then S�I� ��=�,
and otherwise S�I� �� = 	 where �I� �� ∈ �	\�	+1. If S�I� �� < �, then we say that
�I� �� has S-rank. Notice that for any �I� �� ∈ � and ordinal 	, S�I� �� ≥ 	 if and only
if �I� �� ∈ �	. Clearly, for �∅� �� ∈ �, S�∅� �� is simply the Cantor-Bendixson rank
of � ∈ �� equipped with the finite type topology.

We say that a semigroup S is ranked if every element of � has S-rank. Much
of this article is devoted to investigating ranked semigroups. It is worth remarking
that for any finite semigroup S and any �I� �� ∈ �, S�I� �� = 0, since ��� �S × S�\��
certainly isolates � in ��I� ��. Thus any finite semigroup is ranked.

We state as a lemma a technique we will use repeatedly.

Lemma 3.1. Let S and T be semigroups, let X ⊆ �S , and let � � X → �T be a map.
If for all ordinals 	 and �I� �� ∈ X,

S�I� �� ≥ 	 implies that S�I� ��� ≥ 	 �∗��
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4636 GOULD

then

S�I� �� ≤ S�I� ���

Further, to establish �∗�, it is enough to show that for any ordinal 	,

S�I� �� ≥ 	+ 1 implies that S�I� ��� ≥ 	+ 1

and apply transfinite induction.

Lemma 3.2. Let I� J ∈ �� with I ⊆ J . Then for any �I� ��� �J� �� ∈ � we have that
S�I� �� ≥ S�J� ��.

Proof. We show that for any ordinal 	, and �I� ��� �J� �� ∈ �,

S�J� �� ≥ 	+ 1 implies that S�I� �� ≥ 	+ 1

Then, applying Lemma 3.1 with S = T , X = ��J� �� ∈ � � �I� �� ∈ �� and �J� ��� =
�I� ��, yields the result.

We make the inductive assumption that for any �J� �� ∈ X, S�J� �� ≥ 	 implies
that S�I� �� ≥ 	, and suppose that S�J� �� ≥ 	+ 1 for some ordinal 	. Certainly,
S�J� �� ≥ 	, whence by our inductive assumption, S�I� �� ≥ 	. Let ��� K� be a subset
of finite type with � ∈ ��� K�. Since S�J� �� ≥ 	+ 1, there exists �J� �� ∈ � with

� ∈ ��� K�� � ∩ �J × J� = � ∩ �J × J�� � �= �

and S�J� �� ≥ 	. Clearly, � ∩ �I × I� = � ∩ �I × I�. If a ∈ I and a � b, then as a ∈ J
and �J� �� ∈ �, we have that b ∈ J ; but then a � b and so b ∈ I as �I� �� ∈ �.
Consequently, �I� �� ∈ � and our inductive assumption tells us that S�I� �� ≥ 	. We
deduce that S�I� �� ≥ 	+ 1. �

Corollary 3.3. A monoid S is ranked if and only if every congruence pair of the form
�∅� �� has S-rank, that is, the Cantor-Bendixson rank of every right congruence exists.

Finally in this section, we give a characterisation of congruence pairs with S-
rank zero. To this end we make the following definition.

Let �I� �� ∈ �. Then � is I-finitely generated if

� = �� ∩ �I × I� ∪ ��a1� b1��    � �an� bn� � n ∈ � ∪ �0�� ai� bi ∈ S\I ��
Let L be a lattice and let x� y ∈ L. Then y covers x if x < y and there are no

elements z with x < z < y. We say that x is finitely covered in L if there exists a finite
set C of covers of x such that if x < z, then c ≤ z for some c ∈ C. Notice that a
maximal element is finitely covered by the empty set and if x is finitely covered by C,
then C = ∅ if and only if x is maximal. Clearly, in a finite lattice every element is
finitely covered.

Proposition 3.4. Let �I� �� ∈ �. Then S�I� �� = 0 if and only if � is I-finitely
generated and is finitely covered in ��I� ��.
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RIGHT CONGRUENCES ON SEMIGROUPS 4637

Proof. Suppose first that � is I-finitely generated and is finitely covered in ��I� ��.
By definition, we can find a finite set

X = ��ai� bi��

of pairs of elements in S\I such that

� = �� ∩ �I × I� ∪ X��

and � is finitely covered by ��l� in ��I� ��.
Consider an arbitrary �l. Since � ⊂ �l, there exists a pair �ul� vl� ∈ �l\�. Let �l

be the right congruence generated by � and �ul� vl�; as � ⊂ �l ⊆ �l, it is easy to see
that �l ∈ ��I� �� and consequently, �l = �l since �l is a cover of � in this lattice.

Let

� = �X�� and K = ��ul� vl���

so that � ∈ ��� K�. We claim that ��� K� isolates � in ��I� ��. For suppose that
� ∈ ��I� �� and � ∈ ��� K�. Then

� ∩ �I × I� = � ∩ �I × I� ⊆ �

and X⊆ �, whence �⊆ �. It follows that �= �. For otherwise, we must have �l ⊆ �
for some l, since ��l� finitely covers �, but this would contradict �ul� vl� � �.
Consequently, S�I� �� = 0.

Conversely, suppose that S�I� �� = 0. Then there is a subset of finite type ��� K�
which isolates � in ��I� ��. Let � = �X� where X = ��ai� bi�� and let K = ��ul� vl��.
Notice first that ai ∈ I if and only if bi ∈ I since � ⊆ �. Let Y = X ∩ �S\I × S\I�
and put � = �� ∩ �I × I� ∪ Y �. It is easy to see that � ∈ ��I� �� and as � ⊆ � ⊆ � it
follows that � ∈ ��� K�, whence � = � and � is I-finitely generated.

For each �ul� vl� let �l be the right congruence generated by � and �ul� vl�, and
let C be the subset of D = ��l� consisting of those �l minimal in D and lying in
��I� ��. We claim that C finitely covers � in ��I� ��.

Let � ∈ ��I� �� with � ⊂ �. Since � ⊆ � and ��� K� isolates � we must have
� � ��� K� and so �ul� vl� ∈ � for some �ul� vl� ∈ K. Thus �l ⊆ � and so �j ⊆ � for
some minimal �j . It is easy to see that we must have �j ∈ ��I� �� and so �j ∈ C as
required. �

Observe that for any � ∈ ��, � is S-finitely generated and ��S� �� = ��� so
that � is certainly finitely covered in ��S� ��. On the other hand, ��∅� �� = ��.

Corollary 3.5. For any � ∈ ��� S�S� �� = 0 and S�∅� �� = 0 if and only if � is
finitely generated and is finitely covered in ��.

4. PRINCIPAL FACTORS AND SUBGROUPS

In Section 6, we proceed to give examples and counterexamples of ranked
semigroups. Before doing so, we show that if every �I� �� ∈ �S has S-rank, then the
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4638 GOULD

same is true for every �I� �� ∈ �T , where T is a maximal subgroup of S, a monoid
principal factor, or a monoid �-class. The latter cases will follow from our next
result.

Proposition 4.1. Let S� T be semigroups and let � � S → T be an onto morphism. Let
�I� �� ∈ �T and let

��−1 = ��s� t� ∈ S × S � s� � t��

Then

�I�−1� ��−1� ∈ �S

and

S�I� �� ≤ S�I�−1� ��−1�

Consequently, if S is ranked, then so is T .

Proof. It is straightforward to verify that �I�−1� ��−1� ∈ �S and ker� ⊆ ��−1. On
the other hand, if �J� �� ∈ �S with ker� ⊆ �, then J� ∈ ��T and if we define a
relation �� on T by

s���t� if and only if s � t�

then �� ∈ ��T and �J�� ��� ∈ �T . Moreover, I = I�−1� and � = ��−1�.
Proceding by induction, we suppose that S�I� �� ≥ 	+ 1. Let ��−1 ∈ ��� K�,

where � = �H� for some finite H ⊆ S × S. Putting �′ = �ker� ∪H�, we have that
�′ ⊆ ��−1.

With H = ��ai� bi�� and K = ��ul� vl�� let � = ���ai�� bi���� and G =
��ul�� vl���. Notice that �′� = � and � ∈ ���G�.

Since S�I� �� ≥ 	+ 1, there exists � ∈ ��T with

�I� �� ∈ �T � � ∩ �I × I� = � ∩ �I × I�� � �= �

and

S�I� �� ≥ 	

We know that �I�−1� ��−1�∈�S and by our inductive assumption, S�I�−1� ��−1�≥ 	.
It is straightforward to verify that

��−1 ∈ ��� K�� ��−1 ∩ �I�−1 × I�−1� = ��−1 ∩ �I�−1 × I�−1�

and

��−1 �= ��−1

We conclude that S�I�−1� ��−1�≥ 	+ 1. The proposition follows from
Lemma 3.1. �
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RIGHT CONGRUENCES ON SEMIGROUPS 4639

Corollary 4.2. Let S be a semigroup and let P be any monoid principal factor. If S is
ranked, then so is P.

Proof. By Proposition 4.1, it is enough to show that P is a morphic image of S.
Let P be the principal factor associated with the �-class of e, where e is the identity
of Je, and denote the Rees congruence class of s ∈ S by �s�.

Define � � S → P by s� = �se�. Let s� t ∈ S. If te <� e, then ste� sete <� e also,
so that

�st�� = �ste� = 0 = �sete� = �se��te� = s�t�

On the other hand, if te� e, then te = ete since we are supposing e is the identity of
Je. Hence

�st�� = �ste� = �sete� = �se��te� = s�t��

and � is a (clearly onto) morphism as required. �

Our next lemma is straightforward, and we merely sketch the by now familiar
technique.

Lemma 4.3. Let S be a semigroup and let S0 be the semigroup obtained by adjoining
zero to S. If S0 is ranked, then so is S.

Proof. For any � ∈ ��S , we let

�0 = � ∪ ��0� 0��

and note that �0 ∈ ��S0 .
Proceding by induction, suppose that � ∈ ��S and S�∅� �� ≥ 	+ 1. If ��� K� is

a subset of finite type of ��S0 and �0 ∈ ��� K�, then it is easy to see that � ∈ ��′� K′�,
where �′ = �\��0� 0�� and K′ = K ∩ �S × S�.

Since S�∅� �� ≥ 	+ 1 there exists � ∈ ��′� K′� with � �= � and S�∅� �� ≥ 	.
Clearly, �0 ∈ ��� K�� �0 �= �0 and our inductive assumption gives that S�∅� �0� ≥ 	.
Hence S�∅� �0� ≥ 	+ 1 as required. �

Corollary 4.4. Let S be a semigroup and let J be a monoid �-class of S. If S is ranked,
then so is J .

Proof. From Corollary 4.2, we know that every element of �P has S-rank, where
P is the principal factor associated with J . Since J is a monoid, P is J with possibly
a zero adjoined. The result follows from Lemma 4.3. �

Finally in this section, we aim to show that if every element of �S has S-rank,
then so does every element of �G for any maximal subgroup of S.

Let G be a maximal subgroup of S with identity e. Then G is the �-class of
the idempotent e. Let

J = eS and I = �s ∈ S � s <� e�
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4640 GOULD

Then I� J are right ideals with G ⊆ Re = J\I . Let � ∈ ��G and let �̄ = ��� be the
right congruence on S generated by �. Clearly, if a� b ∈ S and a�̄b, then if a �= b, we
must have a� b ∈ J .

Lemma 4.5. Let I� J� �̄ be as above. Then:

(i) �I� �̄�� �J� �̄� ∈ �S;
(ii) if a�̄b and a� b ∈ Re, then a� b;
(iii) �̄ ∩ �G×G� = �.

Proof. Notice first that as � ⊆ G×G ⊆ 	 and 	 is a right congruence, certainly
�̄ ⊆ 	 so that (ii) holds.

If a� b ∈ S and a�̄b, then a = b or there is a sequence

a = x1t1� y1t1 = x2t2�    � yltl = b (∗)

where �xi� yi� ∈ � and ti ∈ S1. Suppose that xiti � e. Since � is a left congruence,

yiti = yieti = yix
−1
i xiti�yix

−1
i e�e

Thus if a ∈ Re, we conclude that b ∈ Re and consequently, �I� �̄�� �J� �̄� ∈ �S .
Certainly, � ⊆ �̄ ∩ �G×G�. Suppose now that a� b ∈ G and a �̄ b. Then a = b

(so that a � b), or there is a sequence �∗�. Now

et1 = x−1
1 x1t1 = x−1

1 a ∈ G

Suppose for finite induction that 1 ≤ i < l and eti ∈ G. Then

eti+1 = x−1
i+1xi+1ti+1 = x−1

i+1yiti = x−1
i+1yieti ∈ G

Consequently, replacing �∗� with the sequence

a = x1�et1�� y1�et1� = x2�et2��    � yl�etl� = b�

we see that a � b. Thus (iii) holds. �

With I� J� �̄ as above we let

¯̄� = �̄ ∪ �I�

where �I is the Rees right congruence associated with I . Clearly, ¯̄� is a right
congruence with

�I� ¯̄��� �J� ¯̄�� ∈ �S and ¯̄� ∩ �Re × Re� = �̄ ∩ �Re × Re��

so that in particular,

¯̄� ∩ �G×G� = �
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RIGHT CONGRUENCES ON SEMIGROUPS 4641

To proceed, we require a technical result.

Lemma 4.6. Let S be a semigroup and let G be a maximum subgroup with
identity e. If u� v ∈ S and u�v�e, then for any t ∈ S1 with ut ∈ G we have that
f = t�ut�−1u ∈ E�S�,

u� v	 f

and vt ∈ G.

Proof. Let u� v� t be as given. Putting f = t�ut�−1u, we have that

f 2 = t�ut�−1ut�ut�−1u = t�ut�−1u

so that f is idempotent. Moreover,

uf = ut�ut�−1u = eu = u

since e� u, so that u	 f . But then v	 f , so that

v = vf = vt�ut�−1u

and v� vt. Certainly, ut	 vt so that ut� vt and vt ∈ G. �

Lemma 4.7. With �� I and ¯̄� as above,

S�∅� �� ≤ S�I� ¯̄��

Proof. Proceeding by induction, we suppose that S�∅� �� ≥ 	+ 1. Let ¯̄� ∈ ��� K�,
where � = �H� for some finite H = ��ai� bi��.

Let �ai� bi� ∈ H ∩ �Re × Re�; since ai �̄ bi, we know from Lemma 4.5 that
ai � bi. We choose wi ∈ S1 with aiwi ∈ G; from Lemma 4.6 we know that biwi ∈ G
and certainly aiwi �̄ biwi. From Lemma 4.5 we have that aiwi � biwi. Putting

�′ = ���aiwi� biwi� � �ai� bi� ∈ H ∩ �Re × Re���

we have that �′ ⊆ �.
For each �ul� vl�∈K ∩ �Re ×Re� with ul � vl we choose tl ∈ S1 with ultl,

vltl ∈G. If ultl � vltl, then using Lemma 4.6 we have that

ul = ultl�ultl�
−1ul �̄ vltl�ultl�

−1ul = vl�

a contradiction. Thus putting

K′ = ��ultl� vltl� � �ul� vl� ∈ K ∩ �Re × Re�� ul � vl�

we have that

� ∈ ��′� K′�
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4642 GOULD

Since S�∅� �� ≥ 	+ 1 there exists � ∈ ��′� K′� with � �= � and S�∅� �� ≥ 	. Our
inductive hypothesis gives that S�I� ¯̄�� ≥ 	. Clearly ¯̄� �= ¯̄�, and

¯̄� ∩ �I × I� = ¯̄� ∩ �I × I� = I × I

Let �ai� bi� ∈ H ; then ai
¯̄� bi. Thus ai = bi or ai� bi ∈ I , so that certainly ai

¯̄� bi,
or else ai� bi ∈ Re. In the latter case ai � bi and we have a pair �aiwi� biwi� ∈ �′, so
that aiwi � biwi. Then

ai = aiwi�aiwi�
−1ai

¯̄�biwi�aiwi�
−1ai = bi�

calling upon Lemma 4.6. Thus � ⊆ ¯̄�.
Finally, let �ul� vl� ∈ K. Since ¯̄� ⊆ �S × S�\K, we either have ul ∈ I� vl � I (or

vice versa), in which case �ul� vl� � ¯̄�, or ul� vl ∈ S\I . Then ul� vl ∈ S\J and ul �= vl,
ul ∈ Re� vl ∈ S\J (or vice versa), or ul� vl ∈ Re and �ul� vl� � �̄. In either of the first
two cases, �ul� vl� � ¯̄�. We concentrate on the third. If �ul� vl� � � , then �ul� vl� � ¯̄�
by Lemma 4.5. On the other hand, if ul � vl, then we have a pair �ultl� vltl� ∈ K′. If
ul

¯̄� vl, then ultl
¯̄� vltl, so that ultl � vltl by Lemma 4.5. This contradiction gives that¯̄� ∈ ��� K� and so S�I� ¯̄�� ≥ 	+ 1 and the result follows. �

Corollary 4.8. Let S be a semigroup. If S is ranked, then so is every maximal
subgroup of S.

5. RANKED MONOIDS AND NOETHERIAN CONDITIONS

We first show that being right Noetherian guarantees ranking.

Proposition 5.1. Let S be a right Noetherian semigroup. Then S is ranked.

Proof. Let � ∈ �� and suppose that S�∅� �� = �. Now � is finitely generated by
assumption, so that ���∅� is a subset of �� of finite type and � ∈ ���∅�. If every
element of ���∅�, other than �, has S-rank, then choosing an ordinal 	 strictly
greater than the S-ranks of all the elements of ���∅�, distinct from �, we would have
that S�∅� �� �≥ 	+ 1, a contradiction. Hence we can find �1 ∈ ���∅� with �1 �= � and
S�∅� �1� = �. Clearly, � ⊂ �1. Proceeding in this manner we can find a chain

� ⊂ �1 ⊂ �2 ⊂ · · ·

such that S�∅� �i� = � for all i. This contradicts the fact that S is right Noetherian.
�

Our next aim is to show that a ranked inverse semigroup is weakly right
Noetherian. To this end, we have the following.

Lemma 5.2. Let S be a ranked semigroup. Then S contains no infinite set of pairwise
�-incomparable elements.
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RIGHT CONGRUENCES ON SEMIGROUPS 4643

Proof. Suppose that

�ai � i ∈ ��

is a set of pairwise �-incomparable elements (where ai �= aj for i �= j). Let

� = ���ai� aj� � i� j ∈ ���

We consider the subset X of ��, consisting of right congruences of the form

�� ∪ ��ai� aj� � i� j ≥ t���

where � is a finitely generated right congruence contained in � and t ∈ �. Notice
that if � ∈ X, then � ⊆ �.

Let 	 be an ordinal and suppose that for any � ∈ X

S�∅� �� ≥ 	

Fix � ∈ X, so that

� = �� ∪ ��ai� aj� � i� j ≥ t��

for some finitely generated � ⊆ � and some t ∈ �.
Let ��� K� be an interval of finite type with � ∈ ��� K� and let H = ��xk� yk��

be a finite set of generators for �� ∪ ��. Since the ai’s are pairwise �-incomparable,
we may choose w ∈ �, w ≥ t, with xk� yk not �-related to aw+s for all k and for all
s ≥ 0. Let

� = �H ∪ ��ai� aj� � i� j ≥ w + 2���

so that � ∈ X.
Clearly, � ⊆ �. However, � �= � since �aw� aw+1� ∈ � but �aw� aw+1� � �. For if

aw � aw+1, then we are forced to have aw≤�xk or aw≤�yk for some k. Without loss
of generality, suppose the former. Since xk � yk, we have that xk≤�ai for some i.
But then

aw≤�xk≤�ai

forces i = w and xk � aw, a contradiction.
By our inductive assumption we have that S�∅� �� ≥ 	; since � ∈ ��� K� this

gives that S�∅� �� ≥ 	+ 1. Consequently, S�∅� �� = � for any � ∈ X (and in
particular for � = �). But this contradicts the fact that S is ranked. �

We remark that if 
0�G� I��� P� is a ranked Rees matrix semigroup, then
from Corollary 4.8 and Lemma 5.2, G is ranked and I is finite. Conversely, we show
in the sequel that a Brandt semigroup �0�G� I� with G ranked and I finite, is ranked.

A similar technique to that in Lemma 5.2 yields our next result. The partial
order concerned is the natural partial order on idempotents, in which e ≤ f if and
only if ef = fe = e.
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4644 GOULD

Lemma 5.3. Let S be a ranked semigroup. Then S contains no infinite ascending
chain

e1 < e2 < · · ·

of idempotents.

Proof. We proceed as in Lemma 5.2, replacing the elements ai with the
idempotents ei, and this time choosing w ≥ t such that xk� yk≤�ew for all k. The
proof diverges where we wish to show that �ew� ew+1� � �.

If ew � ew+1, then we must have a sequence

ew+1 = c1t1� d1t1 = c2t2�    � dltl = ew

where for each 1 ≤ i ≤ l, we have that �ci� di� = �xki � yki �� �yki � xki � or �es� et� for
some s� t ≥ w + 2.

If c1 = xk1 , then

ew+1≤�xk1≤�ew�

so that ew+1 � ew, which is impossible since ew < ew+1; similarly, we cannot have that
c1 = yk1 . Hence we must have that c1 = es� d1 = et for some s� t ≥ w + 2. Then

ew+1 = ew+1c1t1 = ew+1t1

Suppose for finite induction that 1 ≤ i < l,

�ci� di� ⊆ �ej � j ≥ w + 2�

and ew+1 = ew+1ti. We obtain

ew+1 = ew+1diti = ew+1ci+1ti+1�

as above ci+1 cannot be below ew in the ≤�-order. Consequently, ci+1� di+1 ∈
�ej � j ≥ w + 2� and so ew+1 = ew+1ti+1.

Finite induction gives that

ew+1 = ew+1tl = ew+1dltl = ew+1ew = ew�

a contradiction. This tells us that � �= � and proceeding as in Lemma 5.2 allows us
to deduce that S�∅� �� = �, contradicting the fact that S is ranked. �

Corollary 5.4. Let S be a ranked inverse semigroup. Then S is weakly right
Noetherian.

Proof. Since S is inverse, E�S� forms a semilattice, and the natural partial order
on E�S� coincides with the ≤�-order.
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RIGHT CONGRUENCES ON SEMIGROUPS 4645

Let I be a right ideal of S with set of generators X. Since S is inverse, we may
assume that X ⊆ E�S� and from Lemma 5.3 that X consists of idempotents maximal
under the ≤�-order. Thus the elements of X are pairwise incomparable, so that by
Lemma 5.2, X is finite. �

In a subsequent paper we show that the bicyclic monoid B, which is certainly
inverse and weakly right Noetherian, is not ranked. To achieve this result, we need
the dual of Lemma 5.3 in the case where S is a chain.

Let C be a chain (that is, a totally ordered semilattice), and let � ∈ ��. It is
easy to see that the �-classes are convex subsets, and these therefore form a chain
under the induced ordering. On the other hand, if C is partitioned into convex
subsets, then the associated equivalence relation is a congruence.

Lemma 5.5. A congruence on a chain C is finitely generated if and only if the
corresponding partition contains only finitely many nontrivial (convex) sets, and these
are all closed intervals.

Proof. Suppose that � ∈ �� is finitely generated; say

� = ��a1� b1��    � �an� bn��
It is easy to see that we may assume that

a1 < b1 < a2 < b2 < · · · < an < bn

Define an equivalence relation � by the rule that for any x� y ∈ C, x � y if and only
if x = y or

x� y ∈ �ai� bi� = �c � ai ≤ c ≤ bi�

for some i. It is easy to see that � is a congruence on C and that � ⊆ �. On the
other hand, if, for some i, x� y ∈ �ai� bi�, then as ai � bi and �-classes are convex, we
must have that x � y. It follows that � ⊆ � and hence � = �.

Conversely, if we are given a congruence � such that the only nontrivial
classes are

�a1� b1��    � �an� bn��

then it is easy to see that

� = ��a1� b1��    � �an� bn�� �

Lemma 5.6. Let C be a chain and let �� � ∈ �� with � ⊂ �, � finitely generated
and � not finitely generated. Then there exists a nonfinitely generated � ∈ �� with
� ⊂ � ⊂ �.

Proof. Let �� � be as given and let

� = ��a1� b1��    � �an� bn���
where a1 < b1 < · · · < an < bn.
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4646 GOULD

Suppose first that all �-classes are closed intervals. From Lemma 5.5, � has
infinitely many nontrivial classes. We can therefore choose a nontrivial �-class �u� v�
such that

�u� v� ∩ �a1� b1�    � an� bn� = ∅

Let � be the congruence corresponding to the partition obtained from the �-classes
with �u� v� replaced by �u�� �c � u < c ≤ v�. It is easy to see that � ⊂ � ⊂ � and by
Lemma 5.5, � is not finitely generated, since it has infinitely many nontrivial classes.

Consider now the case where � has a class X that is not a closed interval.
Bearing in mind that � ⊂ �, we have that

X ∩ �a1� b1�    � an� bn� = �ai� bi�    � aj� bj�

for some (possibly none) i� j with i ≤ j. Without loss of generality, assume that X
is unbounded above. Pick u ∈ X with bj < u. Now

X = �x ∈ X � x ≤ u� ∪ �x ∈ X � u < x�

is a partition of X into two nonempty sets, at least one of which is not a closed
interval. Let � be the congruence corresponding to the partition obtained from the
�-classes by dividing X as given. Then � ⊂ � ⊂ � and, by Lemma 5.5, � is not finitely
generated, since it has a class that is not a closed interval. �

It is now straightforward to achieve our desired result.

Proposition 5.7. Let C be a chain. Then C is ranked if and only if it is finite.

Proof. As remarked before Proposition 3.4, every finite semigroup is ranked.
Suppose that C is ranked and C contains an unbounded subset X. It is easy

to see that C then contains an unbounded convex subset and hence, in view of
Lemma 5.5, a congruence � that is not finitely generated. Using a now familiar
technique, assume that for any nonfinitely generated � ∈ �� and an ordinal 	 we
have that S�∅� �� ≥ 	. If � ∈ ��� K� where ��� K� is of finite type, then by Lemma 5.6,
there is a nonfinitely generated � ∈ �� with � ⊂ � ⊂ �. Consequently, � ∈ ��� K� and
by assumption, S�∅� �� ≥ 	. Thus S�∅� �� ≥ 	+ 1. Transfinite induction yields that
S�∅� �� = �, contradicting the fact that C is ranked.

It is easy to see that a chain with no unbounded subsets is finite. �

6. EXAMPLES OF RANKED MONOIDS

We have seen in the previous section that any right Noetherian semigroup is
ranked. In particular, any finite semigroup is ranked.

The free commutative monoid on a set X is denoted by � �∗
X; it is worth

remarking that � �∗
X is right coherent Gould (1992). For any word w in � �∗

X , the
content c�w� of w is the set of letters of X occurring in w.

Proposition 6.1. The free commutative monoid � �∗
X on a nonempty set X is ranked

if and only if X is finite.
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RIGHT CONGRUENCES ON SEMIGROUPS 4647

Proof. If X is finite, then by Rédei’s Theorem (Rédei, 1963; Rosales and García-
Sánchez, 1999), � �∗

X is (right) Noetherian. By Lemma 5.1, � �∗
X is ranked.

Conversely, suppose that X is infinite. We say that a congruence � is basic if
� has a finite set of generators

��a1� b1��    � �an� bn���

where a1� b1�    � an� bn are distinct elements of X. We show by transfinite induction
that S�∅� �� ≥ 	 for every ordinal 	 and every basic �. The statement is true for
	 = 0, and the step at limit ordinals is clear.

Let 	 be an ordinal and suppose that for all basic congruences �, S�∅� �� ≥ 	.
Let � be basic, say

� = ��a1� b1��    � �an� bn���

where a1� b1�    � an� bn are distinct elements of X. Suppose that � ∈ ��� K�, where
��� K� is an interval of finite type. Let C ⊆ X be the union of the sets c�u�, where a
pair �u� v� or �v� u� appears in K. Choose distinct

an+1� bn+1 ∈ X\D�

where

D = C ∪ �a1�    � bn�

and let

� = ��a1� b1�    � �an� bn�� �an+1� bn+1��

Clearly, � ⊆ �. If � = �, then an+1 � bn+1, whence (as an+1 �= bn+1) we have that

an+1 = ajt or bjt

for some j ∈ �1�    � n� and t ∈ ��∗
X , which is impossible. Hence � ⊂ �.

Let �u� v� ∈ K. If u � v, then we must have a sequence

u = c1t1� d1t1 = c2t2�    � dltl = v�

where for each k, �ck� dk� = �aik
� bik � or �bik � aik

�. From u = c1t1 we obtain that
c�t1�⊆D, and i1 �= n+ 1. Supposing for finite induction that c�tj�⊆D and ij �= n+ 1,
consider djtj = cj+1tj+1. Then

c�cj+1�� c�tj+1� ⊆ c�dj� ∪ c�tj� ⊆ D

so that ij+1 �= n+ 1. We conclude that none of the ik’s are n+ 1, hence u � v, a
contradiction. Consequently, �u� v� � � and so � ∈ ��� K�.

By our inductive assumption we have that S�∅� �� ≥ 	, whence we deduce that
S�∅� �� ≥ 	+ 1. Consequently, S�∅� �� = � for any basic right congruence �. �
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4648 GOULD

From Propositions 4.1 and 6.1 we deduce the following.

Corollary 6.2. Any finitely generated commutative monoid is ranked.

Proposition 3.4 tells us that for a right congruence � on a right Noetherian
monoid S, S�∅� �� = 0, if and only if � is finitely covered. In ��∗

X , where X is finite,
the identity congruence � is not finitely covered. For if � ⊂ � for

� = ��a1� b1��    � �an� bn�� ∈ ���

where we may assume that ai �= bi for each i, pick a word v strictly longer than any
ai or bi. Clearly,

� ⊂ ��a1v� b1v�� ⊂ �

Hence � has no covers, so certainly is not finitely covered.
In the case where X = �a�, ��∗

X is isomorphic to �0 under addition, and we
can be precise about the S-rank of elements of �. Let �I� �� ∈ �. If I �= ∅, then I =
�n� n+ 1�    � for some n. Let

K = ��i� j� � i� j < n� �i� j� � ��

It is easy to see that ���K� isolates � in ��I� ��. Hence S�I� �� = 0. Suppose now
that I = ∅. If � �= �, then, calling upon standard results for monogenic monoids,

� = ��n� n+ r��

for some n� r with r ≥ 1. Let

K = ��u� v� � 0 ≤ u� v ≤ n+ r − 1� u �= v�

Let � ∈ ���K� and suppose that a � b. Certainly, a � a′ and b � b′ for some a′� b′ with
0 ≤ a′, b′ ≤ n+ r − 1. Since a′ � b′ and �a′� b′� � K, we must have that a′ = b′ so
that a � b. Thus ���K� isolates � in �� and S�∅� �� = 0. We showed above that
S�∅� �� ≥ 1, and we deduce that S�∅� �� = 1.

In view of Corollary 3.5, when determining S-rank for groups, we need only
consider elements of � of the form �∅� ��.

For the free cyclic group , Propositions 4.1 and 6.1 certainly yield that  is
ranked. Since any subgroup of  is cyclic, and any nontrivial subgroup n where
n ∈ � is finitely covered by the subgroups n

p
 where p is a prime factor of n, it

follows from Proposition 3.4 that S�∅� �� = 0 for any non-identity congruence �. On
the other hand the trivial subgroup has no covers, so that S�∅� �� ≥ 1. Consequently,
S�∅� �� = 1.

Considering now the group �p�� of all pnth roots of unity, we see that
S�∅� �� = 0 for every nonuniversal congruence �, and S�∅� �� = 1. Indeed, let S be
a semigroup such that

�� = ��i � i ∈ � ∪ �0�� ∪ ����
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RIGHT CONGRUENCES ON SEMIGROUPS 4649

where

�0 = � ⊂ �1 ⊂ �2 ⊂ · · ·

and each �i is finitely generated. From Proposition 3.4 we see that for each i,
S�∅� �i� = 0. But � cannot be isolated by any interval ��i�∅�, so that S�∅� �� = 1.

In a subsequent article we show that a Brandt semigroup �0�G� I�, where G
is a ranked group and I is finite, is ranked.

7. TOTAL TRANSCENDENCE OF TS

We begin with a brief discussion of the model theory required for this section.
Let L be a first order language and let T be a complete theory in L, admitting

elimination of quantifiers. The example of interest to us here is L = LS and T = TS ,
where S is a right coherent monoid.

The notion of a type over T is crucial to our investigations. To define this, it is
useful to employ the so-called monster model of a theory. We fix a model M of T ,
saturated of cardinality � for some cardinal � much bigger than all other cardinals
under consideration; M is the monster model of T . We make the convention that all
models of T will be elementary substructures of M with universes of cardinality less
than � and all sets of parameters will be subsets of M of cardinality less than �.
Justification of the use of the monster model can be found in Bouscaren (1999).

Let A be a subset of M and let c ∈ M. Then

tp�c/A� = ���x� ∈ L�A� � M �= ��c��

is a (complete 1-)type over A. Clearly, tp�c/A� is a set p�x� of sentences of L�A� x�,
that is consistent with Th�M� a�a∈A and is complete in the sense that for any
formula ��x� of L�A�, either ��x� or ¬��x� is in p�x�; we say that p�x� is realized
by c. Conversely, if p�x� is a set of formulae satisfying these conditions, then the
saturation of M gives that p�x� = tp�b/A� for some b ∈ M. The Stone space S�A� of
A is the collection of all types over A and comes equipped with a natural topology,
the basic open sets of which are

���x�� = �p ∈ S�A� � ��x� ∈ p��

where ��x� is a formula of L�A�. The space S�A� has a basis of clopen sets ���x��,
and is compact and Hausdorff. Since we are assuming that T has elimination of
quantifiers, a routine argument gives that the sets ���x��, where ��x� is a conjunction
of atomic and negated atomic formulae, form a basis for the topology of S�A�.

For a cardinal �, T is �-stable if for every subset A of a model of T with
�A� ≤ � we have �S�A�� ≤ �. If T is �-stable for some infinite �, then T is stable and
T is superstable if T is �-stable for all � ≥ 2�T �. If T is not stable, then it is said to
be unstable. We know that TS is stable, and superstable if and only if S is weakly
right Noetherian (Fountain and Gould, preprint; Mustafin, 1988). To investigate the
stronger property of being totally transcendental, we need to define Morley rank for
types.
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4650 GOULD

Let A be a subset of M. Subsets M	�A� of S�A� are defined by induction on
the ordinal 	 as follows:

(I) M0�A� = S�A�;
(II) if 	 is a limit ordinal, then

M	�A� = ⋂
�M��A� � � < 	��

(III) for any 	, M	+1�A� = M	�A�\X	, where

X	 = �p ∈ M	�A� � for all B ⊇ A and all extensions q of p on B�

q � M	�B� or q is isolated in M	�B��

We may take B to be an L-substructure of a model of T .

For p ∈ S�A�, the Morley rank of p is M�p�, where if p ∈ M	�A� for all 	, then
M�p� = �, and otherwise, M�p� is 	, where p ∈ M	�A�\M	+1�A�. If M�p� < �, then
we say that p has Morley rank. As for the other ranks met in this article, it is easy
to see that for p ∈ S�A� and an ordinal 	, p ∈ M	�A� if and only if M�p� ≥ 	.

A theory T is totally transcendental if and only if for all subsets A of models
of T , all types over A have Morley rank. From Lascar (1987, Proposition 4.27), T is
totally transcendental if and only if all types over the empty set have Morley rank.
As mentioned in the Introduction, it is a standard result that for all types p, U�p� ≤
M�p� (Pillay, 1996); thus a totally transcendental theory is necessarily superstable.

For the remainder of the article, the theory in question will be TS , where S is
a right coherent monoid. The key to our arguments is the following description of
types.

If A is an S-set, then an A-triple is a triple �I� �� f� such that �I� �� ∈ � and
f � I → A is an S-morphism with Kerf = � ∩ �I × I�. We denote the set of all
A-triples by � �A�.

Proposition 7.1 (Fountain and Gould, preprint). Let p be a type over an S-set A.
Let

Ip = �s ∈ S � xs = a ∈ p for some a ∈ A��

�p = ��s� t� ∈ S × S � xs = xt ∈ p��

and

fp � Ip → A be defined by fp�s� = a where xs = a ∈ p

Then �p = �Ip� �p� fp� is an A-triple and the map

p �→ �p

is a bijection from S�A� to � �A�.

We note that for any type p over an S-set A, M�p� = 0 if and only if Ip = S,
that is, U�p�= 0. For if Ip = S and p⊆ q where q ∈ S�B�, then since 1 ∈ Iq, x = b ∈ q
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RIGHT CONGRUENCES ON SEMIGROUPS 4651

for some b ∈ B and �x = b� isolates q in S�B�. Thus p �∈ M1�A� so that M�p� = 0.
On the other hand, if M�p� = 0, then by the comment above, U�p� = 0, so that
Ip = S by Fountain and Gould (preprint, Proposition 4.9).

In the following proposition, we suppose that S is weakly right Noetherian
and every �I� �� ∈ � has S-rank, and find an upper bound on the Morley rank of a
given type. Our bound can be improved upon in the case where S is a group, as we
show in Theorem 7.4. Note that to show that TS is totally transcendental, it would
be enough to argue that every type in S�∅� has Morley rank. We prefer, however, to
produce a reasonably tight upper bound on the Morley rank of an arbitrary type.
The order on � × � below, where � is the class of all ordinals, is lexicographic.

Proposition 7.2. If S is weakly right Noetherian and every �I� �� ∈ � has S-rank, then
TS is totally transcendental. Moreover,

M�p� ≤ �V�Ip�� S�Ip� �p��

for any p ∈ S�A�.

Proof. We first note that as �� and � are sets, our hypothesis guarantees that we
can find ordinals 	� � with V�I� < 	 and S�I� �� < � for all 	 ∈ �� , �I� �� ∈ �.

We put

� = ���� �� � � < 	� � < ���

� is well-ordered by the lexicographic ordering, so there exists an order-isomorphism
from � to a segment of � assigning to each ��� �� ∈ � its ordinal o��� ��. For ease of
notation we omit explicit mention of o.

Our aim is to show by transfinite induction on �V�Ip�� S�Ip� �p�� that for any
p ∈ S�A�,

M�p� ≤ �V�Ip�� S�Ip� �p��

Suppose that �V�Ip�� S�Ip� �p��= �0� 0�. Then Ip = S so that by earlier
comments, M�p� = �0� 0� = �V�Ip�� S�Ip� �p��.

Proceeding by induction, suppose that for any q ∈ S�B� with �V�Iq�,
S�Iq� �q�� < �V�Ip�� S�Ip� �p�� we have that M�q� ≤ �V�Iq�� S�Iq� �q��.

Let p ⊆ q ∈ S�B�; we show that M�q� < �V�Ip�� S�Ip� �p�� or q is isolated in
S�B� among types of Morley rank equal to or greater than �V�Ip�� S�Ip� �p��.

First, we suppose that Ip ⊂ Iq. Then as V�Ip� > V�Iq� we have that

�V�Iq�� S�Iq� �q�� < �V�Ip�� S�Ip� �p��

and so by our inductive hypothesis, M�q� exists and

M�q� ≤ �V�Iq�� S�Iq� �q�� < �V�Ip�� S�Ip� �p��

To proceed we now consider the case where Iq = Ip, so that �Iq� �q� = �Ip� �p�.
Let 	 = S�Ip� �p�; then there is a subset ��� K� of finite type such that ��� K� isolates
�p in ��Ip� �p� among those elements � such that S�Ip� �� ≥ 	.
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4652 GOULD

Let

� = �X� where X = ��ai� bi��

and put

K = ��ul� vl��

We are supposing that S is weakly right Noetherian, so that

Iq = Ip =
⋃

sjS

for some finite set �sj� ⊆ S. By definition of Iq we must have a formula xsj = cj ∈ q
for each j. Putting

� = ∧
xsj = cj ∧ xai = xbi ∧ xul �= xvl

we have that

q ∈ ���

Suppose now that r ∈ ���, so that

�r ∈ ��� K� and Ip ⊆ Ir 

If Ip ⊂ Ir , then

�V�Ir�� S�Ir� �r�� < �V�Ip�� S�Ip� �p��

so that by our inductive hypothesis, M�r� exists and

M�r� ≤ �V�Ir�� S�Ir� �r�� < �V�Ip�� S�Ip� �p��

Otherwise, Ir = Ip = Iq so that �Ip� �r� ∈ �. Now for any sjt ∈ Iq,

fq�sjt� = cjt = fr�sjt��

so that fq = fr . Consequently,

�p ∩ �Ip × Ip� = �q ∩ �Iq × Iq� = ker fq = ker fr = �r ∩ �Ip × Ip�

Thus �r ∈��Ip� �p� so that either �r = �p = �q, in which case r = q by
Proposition 7.1, or else S�Ip� �r� < 	. In the latter case

�V�Ir�� S�Ir� �r�� < �V�Ip�� S�Ip� �p��

and the inductive hypothesis called upon for a final time gives that M�r� exists and

M�r� ≤ �V�Ir�� S�Ir� �r�� < �V�Ip�� S�Ip� �p��
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RIGHT CONGRUENCES ON SEMIGROUPS 4653

Thus ��� isolates q in S�B� among types of Morley rank greater than or equal to
�V�Ip�� S�Ip� �p��. Consequently,

M�p� �> �V�Ip�� S�Ip� �p��

so that

M�p� ≤ �V�Ip�� S�Ip� �p��

as required. �

We are now in a position to prove the main result of this section.

Theorem 7.3. The theory TS is totally transcendental if and only if S is weakly right
Noetherian and ranked.

Proof. If S is weakly right Noetherian and ranked, then Corollary 3.3 and
Proposition 7.2 give that TS is totally transcendental.

Conversely, suppose that TS is totally transcendental, so that M�p� exists for
all types p. Since U�p� ≤ M�p� every type has U-rank, whence S is weakly right
Noetherian by Fountain and Gould (preprint) or Mustafin (1988).

Consider now � ∈ ��; clearly, � = �p�
, where p� = tp�1�/∅�. Suppose that

S�∅� �� = � for some � ∈ ��. Amongst all such possible � ∈ �� pick one with
M�p�� least; say M�p�� = 	. From the definition of Morley rank we know that
p� is isolated by some open set U in S�∅� among types of Morley rank greater
than or equal to 	. By earlier remarks, we can assume that U = ���, where � is a
conjunction of atomic and negated atomic formulae. We write

� = ∧

i�l

xai = xbi ∧ xul �= xvl

where the i� l run over finite (possibly empty) indexing sets.
Let

� = ���ai� bi��� and K = ��ul� vl���

so that ��� K� is a subset of �� of finite type and � ∈ ��� K�.
We are supposing that �∅� �� does not have S-rank. Since ��� K� is a set, if

S�∅� �� exists for all � ∈ ��� K�� � �= �, then we could find an ordinal � such that
S�∅� �� < � for all � ∈ ��� K�� � �= �. But this would contradict S�∅� �� ≥ � + 1. Thus
there exists some � ∈ ��� K�� � �= � with S�∅� �� = �. But then p� ∈ ��� and p� �=
p�, so that M�p�� < M�p��, contradicting the minimality of M�p��. We deduce
that S�∅� �� < � for every � ∈ ��. Corollary 3.3 gives that S�I� �� < � for every
�I� �� ∈ �. �

In the case where S is a group, we can obtain an exact value for the Morley
rank of a type over TS .
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4654 GOULD

Theorem 7.4. Let G be a group. Then TG is totally transcendental if and only if G is
ranked. Moreover, for any type p ∈ S�A�, M�p� = 0 if Ip = G and otherwise,

M�p� = 1+ S�∅� �p�

Proof. The first statement follows from Theorem 7.3 and the fact that ∅�G are the
only right ideals of G. As remarked earlier, for any type p, if Ip = G, then M�p� = 0.

Suppose now that Ip = ∅. We show via transfinite induction that for all
ordinals 	,

S�∅� �p� ≥ 	 ⇔ M�p� ≥ 1+ 	�

whence the result follows.
Certainly, S�∅� �p� ≥ 0, and

M�p� ≥ U�p� = 1 = 1+ 0

Let 	 be an ordinal and suppose that for all ordinals � < 	 and types q with
Iq = ∅ we have that

S�∅� �q� ≥ � ⇔ M�q� ≥ 1+ �

Consider first the case where 	 is a limit ordinal; we remark that 1+ 	 = 	 and
for any � < 	 we have that 1+ � < 1+ 	 = 	. Then, using the inductive hypothesis,

S�∅� �p� ≥ 	 ⇔ S�∅� �p� ≥ � for all � < 	

⇔ M�p� ≥ 1+ � for all � < 	

⇔ M�p� ≥ � for all � < 	

⇔ M�p� ≥ 	 = 1+ 	

Suppose now that 	 = � + 1. If S�∅� �p� ≥ 	, then certainly S�∅� �p� ≥ � so our
inductive hypothesis gives that M�p� ≥ 1+ �. Let p ∈ ���, where ��� is a basic open
set of S�A�. Since Ip = ∅, we must have that

� = ∧

i�l�h

xai = xbi ∧ xul �= xvl ∧ xth �= dh�

where i� l� h run over finite (possibly empty) indexing sets. Let

� = ���ai� bi���� K = ��ui� vi��

so that ��� K� is a subset of �� of finite type and �p ∈ ��� K�. Since S�∅� �p�≥ �+ 1
there exists � ∈ ��� K� with � �= �p and S�∅� �� ≥ �. Let q = tp�1�/∅� and let r ∈
S�A� be such that Ir = Iq = ∅ and �r = �q = �. Certainly, r ∈ ���, r �= p and our
inductive hypothesis gives that M�r� ≥ 1+ �. Thus M�p� ≥ �1+ ��+ 1 = 1+ 	 as
required.
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RIGHT CONGRUENCES ON SEMIGROUPS 4655

Conversely, we suppose that M�p� ≥ 1+ 	 = 1+ �� + 1�. Then M�p� ≥ 1+ �
so that S�∅� �p� ≥ �. Let ���H� be a subset of �� of finite type with �p ∈ ���H�. As
M�p� ≥ 1+ � + 1, there is a G-set B ⊇ A an extension q of p in S�B� with M�q� ≥
1+ � and q a limit point in S�B� of types with Morley rank greater than or equal to
1+ �. We cannot have Iq = G, since otherwise M�q� = 0; thus Iq = ∅ and as p ⊆ q,
�p = �q. Putting

� = ���ci� di���� H = ��wl� zl��

we have that q ∈ ���, where
� = ∧

i�l

xci = xdi ∧ xwl �= xzl

But then there exists s ∈ ��� with s �= q and M�s� ≥ 1+ �. It follows that
Is = ∅, �s �= �q and �s ∈ ���H�. The inductive hypothesis gives that S�∅� �s� ≥ �.
Consequently, S�∅� �p� ≥ � + 1 = 	. �

In view of Theorem 7.4 and the comments at the end of Section 6, for the free
cyclic group , any type over the empty set has Morley rank 1, with the exception
of the type p with �p = �, which has Morley rank 2.

Considering now the group �p�� of all pnth roots of unity, we see that the
Morley rank of any type over the empty set is 1, except for the type p with �p = �,
which has Morley rank 2.
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